CROATICA CHEMICA ACTA CCACAA 66 (1) 13-26 (1993)

ISSN 0011-1643
CCA—2114 Original Scientific Paper

Cylindrical and Toroidal Polyhex Structures

Edward C. Kirby

Resource Use Institute, 14 Lower Oakfield, Pitlochry,
Perthshire PH16 5DS, Scotland UK.

Received June 24, 1992.

A simple graphical method is outlined for applying the encoding method
developed earlier with Mallion and Pollak for polyhexes embedded in the sur-
face of a torus. Some conditions for the occurrence of sextet 2-factorable
(fully resonant sextet) and other-circuit 2-factorable structures among this
series, and among cylindrical polyhex structures are pointed out. They ap-
pear more frequently here than among polyhexes on a plane, but are not
such simple indicators of stability because destabilising »2n« circuits often
appear too. The z-electron energy of forming small holes is calculated and
compared with Hall’s values for planar structures.

1. INTRODUCTION

Toroidal hydrocarbons, although as yet unknown in physical reality, have been as-
signed a place in at least one published classification scheme,! and, in the course of a
comprehensive study of carbon cages,>** a few calculations were made of resonance
energies and Kekulé counts. The possibility of carbon cylinders has also aroused in-
terest; Fowler® discussed a class of closed shell structures where, in effect, buckminster-
fullerene has one or more bands of extra hexagons inserted around a circumference
to give, for example, Cyy, Cgq, C1gg, and C;g clusters.

A particularly intriguing feature of a toroidal polyhex is that, in contrast to net-
works embedded on a sphere, such as the now famous Cso molecule buckminsterful-
lerene, there need be no pentagonal rings. This predisposes one to expect a higher or
at least a comparable range of stabilities. On the other hand, there are at least two
factors which may run counter to this: (i) more conjugated circuits become possible in
three dimensions, including ones that are destabilizing, and (ii) the geometry of a torus
inevitably involves a tighter curvature around the »tube« than is the case for a sphere
of the same volume. The energy cost incurred in assuming such a strained form may
be prohibitive, at least for smaller structures, but this important practical point is not
addressed here.

In the study of benzenoid hydrocarbons, chemists have shown particular interest
in those (e.g. Figure 1) that can be fully drawn as an assembly of aromatic sextets con-
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nected by single bonds®-® (this is a special case of 2-factorability; see definitions sec-
tion), and there have been several enumeration and counting studies among planar
systems.?-1* It has been remarked how few polyhexes like this there are in this class
among all those theoretically possible (18 among a total of 38,742 polyhexes with ten
or fewer hexagons”). In this paper a short preliminary exploration is made of some of the
conditions for their occurrence among boundless polyhexes embedded on a cylinder or
torus. The object was to gain at least some idea of how such objects compare with or-
dinary planar polyhexes on the one hand and with fullerenes on the other, especially
with regard to the number of connectionally distinct isomers and the proportion that
are, or more accurately can be, fully resonant.

The concept of circuit 2-factoring is closely related to the conjugated circuit model
(see Refs. 15-17 for example) but each vertex is used only once.

Figure 1. A sextet 2-factorable planar polyhex; inscribed circles showing fully resonant hexagons.

Figure 2. The cubic graph drawn as a cube; in the plane and (with obvious distortion) on a torus.

2. SOME DEFINITIONS USED

Polyhex: Here this is taken to mean any structure drawn on a surface so that it
is composed of hexagons, and where any two hexagons are either disjoint or have a
common edge.

Benzenoid: A 1-factorable polyhex (i.e. one that has Kekulé structures), and com-
monly the hydrogen-suppressed chemical graph of a benzenoid hydrocarbon.

There is some variability in the conventions adopted by different authors for
using terms like »polyhex«, »benzenoid« and their synonyms, see for example refer-
1,18,19
ences. 1%

Toroidal polyhex: In this paper the term is used to include any chemical graph that
can be embedded in the surface of a torus as a boundless polyhex network. It is not
limited by the genus of the graph, because it is used to include, for example, the cubic
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graph. This is of course planar, in the graph-theoretical sense that it can be drawn
(as a pattern of rectangles) on a plane with no crossings, but it can also be drawn upon
a toroidal surface as a boundless network of four hexagons (Figure 2).

I-Factor: If a graph has one, it is a set of disconnected edges drawn to include
every vertex, so that each vertex has a valency of one. It is equivalent to the set of
»double« bonds within a Kekulé structure.

2-Factor: If a graph has one, it is a set of disconnected rings that can be drawn
to include every vertex, so that every vertex in this subgraph has a valency of two.

Sextet 2-factorable: Structures that can be 2-factored as hexagons; i.e. a set of dis-
connected hexagons can be drawn to account for every vertex. A sextet 2-factorable
benzenoid is the same as a total resonant sextet benzenoid.?’ The former term is used

here so that its scope can be extended in an obvious manner to refer to s-circuit 2-
factorable structures.

3. CODING AND ENUMERATION

The two principle types of cylindrical polyhex are described in the next section,
although this is not an exhaustive treatment, for at this stage we have not encoded
or emunerated them systematically. A comprehensive procedure for encoding toroidal
polyhexes and manipulating code values has been developed, which is summarized here
and described in more detail elsewhere.?!

The connectivity of a torus covered with a boundless polyhex may be characterized
by a code consisting of three integers. These enable a 2 X2 matrix to be written (one
of whose numbers is always zero) defining a rectangle that repeats itself indefinitely

on a planar hexagon grid and which represents a toroidal structure. The two columns
of the matrix

0= d

ab’

give three congruent points on the grid where the pattern starts to repeat, and defines
a rectangle, as illustrated in Figure 3 for »5-2-2«. Obviously, there are various ways
in which axes can be chosen, and it is necessary to decide upon a standard form. For
our work we have chosen (for such a matrix, coded a-b-d) first to minimise, d, and
then b. Six rules were formulated for interconversion of matrices for comparison and

Figure 3. A 10-hexagon toroidal polyhex embedded in part of a boundless planar polyhex grid,
and labelled in such a way that its code would be read as 5-2-2. The rectangle shown defines
the toroidal polyhex, and is itself defined by coordinates 5,0 (from traversing 0-1-2-3-4-0) and
2,2 (from traversing 0-1-2-5-0).
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reduction to a standard form.?! In practice most toroidal polyhexes can be represented
as a single strip of hexagons (a linear polyacene) with suitable connections to itself;
i.e. usually d = 1 in the standard form. In this way the example 5-2-2 of Figure 3 be-
comes 10-5-1 on application of these rules. Alternatively, this result can be obtained
simply by embedding the repeating pattern of Figure 3 on a larger network, as in Fig-
ure 4, and searching for the optimum.

The code values of toroidal polyhexes with up to 30 hexagons (60 vertices) are
given in Table I. A closed formula for calculating their eigenvalues, and a simple pro-
gram for constructing an adjacency matrix, was given in earlier work.?!

Figure 4. The same toroidal polyhex as Figure 3, embedded in a larger grid and renumbered, so
that the standard code value (minimum d then minimum b in a—b—d) of 10-5-1 can be read off.

4. SEXTET AND OTHER 4n + 2 CIRCUIT 2-FACTORABILITY

The question of which structures are circuit 2-factorable is more complicated than
for planar polyhexes, because the simple cylinders and tori discussed can always be
2-factored into a set of rings co-axial with the cylinder or with one or other axes of
the torus, and (unlike circuits that are within the network surface) the size will depend
simply on the number of hexagons around the circumference. The observations that
follow are more concerned with 2-factoring in the conventional sense; with the usually
more difficult problem of establishing whether a set of rings on the surface will cover
all the vertices. This »normal« sense will be implied unless otherwise stated.

It is useful first to state a fairly obvious general point: For any polyhex, a necessary
but not a sufficient condition for it to be sextet 2-factorable is that no two adjacent
hexagons should contain vertices of degree two. This is because a hexagon with degree
2 vertices must be a »circled« one in a sextet 2-factor (see Figure 1), otherwise there
will remain vertices that are unaccounted for, but by definition adjacent hexagons can-
not both be »circled«.
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TABLE I

An enumeration of toroidal polyhexes with up to 30 hexagons (60 vertices).
Those that are sextet 2-factorable are starred.

6.2 1% 16 el 1: 202 6 ik 24 10 1 28c b 1k
603 1 15 d 1 2059 1 24 11 ] 282 6 1
= 22 1 1:bs=h ok 20 10 1 24 12 1 28~ 7. 1
T 3 1 16556 1 10 4 2 12 4 2% 28: =8 1
82 1 116572 1 2l o) ik 1:2 06 2 28 13 1
823 1 1603 1 203 1: 26 2 1 28 14 1
8 4 1 16524 1 Z2ile 1 25 3 1 14 4 2
92 ik 16 a1 1 21 b 1k 25 4 . 295 2 1
93 1 162 =8 1 2057, 1 256 5 1 293 1
3=, 0o 3% 8 4 2 218 i 25 10 1 29 4 1
10552 1 4 0 4 2089 1 5 0 5 29 -5 1
1:0= -3 1 79 1 2232 1 26 =22 1 29 -0 1
10-":5 1 13 3k 223 1 26 3 1 30 2 1
132 1 17 4 1 22 4 1 26 4 1 3023 1*
11 3 1 18 2 ity 22 b 1 26:°-H 1 30 4 1
125 22 )% 18- -3 ]t 22 6 1 2657 1 30---5 1%
28 3 1 18 4 1 227 <14l 1 26 8 B 30 6 it
12 4 1 I8¢5 25 1% 235 9 1 26 13 1 3021 1
12: =5 i 18 -6 i 23 =3 1 202 1 30 8 i
206 1 118229 ik 23 4 1 23 1 309 1
6 4 2% 620 3% 235 b 1 254 : 30 10 1
1352 1 1952 i 24 2 i 20526 1% 30 11 1l
137 3 1 9= 3 1 24 3 : 206 : 30 12 il
1:375 -4 1 19 4 ik 24 4 1 202 -9 1 30 15 1
14 2 ik 19 8 1 24 5 1k 9 3 3% 15825 2
14 - 3 1 205 2 1 245 6 1 916 3
14 4 i 20 53 1 24 0 1 28 2 it
e it 20 4 1 2458 ik 28 = 3 1
15y ) ok 20 5 1 249 1 28 4 it

4.1. Cylindrical Polyhexes

We consider here two principal classes of cylindrical polyhex, distinguished by the
orientation of hexagons with respect to the axis of the cylinder, see Figure 5. (These
are not the same as the carbon cylinders already referred to that were discussed by
Fowler.®) Both kinds are related to polyhex near-rectangles, and a traverse of any
cylinder end must visit a repeating sequence of either degree-2- - -degree-3--- or de-
gree-2- - -degree-2- - -degree-3 - - - degree-3 vertices.

4.1.1. Cylinders of type 5a cannot be sextet 2-factored in the ordinary sense be-
cause adjacent hexagons on the end perimeters contain vertices of degree 2. However,
note that (i) if promontories are formed by adding hexagons to the ends at suitable
positions (e.g. Figure 1, if is »wrapped around« with suitably added edges) then the whole
may be sextet 2-factorable, and (ii) as mentioned above, a cylinder of type 5a can be
2-factored into a set of rings threaded onto the cylinder (Figure 6). For these to be of
4n + 2 type, there must be an odd number of hexagons around the circumference.

4.1.2. Cylinders of type 5b may be sextet 2-factorable, depending on their dimen-
sions, and provided that the number of polyacene strips parallel to the axis is even
(see 4.1.3. below). The smallest such structure has four hexagons (Figure 7). This kind
of cylinder must have polyacene strips parallel to the axis that are all of the same size,
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Figure 5. Two types of cylindrical polyhex considered.

Figure 6. A special kind of circuit 2-factoring (heavy lines) shown by cylindrical polyhexes of type
5a.

Figure 7. The smallest truly cylindrical sextet 2-factorable polyhex.

or that are interleaved with strips differing in length by one hexagon. When circuits
co-axial with the cylinder are considered, it can be seen that each double hexagon strip
unit contributes four vertices to such a circuit, so that they are all of the 4n type. It



CYLINDRICAL AND TOROIDAL POLYHEXES 19

therefore follows that geometric strain, and the attenuation of destabilising coaxial cir-
cuit effects by increased size, both indicate that a comparatively large diameter would
be needed for any stable structure of this kind to exist.

4.1.3. A cylindrical polyhex of type 5b with an odd number of polyacene strips
parallel to the axis cannot be sextet 2-factored in the ordinary sense. This is because
if there is an odd number of polyacene strips, then on each cylinder end there must
be at least one pair of adjacent hexagons which both have degree 2 vertices.

This restriction does not apply to larger circuit factoring; for example, Figure 8
shows a 10-circuit 2-factoring in a cylinder with three rows of four hexagons.

4.1.4. For a cylindrical polyhex of type 5b with an even number of polyacene strips
parallel to the axis, let & be the number of pairs of strips, h the total number of
hexagons, and s the size of 4n + 2-circuit (6,10,14,18,- - ) being considered. Each pair
of polyacene strips may have two rows that are equal in length or that differ by one
hexagon. Then the structure will be s-circuit factorable if

h = k(s/2 Xi - 2)

where I is a positive integer.

Setting s = 6 and i = 1 gives the degenerate case of (sextet 2-factorable) circilar
poly para-phenylenes (Figure 9). Figure 10 illustrates the first few members of this
series. It can be seen that such a cylinder is both 6- and 10-circuit factorable when
there are 13 hexagons (greatest depth 7), and 6-, 10- and 14-circuit factorable when
this at 105 hexagons (the lowest common multiple of 3,5,7).

4.1.4. A cylindrical polyhex of type 5b with an even number of polyacene strips
parallel to the axis is s-circuit factorable on the surface if and only if the number of
vertices in divisible by s. That this is a necessary condition is obvious by definition.

Figure 8. A cylindrical polyhex of type 5b but with an odd number of linear polyacene strips pa-
rallel to the axis. These are not sextet 2-factorable, but this example is 10-circuit 2-factorable.

Figure 9. One of the degenerate class of shallowest possible sextet 2-factorable »cylindrical« »po-
Iyhexes«.
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That it is sufficient may be seen by referring to Figure 10. Each hexagon added to a
cylindrical polyhex of n vertices is responsible for increasing the number of vertices
by two. The only way of adding s/2 hexagons (giving n + s vertices, also a multiple
of s) whilst remaining a cylinder of type 5b results in an s-circuit factorable structure.

4.1.5. The examples of s-circuit 2-factoring shown here all relate to the perimeter
of linear polyacenes. Perimeters of non-linear catacondensed polyhexes (for example
phenanthrene) can also appear as 2-factors, but we do not know how many and which
others are available.

4.2. Toroidal Polyhexes

4.2.1. A toroidal polyhex of code a-b—d (see section 3) is sextet 2-factorable if and
only if 1) aMOD 3 = 0 and 2) (b + d) MOD 3 = 0. This is seen by considering a sextet
2-factored infinite hexagon lattice. (E.g. Figure 1 where the internal pattern continues
indefinitely.) Any given hexagon is either circled or not circled. Starting with an empty
uncircled lattice, if any hexagon is circled, then the condition of every other hexagon

Figure 10. The unit vertical strip of a cylindrical polyhex of type 5b, shown with four different
circuit 2-factorings. The cylinders can be extended to infinite depth and to infinite circumference.
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is fixed (but note that this does not apply if it is specified as uncircled). For any
hexagon there are three ways of drawing a line passing through the centre, perpen-
dicular to two edges. On a sextet 2-factored structure such as Figure 1, any such line
traverses a repeating sequence of one circled and two uncircled hexagons. Further-
more, this is still true if the line changes direction, so long as it does so by 120°. It
follows that the number of hexagons traversed in going from any circled and labelled
hexagon to another with the same label is a simple multiple of 3. In the code a-b-d,
a is the number of hexagons in each row (i.e. position of the first repeated hexagon
on straight line), and b + d represents the number of hexagons traversed to find the
same labelled hexagon on the other axis.

4.2.2. As a matter of general interest we note that these toroidal polyhexes all have
Kekulé structures (1-factors). This can be proved by considering deletion of one of the
three sets of parallel edges; the resultant subgraph is a 2-factor. Since the toroidal
polyhex is cubic and is, therefore, its own branching graph,?? and since there is a one-
to-one correspondence between the 2-factors of a graph and the 1-factors of its
branching graph®*23 the toroidal polyhex is 1-factorable and has Kekulé structures.

4.2.3. Table I shows all the toroidal polyhexes with up to 30 hexagons (60 vertices),
and shows which are sextet 2-factorable. These amount to 27 (19%) out of a total of
141 with 30 or fewer hexagons. This is a higher proportion than for planar polyhexes
as a whole,® though more comparable with the behaviour of »constant isomer series«.2

5. DESTABILIZING CIRCUITS

Care must be taken in attempting to assess the relative effects of stabilizing (4n
+ 2) and destabilizing (4n) circuits, since the former are usually essentially coplanar,
while the latter are definitely not, but qualitatively at least, their effects will tend to
oppose. The presence of 4n circuits differentiates the three dimensional structures
from planar polyhexes, where only 4n + 2 circuits occur. By analogy with the theory
of Clar resonant sextets, it is probably the case that destabilisation is greatest when
a structure can be 2-factored into a set of independent 4n rings, and this is often coin-
cident with a more »benign« 2-factorability. The 6-vertex graph shown in Figure 11,
for example, is 2-factorable into either two hexagons or three four membered rings.

The prevalence of this effect has not been investigated systematically, but it (and
indeed the presence of either kinds of circuit) can conveniently be studied graphically.
Using the repeating planar representation described (e.g. of toroidal polyhex 10-5-1

Figure 11. A 12-vertex graph that can be 2-factored as either two hexagons or three 4-circuits.
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Figure 12. Toroidal polyhex 3-0-3, showing selected circuits. Circles show the hexagon arbitra-
rily chosen as the origin, and their pattern repeats indefinitely on this planar representation of
the toroidal surface. The hatched hexagons form a possible sextet 2-factoring on the toroidal sur-
face, while heavy lines indicate a possible circumferential sextet 2-factoring. The double lined
path shows one circumferential 12-circuit. (There cannot be a 12-circuit 2-factoring because the
number of vertices, 18, is not a simple multiple of 12.

TABLE II.

The square root of the tail coefficient of the characteristic
polynomial for the 30 hexagon, 60 vertex, toroidal polyhexes.

Code Va,
30- 2-1 0
30- 3-1 95139
30- 4-1 25344
30- 5-1 0
30- 6-1 21483
30- 7-1 21483
30- 8-1 0
30— 9-1 17019
30-10-1 3069
30-11-1 0
30-12-1 16128
30-15-1 32769
15- 5-2 26829

TABLE III.

Smallest circuits around the torus tube, and E, for the
four sextet 2-fuctorable 30 hexagon (60 vertex) polyhexes.

Code Circuit size E, 2

30-2-1 4,30 85.92
30-5-1 10,12 93.52
30-8-1 8,16 92.93

30-11-1 6,20 93.06
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in Figure 4), a »normal« circuit, within the surface and which must be of 4n + 2 type,
is represented by an obvious graph circuit drawn to join up adjacent vertices. An »ab-
normal« circuit, on the other hand — which girdles the three dimensional tube of the
torus, and which may be of 4n + 2 or 4n type - has to be drawn as a path from some
labelled vertex to where the same vertex appears again (see Figure 12).

Different circuits contribute to the algebraic structure count,!® and the effects of
this in rendering the tail of the characteristic polynomial unreliable as a simple in-
dicator of the Kekulé count (and therefore of resonance energy) is shown for the 30
hexagon Cg series in Table II. The smallest circumferential circuits of members of this
series that are sextet 2-factorable are shown in Table III, and are consistent with the
view that 4n + 2 or 4n circuits stabilize or destabilize, respectively, in inverse propor-
tion to their size (this ignores their practical effectiveness arising from the amount of
orbital overlap).

On the other hand, although 30-5-1 appears from this to be the most favoured
sextet 2-factorable structure, the highest E, value for the series is for 30-3-1 (95.99).
This, although it does not have a full set of resonant sextets, is 10-circuit factorable
in the conventional sense, and has a set of circumferential 6-circuits.

6. HUCKEL #-ENERGY OF CYLINDRICAL AND TOROIDAL FORMS

An alternative approach to seeking some illumination of the possible stabilities of
these structures is to ask — what is the effect upon the z-energy of a planar polyhex
of »wrapping it around« to form first a cylinder and then a torus? This intuitively in-
triguing question is not easy to answer satisfactorily, because it is difficult to compare
like with like. One cannot form a polyhex torus by simply adding edges to connect the
opposite sides of a planar polyhex without introducing non-hexagonal-rings on the sur-
face, for any planar representation of the polyhex »skin« of a toroidal polyhex will dif-
fer in the number of its vertices or of its rings. Even a cylinder cannot be formed in
this way if it is to conform to type 5a or 5b. The difficulty is illustrated by Figure 13.
As a practical aid to visualisation it is perhaps useful to point out that a convenient
mental construction process, corresponding to the planar tessellations used (Figure 14)
is coalescence, where pairs of same-label vertices and edges are »folded over« and fused.

We have briefly investigated an example by two complementary approaches in
order to give some idea of the magnitude of the effects involved, and the results are

Figure 13. A cylinder can be made by making the connections @ —a’, b - b', ¢ — ¢', and d — d’,

ore—e', f—f and g - g', but in either case the bridging row of hexagons will be a short row.
If both sets of connections are made (forming a torus), the »corner« rings will be non-hexagonal.
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Figure 14. Toroidal polyhex 20-5-1 with one unit shown lightly shaded (actually written here
as 5-0-4; see Section 3).

TABLE IV.

The effect on the total z—energy of a 38-vertex, 12-hexagon polyhex rectangle
(Figure 13), of conversion, first to a cylinder and then to a (non-polyhex) torus.

Ey

Change in E,,
per extra edge

A(3x4) 12 hexagon planar rectangle (Figure 13).

Cylinder by e—’, f-f', g—g’ linking.
Cylinder by a-a’, b-b', c-¢’, d-d’ linking.

A torus formed by both the above linkings.

A cylinder made by side linking of 12-linear polyacene.
A »cylinder« made from 12 hexagon poly para-phenylene

54.973
56.725
56.986
59.191
70.794

100.278

0.584
0.503
0.603
0.067
0.396

TABLE V.

The effect on the total z-energy of some toroidal polyhexes of deleting

certain edges. *See Section 3 for an explanation of the code.

Structure* Deleted edges E, E,, difference per deleted edge
None 63.098
a 62.307 0.791
b 62.497 0.628
c 62.370 0.727
a,d 61.4573 0.820
20-5-1 b,e 61.8241 0.637
cif 61.627 0.736
a,d,g 61.608 0.830
a,d,g,h 59.810 0.822
a,d,g,h,i 59.199 0.780
a,j 61.572 0.736
none 85.919
one 85.537 0.382
s one 85.537 0.382
one 85.878 0.041
none 95.991
one 95.384 0.606
el one 95.183 0.807
one 95.130 0.861
none 93.520
one 93.017 0.503
Asbsl one 93.026 0.493
one 93.024 0.496




CYLINDRICAL AND TOROIDAL POLYHEXES 25

shown in Tables IV and V. In the first we take a twelve-hexagon, 38-vertex polyhex
rectangle and convert it to a cylinder by adding edges, thus forming extra hexagons,
but no extra vertices. The wrapping can be done in either or both of two senses. If
both are done together the resulting object is a toroidal structure but, as mentioned
above, it is not a toroidal polyhex, since the rings embedded in the surface are not all
hexagons. For comparison, the effects of linking up the two ends of a poly para-
phenylene, or the two longer sides of a twelve hexagon linear polyacene, are shown,
although the latter is likely to be atypical because four membered rings are formed.

As a complementary approach, Table I shows the effect on E, of deleting certain
edges from a already formed toroidal polyhex. The values vary from structure to struc-
ture, and within a given structure there are three kinds of edge incident at any vertex,
depending on orientation. Within this limited sample there is much more variability
than was found by Hall** in an interesting study of two planar polyhexes (with ten
and seventeen hexagons). He found that deleting an edge resulted in a fairly constant
energy difference of 0.64 beta units. The variability presumably arises from differences
in the circuits being disrupted. In Table III, the structures that are associated with the
smallest average energy difference (30-2-1 and 30-5-1) are those that are sextet 2-fac-
torable.
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SAZETAK
Heksagonske strukture na cilindru i torusu
Edward C. Kirby

IzloZen je jednostavan graficki postupak za primjenu koda, razvijenoga ranije u suradnji s
Mallionom i Pollakom, na heksagonske strukture, smjestene na povr$ini torusa. Istaknuti su ne-
ki uvjeti koje ove strukture, kao i heksagonske strukture smjestene na cilindru, moraju zadovol-
Jiti da bi posjedovale 2-faktor od samih Sestero¢lanih ili opéenito n-tero¢lanih prstenova. Iako se
ovo svojstvo ceSce srece kod struktura smjestenih na torus ili cilindar nego kod onih smjestenih
na povr$inu, ipak je diskusija o stabilnosti otezana zbog istovremene pojave velikog broja desta-
biliziraju¢ih 4n-teroclanih prstenova. Izracunane su (w-elektronske) energije potrebne za stva-
ranje Supljina u heksagonskim strukturama smjestenima na torusu i cilindru te su usporedene
s Hallovim vrijednostima za strukture smjestene u ravnini.
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