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We give exact formulae for the number of directed column-convex animals
with a given bond perimeter and area. The proof is based upon bijections and
combinatorics related to the algebraic language theory.

INTRODUCTION

An animal is a set of points of Z X Z such that every point of the animal can be
reached from another point by a sequence of points of the animal such that any two
consecutive points in the sequence are connected by a unit step in the lattice plane.
Animals are counted up to a translation.

Finding the exact formula for the number a, of animals having the n point is im-
portant in statistical physics and chemistry. It is also a major problem in com-
binatorics. In physics, it is connected to the percolation theory, see for example Ref.
16. In combinatorics, animals are called polyominoes. These objects are obtained from
animals by substituting to each point of the animal a unit square with vertices at in-
teger points (see Figure 1). They have been intensively studied. See, for example,
Golomb,® Klarner,':!2 Bender,! and Klarner, Rivest.!3

An animal is a directed one if it contains the point (0,0), called the source point,
such that any other point in the animal can be reached from the source point by a
sequence of points of the animal such that any two consecutive points in the sequence
are connected by a north or east step in the lattice plane. In physics, this model is
related to the directed percolation problem,'® some lattice gas model and the Lee-Yang
edge singularity problem; see a survey in Viennot.2? Recently, exact results were given
by Nadal, Derrida and Vannimenus,!* Hakim, Nadal! and Dhar.®? A combinatorial

proof for these results and some new ones were given by Gouyou-Beauchamps, Vien-
not,’ and Viennot.2°

On the other hand, enumerative results were found for some classes of poly-
ominoes: the convex and column-convex polyominoes.>® A column (resp. row) of a
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Figure 1. Correspondance between directed animals and polyominoes

polyomino is any infinite vertical (resp. horizontal) strip of unit squares. A column-
(resp. row-) convex polyomino is a polyomino such that all its columns (resp. rows) are
connected. A convex polyomino is both row and column convex. The enumeration is
done according to the three following parameters:

- the bond perimeter, that is the length of the border of the polyomino A, p(A),

- the site perimeter, that is the number of unit squares of the outside along the
boundary of the polyomino A, s(A),

— the area, that is the number of unit squares of the polyomino, r(A).

The two perimeters are of such interest in physics!® because it seems that they
are in the same »class of universality« that is

pA) = (2,)"n"% and s(A) = (a;)"n~*

with 6, = 6,.

In Ref. 5, Delest and Viennot give an exact formula for convex polyominoes ac-
cording to the bond perimeter. They use the algebraic language methodology which is
an old idea introduced by M. P. Schiitzenberger.!”!8 Let A, be a class of combinatorial
objects enumerated by the integer a,. The method makes use of three steps. The first
one is to find a bijection between A, and the words of an algebraic language L over
an alphabet X. The second one is to give a non-ambigous grammar generating L. Clas-
sically, from the non-ambigous grammar, one can associate that a proper algebraic sys-
tem is noncommutative power series. The unique solution of this system has a com-
ponent which is the noncommutative generating function L = 3 w. At last, sending
all variables x of X onto one variable t, the series L becomes the generating function
£t = n)éoant“, which is the solution of an algebraic system in one variable t. The in-
terest in such a method is in the fact that, after the coding, the computations are
straightforward. For a survey on the results in this field see Ref. 19. Other results are
in the same vein. They concern the column-convex polyominoes according to the bond
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perimeter and area® and parallelogram polyominoes according to the double distribu-
tion bond and site perimeter.*

In this paper, we are interesting in the study of directed column-convex
polyominoes (i.e. polyominoes which are obtained from directed animals and are
column-convex) with a given site and bond perimeter or area. We name them, for
short, dcc-polyominoes. A dcc-polyomino being directed, the site perimeter is directed
and is the number of unit squares of the outside along the boundary which are in the
north or in the east of a point of the polyomino (see Figure 2). This directed site
perimeter is the one considered by physicists in the directed percolation model.

After definitions and notations, we define a special class of dcc-polyominoes which
are named stair polyominoes and are enumerated by the Catalan numbers. In sections
3 and 4, we give a bijection between dcc-polyominoes and some words of a language
close to the Dyck language. In sections 5, 6 and 7, we give the exact formula for
enumerating them according to the site and bond perimeter. At last, in section 8, we
prove, using a very simple bijection, that the number of animals with an area n is ex-
actly the Fibonacci number Fy,.

Bond perimeter 30

Directed site perimeter 13

Area 26

L4

Figure 2. A dcc-polyomino.

1 - DEFINITIONS AND NOTATIONS

Let X be an alphabet, we denote by X* the free monoid generated by X, that is
the set of words written with (i.e. finite sequences composed of letters from X. The
empty word is denoted by ¢. The number of occurrences of the letter x in the word w
is denoted by |w|, the length (number of letters) of w by |w]|.

Let K ((X)) (resp. K[X] be the algebra of non-commutative (resp. cummutative)
power series with variables from X and coefficients in the ring K. We denote by « the
canonical morphism which makes the variables commuting. For any language L in X*,
we denote by L the generating function
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Li=>W

wEL

which is an element of Z{(X)).

The Dyck language D is the set of words over {x, x} satisfying the two following
conditions:

(1) for any left factor f such that w = fg, |f|x = |f]z

@) |wlx = |w|x-

The number of Dyck words of length 2n is the classical n™* Catalan number:

s 1 (Zn).
n:1.1°n

A path w is a sequence w = (s, s, * -, sy) of integer coordinate points in the Car-
tesian plane such that s; and s;;; are neighbours. The point s, (resp. s,) is the starting
(resp. final) point. The length of w is n. Each pair (s;, s;+;) is an elementary step of
the path. The elementary step is called North (resp. South, respt. East) if s; = (x,y),
siy1 = (xX,y) withx' = xandy' = y+1 (resp. X' = x andy' = y-1, resp. X' = x+1 and
¥ =3

Let A be a dcc-polyomino. Let N(A) (resp. S(A) be the point of the perimeter of
A, which has no perimeter point of A higher (resp. lower) than it and no perimeter
point of A on its right (resp. left). We can see that a dcc-polyomino is defined by two

paths w(A) and 7(A) starting at the same point S(A), ending at the same point N(A),
such that:

(i) w(A) has only north, east and south steps,
(ii) #(A) has only north and east steps,
(iii) w and # are nonintersecting paths except at the starting and final points.

We suppose that w is above 7 (see Figure 3). In another way, the same dcc-polyomino
A can be defined by two sequences of integers

= (44,7452
G*=(1,0,1,0,1)
(A) Q*=(3,4442)

- N(A)

n(A)

S(A) 4

Figure 3. Definition of a dcc-polyomino.
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AT A A =(ghA ... oA
C ‘(Cl)'“)ck)andGA—(gl y )gk—l)’

with the convention that if k = 1, then G* is empty (we will denote G* = ¢). These
two sequences are defined by the following conditions:

for every i €[1,k], c# is the number of cells of the ith column of the
dcc—polyomino A, (D

for every i €[1,k-1], g/ encodes the way of gluing the column i to the

column i+1, namely, starting with the column i+1 glued on the right of

the i column so that their two southmost east steps are on the same

horizontal line, then the column i+1 is moved g steps north. In other

words, g is the difference between the altitude of the southmost east

step in the column i+1 and the southmost east step in the column i. (2)

See Figure 3. These two sequences satisfy:
for every i €[1,k], cA>0;
for every i €[1,k-1], gA=0 and gA<cA. 3)
In the sections 6 and 7, we will use Good’s formula (Lagrange inversion with two

variables) in the following form. Let ¢ and y be two power series from C{({x,y})), let
f and g be two other power series from C{({u,v})), so that

f = uepdy),
g =vyfg
the coefficient of u™v® in f is given by

n m-1

1 5 -
(f,umvn) = m_n E 2 k((pm, ijk)(wn, xm—l—Jyn—k)

k=1 j=0

with mn#0 due to the form of f in the previous system of equations. The reader can
find a demonstration of this formula using the language theory in Ref. 2.

2 - BIJECTION BETWEEN DYCK WORDS
AND STAIR POLYOMINOES

In this section, we prove that a bijection exists between the Dyck words of length
2n and special dec-polyominoes, which are named stair polyominoes, with n columns.

A stair polyomino is a dec-polyomino, such that the two sequences C* = (cf, - -+, cf)
and G* = (g} ,- -, gb_,) satisfy:
for every i €[1,k-1], g =0 4)

for every i €[1,k-1], cAi;=c® — landcf = 1. (5)

See, for example, the polyomino in Figure 4. For each stair polyomino A, we define
recursively the Dyck word w = u(A) using the following algorithm:



64 M. P. DELEST AND S. DULUCQ

—ifc® = 1 and k=1 then u(A) = x X,

—if ¢t = 1landk > 1then u(A) = x xu(A’) and A’ is a stair polyomino defined
by the sequence C*" with ¢* = ¢} for every j €[1,k-1] (A’) is the polyomino
obtained from A by deleting its first column),

— else, let ¢ be the smallest i so that ¢A = 1, then u(A) = x u(A") X u(A") with
A’ a stair polyomino defined by
for every j €[1,—1], ¢*'=¢f* - 1,
and with A” a stair polyomino defined by

CA = (Czl}-lr ) cl?)

Clearly, the number of columns in A is the number of letters x in #(A). The word u(A)
is a Dyck WOId; it comes from the fact that when we produce an x in the coding, we
associate an x in the word u«(A). We give an example of this coding in Figure 4.

Number of columns 12

C*=(2,4,54,324,32,12,1)

|+

RA)=X XXXXXXXXXXXXXXXXXXXXXXX

Figure 4. An example of bijection x

LEMMA 1. Map u is a bijection between Dyck words of length 2n and stair
polyomiroes having n columns.

In order to prove it, we construct the reciprocal bijection x' of 4. Let w be a Dyck
word, then we construct a sequence of integers associated to w in the following way:

— the number of components of u'(w) is |w|z

—if w # ¢, then let w = u; X v; such that |ulz = i- 1
then the ith component of u'(w) is given by ||y — i+ 1.
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Clearly, u'(w) verifies condition (5). Let C* = 4'(w) and GA be given by a sequence
of zeroes of length |CA| — 1. Then the two sequences, C* and G#, define a stair
polyomino A.

REMARK 2. This bijection comes from a classical one between the Dyck words and
Lukasiewicz words (for the definition of this language see, for example, Ref. 2.)

Thus, u' is the reciprocal bijection of 4. We deduce from the lemma 1 the
COROLLARY 3. The number of stair polyominoes having n columns is the Catalan

number
C, = —1—(2“).
n=+1:\n

3 — A CODING FOR DIRECTED
COLUMN-CONVEX POLYOMINOES

In this section, we give a coding for the dcc-polyominoes preserving the three
parameters: the number of columns, bond perimeter and directed site perimeter.

To the two sequences C* and G4, defining a dcc-polyomino A with k columns, we
associate a sequence of integers Q* giving the number of cells by which a column is
glued to the following. The sequence Q* is defined by:

If A has one column, then Q* = ¢,
else for every i € [1,k-1], if gA < ¢A — ¢}, then g = cA,,

else ¢t =P — gt (6)

See in Figure 5 an example of construction for the sequence QA. Note that the bond
perimeter of the dcc-polyomino A is given by

k
p@) = (2 + 2¢* — g, — q¢) )

i=1

with the convention qff = qf = 0. The directed site perimeter of A is given by

k-1
s(A)=cft+1+ Y sA (8)
with if gh>c® — ¢ thens? = ¢ — g + 1elsesP = cA — g

For the coding we need the notion of a marked dcc-polyomino, which is a dce-
polyomino with one of the last column cells marked. We consider that this cell has
no cell on its right. thus, the site perimeter of a marked dcc-polyomino is one less than
the same dcc-polyomino without the mark. Nevertheless, the bond perimeter is the
same.

DEFINITION 4. A marked dcc-polyomino & is a pair (A, ka) where A is a dcc-
polyomino and ka is an integer in [1, k1] where k is the last integer in the sequence
CA (i.e. the number of cells in the last column of A).
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For a marked dcc-polyomino @& = (A, k), we have s(@) = s(A) - 1 and p@) = p(A).
Let Y be the alphabet {x, X, y, y}.
DEFINITION 5. The language L over Y is defined by the system of equations:

L =yy + xLy + yxL + xLxL + xMxy XL + xMxyy , 9)
M = yX + xMy + xLX + yxM + xLxM + xMxyxM + xMXxyXx. (10)

REMARK 6. The words of language L (resp. M) will give a coding for the dcc-
polyominoes (resp. marked dcc-polyominoes).

We give below the definition of the bijection ¢. Let A be a dec-polyomino.
case 1
If A has only one column with p cells, p = 1 then ¢(A) = xP-ly y? (see Figure 6.1).

Figure 5. The sequences defining a dec-polyomino.

A[“j
=)

Site pernneter p+ |

Bond pernmeter 2p+2

i i
QLAY = X Yoy

W

Figure 6.1. An example for case 1 of ¢.
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case 2

If k = 2 and for every i € [1,k-1], qf* = 2, then p(A) = xp(A')y with A’ a dcc-
polyomino defined by C* so that for every i € [1,k], ¢A = cA—1 and GA = GA (see
Figure 6.2).

case 3

If k =2 2 and ¢ = 1, then p(A) = yxp(A') with A’ a dcc-polyomino defined by
CA = (cf, -+, cf)and GA = (gf, ---, g& ) (or GA = ¢ if k = 2) (see Figure 6.3).

dcc-polyomino A dcc-polyomino A'

PA) =x 9(A") y

Figure 6.2. An example for case 2 of ¢.

dcc-polyomino A dcc-polyomino A'

=

o

>

PA) =y x (A")

Figure 6.3. An example for case 3 of ¢.
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case 4

Ifk = 2 and cff = 1, then p(A) = xp@)xyy with @ = (A’, ka,) the marked dcc-
polyomino defined by CA so that for every i € [Lk-1], ¢ =cA - 1, GA' =
= (gf, -+, gity) or GA = ¢ if k=2), and the mark of A’ isk, = g, + 1 (see Figure
6.4).

case 5

Let : be the smallest i, such that q, = 1.

case 5a

If ¢4 # 1, then p(A) = xp(A')xp(A") where A’ and A” are dcc-polyominos defined
by CA’ so that for every i € [L,c], ¢ =cA — 1, GA = (gh, - -+, g2)) (or G* =¢ if¢ = 1),
CA" = (chy, -+, cf) and GA” = (g4, : -+, g&1) (or G2 = ¢ if 1 = k—1) (see Figure 6.5).
case 5b

Else we have necessarily c4; =1,letp(A) = xp@')Xyxp(A'') with @' is the
marked dcc-polyomino (A’, ka/) defined by CA such that for every i € [1, ], ¢ =
¢ -1, GA = (gft, ---, g21) (or G = ¢ if s = 1), the mark of A’ is k4 = gA, and A" is
the dcc-polyomino defined by CA” = (cAj, -+, ¢®) and GA” = (g3, * -+, git1) (or GA”
= ¢ if 1 =k-1) (see Figure 6.6).

REMARK 7. All the definitions or ¢ are based on the fact that every dcc-polyomino
can also be defined by two paths 5(A) and w(A) (see paragraph 1). All the north (resp.
east, resp. south) steps in w(A) are coded by x (resp. y, resp. y or X if it is the last one
in a sequence of south steps). All the north (resp. east) steps in 7(A) are coded by
¥ (resp. x).

We explain now the construction of p(A) directly on the picture of a dcc-polyomino
A using remark 7.

In case 1, there is only one column in A and in the site perimeter we want to count
the cells which are to the east (coding y) and to the north (coding y) of the dcec-
polyomino (see Figure 6.1).

dcc-polyomino A marked dcc-polyomino A'

Mark

®A) =x g(A')xyy

Figure 6.4. An example for case 4 of ¢.
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dcc-polyomino A dcc-polyomino A' dcc-polyomino A"
i=3

5 [Fand

OA) =X @A) X G(A")

Figure 6.5. An example for case 5a of ¢.

dcc-polyomino A marked dcc-polyomino A'  dcc-polyomino A"
i=3

= o i

Mark

KA =X QA X ¥ X QA")

Figure 6.6. An example for case 5b of ¢.

Case 2 says that the dcc-polyomino A’ is obtained by deleting the higher cell in
every column of A. Thus, x codes the north step which is deleted in w(A) giving w(A')
and y codes the last north step which is suppressed in 5(A) giving 7(A’) (see Figure 6.2).

In case 3, we say that if the dcc-polyomino A has a leftmost column with only one
cell, then its code is obtained by coding this cell by y X and coding the dcc-polyomino
A’, which is obtained by deleting the first column in A (see Figure 6.3).
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In case 4, the dcc-polyomino A has a rightmost column with only one cell and then
its code is given by coding this cell by y y and coding the dcc-polyomino A’ obtained
by deleting the last column in A and deleting one cell in every other column of A.
Thus, x codes the north step which is deleted in w(A) and x codes the last south step
which is deleted in w(A). We need a mark on the dcc-polyomino A’ because one of the
north step on 7(A’') does not have a site to its east (see Figure 6.4).

In case 5a, the dcc-polyomino A is decomposed into two dec-polyominoes, A; and
A", which are glued together by the higher cell in the last column of A; and the lower
cell in the first column of A". The dcc-polyomino A’ is obtained from A; by deleting
the higher cell in every column. Thus, x codes the north step which is deleted in w(A)
giving w(A’) and x codes the first east step which is deleted in the coding of A" (see
Figure 6.5).

In case 5b, the dcc-polyomino is decomposed into two dec-polyominoes, A; and Ay,
which are glued together by only one cell. This cell is the one of the first column of
Aj. The dcc-polyomino A" is obtained from A, by deleting this first column. The dcec-
polyomino A’ is obtained from A; by deleting the higher cell in every column. Thus,
x codes the north step which is deleted in w(A) giving w(A') and y codes the east step
which is deleted by the central cell. The two letters X code the two east steps of 7(A)
which are deleted by the central cell and the coding of A” (see Figure 6.6).

Note that ¢ can be defined in the same way on marked dcc-polyominos. The
coding difference is only on the marked step of path #, which is a north step and is
coded by x.

Using properties (7) and (8), we have the following lemma:

LEMMA 8. If A is directed column-convex animal with bond perimeter 2n+2, then
w = ¢(A) is a word of L such that |w| = 2n.

REMARK 9. Note that the notion of marked dcc-polyomino does not change any-
thing to lemma 8 because the mark does not change the bond perimeter (if @ = (A,kp)
then p@) = p(A)).

Clearly, for dcc-polyominoes the decomposition in the above cases is unambiguous
and we get directly from the definition of ¢, that if A is a dcc-polyomino, then ¢(A)
is a word of language L defined by equations (9) and (10).

Lemma 8 and the following ones can be easily proved by induction of n.

LEMMA 10. If A is a directed column-convex animal with a directed site perimeter
s, then w = p(A) is such that |w|y, + |W|; = s.

LEMMA 11. if A is a directed column-convex animal with k columns, then w =
¢(A) is such that |wly = k

4 — THE REVERSE BIJECTION ¢! BETWEEN DIRECTED
COLUMN-CONVEX POLYOMINOES AND WORDS OF L.
In order to prove that ¢ is a bijection we give here an application ¢’ which is the

reverse bijection ¢! of . Let X be the alphabet {x, x}, Y the alphabet {x, X, y, v},
and 7 the morphism from Y* into X* defined by its action on the letters of Y:

7(®) = 1(y) = xand 7(®) = 1(3) = . (1)
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Let w be a word of L, then 7(w) is a Dyck word. We define the decomposition of
a word w of L as follows:

w has the decomposition w = aw,bw, with w;,w, € Y*,
a € {xy} b € {x,y} if v(w)=x1(w;) Xr(W2) with v(w;) and 7(w)
Dyck words. (12)

For the construction of ¢’, we consider all the possible decomposition of a word
of L using equation (9) and give the recursive construction which associates a dcc-
polyomino. We use the implicit construction of a marked dcc-polyomino. In this con-
struction, we denote the number of columns of a dcc-polyomino A by k.

Let w be a word of L, and denote the dcc-polyomino ¢'(w) by A.

case 1

¢'(y y) is a dec-polyomino A, such that CA = (1) and G2 = e,

case 2

If the decomposition of w is w = xw;y, then w, is in L; if A’ is the dcc-polyomino
¢'(wy), A is given by

for every i € [1, kp] f = + 1,

for every i € [1, ky — 1]gh = gf".

case 3

If the decomposition of w is w = y X wy, then wy is in L, if A’ is the dcc-polyomino
@'(wy), A is given by ¢t = 1,gf = 1,

for every i € [1, ky] e = |

for every i € [1, ky — 1] gh = g

case 4

If the decomposition of w is w = xw;xw,, then w, (resp. wy) is in L; if A’ (resp.
A") is the dcc-polyomino ¢'(w,) (resp. ¢'(wsy)), the dce-polyomino A is given by

for every i € [1, ky]cf = ' + 1,

for every i € [1, ky — 1] gb = g

g, =k

for every i € [1, kav] ey, =

for everyi € [1, ks — 1] gy, =g

case 5

If the decomposition of w is w = xw;XyXxws, then w; (resp. w) is in M (resp. L);
if (A',ka’) (resp. A") is the dcc-polyomino ¢’(wy)). A is given by

foreveryi € [1, ka — 1]t = + 1.

for every i € [1, ky — 1] gf = g,

cﬁ\%—l =1, gﬁ‘A =Ky — 1, 8\L(\A/+1 =0,

for every i € [1, kp] ey v = )

for every i € [1, ky» — 1] gf‘+kA'+l =gt

case 6

If the decomposition of w is w = xw;Xyy, then w; is in M, if (A',ka’) is the dce-
polyomino ¢'(w,), A is given by
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for every i € [1, ky] cf = ' +1,

for every i € [1, ko — 1] gf = g,

Byt = L gy =renr = L.

The definition of ¢’ for the words of M can be deduced from the definition for
the words of L. Thus, the reader will easily write it. We have

LEMMA 12. If w is a word of L such that |w|= 2n, then ¢'(w) is a directed column-
convex animal with perimeter 2n+2.

REMARK 13. As in section 3, the notion of mark does not change the perimeter
of a dcc-polyomino (the construction of a dcc-polyomino from a word of L is the same
as that from a word of M). Thus, there is an analogous lemma for the words of M.
The proof of Lemma 12 is similar to that of Lemma 8 in section 3. Thus, using lemmas
8 and 12, we have proved that ¢’ is the reverse bijection of ¢, and the following

THEOREM 14. There exists a bijection ¢ between directed column-convex
polyominoes with perimeter 2n+2 and the words of length 2n of language L.

We also have the analogues of the other lemmas of section 3.

LEMMA 15. If w is a word of L so that |w|,+|w|; = s, then ¢'(w) is a directed
column-convex animal with site perimeter s.

LEMMA 16. If w is a word of L so that |w|, = Kk, then ¢'(w) is a directed column-
convex animal with k columns.

See in Figure 7 an example of bijection ¢. In other sections we use equations (9) and
(10) in order to give exact enumerations for dcc-polyominoes.

5 - FUNCTIONAL EQUATIONS FOR DIRECTED
COLUMN-CONVEX POLYOMINOES

We have proved in sections 3 and 4 that the number l,sx of dcc-polyominoes,
having a bond perimeter 2n +2, a site perimeter s and k columns, is equal to the num-
ber of words w of L so that |w| = 2n, |w|, + |w|; = s and |w|, = k. We deduce
now from this result some functional equations which are satisfied by some generating
functions of dcc-polyominoes.

We introduce the following generating functions in commutative variables x,y,z:
I, y, 2) = a@(L)) and m(x, y, z) = a(@(M),

where 6 is the morphism from Y* into {x, y, z}* defined by its actions on the letter
of Y

0x) = 6X) = x,0(y) = yand 6(y) = z

Then, using equalities (9) and (10) and, for short, writing 1 (resp. m) for 1 (x, y, z) (resp.
m(z, y, 2)), we get
1 =yz + xyl + xzl + x?12 + x’ylm + x*yzm, (13)
m = xy + xzm + %%l + xym + x’lm + x°ym? + ’ym.

We computed the resultant of these two equations eliminating variable m, and we
found equation E(x, y, z, 1) = 0 with
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oy = woxsg IR¥T

P(A) = xxxyyxxyxp(} DYXYYY = XXyyxxyxxep

PA) = XXXYYXXYXXXXYXYXYYXXYYXYXYYY
Figure 7. An example of bijection ¢.

Exy,zl) = x*z1® + 12(2x%22 + ©Pyz - 2x%z - xYy) +
+ 1(x?2 + 2x%y7? - 2x2% - XPyz —xyz + 2) + xyZ® —yz2 = 0 (14)

Thus, using Lemmas 8, 10 and 11 we get

COROLLARY 17. The generating function for the number snx of directed column-
convex polyominoes with a directed site perimeter n and k columns

S(x, y) = 2 Sk Xy

n=0
k=0

satisfies the algebraic equation E(1,y,x,S) = 0.
COROLLARY 18. The generating function for the number Pnx Of directed column-
convex polyominoes with bond perimeter 2n+2 and k columns

P, y) = ) pagxny*

n=0
k=20

satisfies the algebraic equation E(x,yx,x,P) = 0.

Using these two results, we give in the next sections an exact formula for the num-
bers s, and py.
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6 - NUMBER OF DIRECTED COLUMN-CONVEX POLYOMINOES
ACCORDING TO THE DIRECTEDSITE PERIMETER

Using corollary 17 and Good’s formula, we give in this section a formula for the
number s, of dcc-polyominoes with a directed site perimeter n and k columns. The
generating function S(x,y) satisfies

xS3+ (x-1) (2x+y)S? +x(x-1)(x+2y-1)S +yx%(x-1) = 0.

Dividing by x%(1-x)%, and if t is 1/(1-x), we get
S 2 _ .
= (Bt- 12 -yt + )P =0

Let S be gx, we have

glgxt-1)% - yt(g+1)* = 0.

We get the following system of equations

- By
g"‘yt(h = 1)2’
h = xtg

This system has a form which allows us to use Good’s formula with u = yt, v = xt,

(Bt

p(gh) = TR andy(gh) = g
Thus, we have
1 m-—1
MPNa e m =T P om—1-j}p—i
(g, u™vP) o E kip®, gh)@r, gl 5o,

i=1 j=0

and consequently

]: 2m 2Zm+p-1
M Pee e

Afterwards. we substitute the values of u and v in g and then the value of g in S, we get
k-1
z 1/ 2k 2k+r-1\ (k+r+i—-1} , ...+
a0 2 Bl e

At length, we get the following

THEOREM 19. The number of directed column-convex polyominoes with a directed
site perimeter n and k columns is
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Mg
EE 2k 2k+r-1 n-2
b"’k_kz k-r-1 r k+r-1

r=0

with Mg the minimum of k — 1 and n- k - 1.

REMARK 20. If n = k + 1, then s, is the Catalan number Cy and we find again
the number of stair polyominoes which was stated in section 2.

Using the previous theorem, we get immediately

COROLLARY 21. The number of directed column-convex polyominoes having a
directed site perimeter n is
Mg

n-1
2k 2k+r-1 n-—2
S“—k}_:l _O(k—r-—l)( r )(k+r—1)

with My the minimum of k-1 and n-k-1.

REMARK 22. Using equation (14) with x=1, y=z=x, we obtain the following equa-
tion in which S = n§0 spx" is the solution:

o

8%+ (3x-3)S% + (3x%4x+ 1)S+x%(x-1) = 0.

It is possible to get an asymptotic result for s, from this functional equation by using
analysis techniques and then we get

n

32
= |—=le-g
We give the table for s, and s, in Figure 8.

7 -~ NUMBER OF DIRECTED COLUMN-CONVEX POLYOMINOES
ACCORDING TO THE BOND PERIMETER

Using the same results as in the previous section, we give here a formula for the
number p,y of dcc-polyominoes with bond perimeter 2n+2 and k columns. We have
the following equation for P(x,y)

xP3-2x% (1-x%)P?+ (1-x%) (1-x*—x%y) P-yx%(1-x2) = 0. (20)
Dividing by (1-x%?, and if s is x%/(1-x2), we get
§*P?-2s5P? + (1-ys)P-sy = 0.
If g is sP, we have
P(sP-1)%-sy(P+1) = 0.

We get the following system of equations
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Snk 1 2 3 4 5 6 7 8 Sn
1 1 1
2 1 2 3
3 1 6 5 12
4 1 12 27 14 54
5 T 20 85 112 42 260
6 1 30 205 492 450 132 1310
7 1 42 420 1582 2565 1782 429 6821
8 1 56 770 4172 10415 12562 7007 1430 36413

Figure 8. Table for the numbers s, x and s;.

(P+1

e g=15

g=sP

This system has a form that allows us to use Good’s formula, with t = ys, u = s,

P+1

PP = (12

and y(P,g) =

Thus, we have

-1
(P £y r) = i 1(<Pm, Pjgi) (wr’ Pm_l_jgr_i),

1=1 j

r

B

I}
(=]

and consequently

@, tmyr) = (rrfl) (Zm-:r—l)'

Afterwards, we substitute the values of t and u
S 1 (m) (2m+r—1\ (m+r+i-1
= e = = m2(m+r+i)
Fen=3 3 3wl | r i e
m= 1= r=

At length, we get the following

THEOREM 23. The number of directed column-convex polyominoes with bond
perimeter 2n+2 and k columns is

1R 2k+r—-1\ [ n-1
Pk _Ez (H—l) ( r ) (k+r—1)’

with M, the minimum of k-1 and n-k.
Summing over k, we get
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COROLLARY 24. The number of directed column-convex polyominoes having a
bond perimeter 2n+2 is

= 1 k 2k+r—-1 n—-1
P = k r+1 r k+r-1J’
k=1  r=0

with M, the minimum of k-1 and n-k.
In Figure 9 we give the table for the values of p, and Pn,k-

REMARK 25. Using equation (20) with y=1, it is easy to find an asymptotlc value
for p, and we get

_ (3 + 2¥T00 + 5VI0 "n_3 -

Pn = 6
Pnk 1 2 3 4 5 6 7 pn
1 1 1
2 1 1 2
3 1 4 1 6
4 il 9 9 1 20
5 1 16 37 16 1 71
6 il 25 105 106 25 1 263
7 1 36 240 446 245 36 | 1105

Figure 9. Table for the numbers p,j and p,.

8 -~ NUMBER OF DIRECTED COLUMN-CONVEX
POLYOMINOES WITH A GIVEN AREA

In this section, we give an exact formula for the number r, of dce- polyominoes
having an area n. Let X be the alphabet {a,x}.

DEFINITION 26. R is the language of the words w of X* satisfying

(i) wis in (xx+a)*xx

(i) |w| is even.

For each dcc-polyomino A having k columns, we define the word w = p(A) in X*
using the following construction:

~ if A has one column, C* = (c4) and then p(A) = x2,
— if A has k columns, then p(A) = wywy- - -wy with

for every i € [1, k-1], w; = el ax2ef-e-Dy

and wy = 2k,

Clearly, w is a word of R. The number of columns of the dcc-polyomino A is

lo (&)«
e
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and the area of A is

An example of this coding is given in Figure 10.

ct =(547452)

G* =(20,1,0,)
r(A)=27

p (A) = XXXXaXXXX2aXXXXXXAXXAXXXXXXXXXXAAXXXXXXAXXAXXXXXXAXXXX

Figure 10. An example of bijection p.

LEMMA 27. Map p is a bijection between the words of R of length 2n and the dcc-
polyominoes having an area n.

In order to prove it, we construct the reciprocal bijection p’ of p. If w is a word of R,
we construct two sequences of integers associated to w, that is p'(w) = (E(w), I'(w).

1-1If |w|, = 0, then E(w) = (|w|y/2) and I'(w) is empty.

2 - If |w|, # 0, in this case w = wjawsa- - -awyyy; with for every i € [1, 2k+1],
w; € {xx}* and wy+; # .. Then for every i € [1, k] we define

[wai1| + | Wil +

E(w); = 2 1

(w), = '—v—vzz—"

= | Wak+1]
and Z(W)g4+1 = T+

Clearly, if we suppose that CA = E(w) and G» = I'(w), the two sequences C* and G*
satisfy condition (5) and thus define a dcc-polyomino A with an area
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k+1 |W|
r(A) = ) B(w) =5

i=1

Using the definition of language R and lemma 27, it is easy to prove the
PROPOSITION 28. The number of dcc-polyominoes having an area n and k

columns is
n+k-2
I'nk = ok .

Let r(t) be the generating function

r(t) = z Tt

nx=1

where 1, is the number of dcc-polyominoes with area n.
Language R is given by two following equations

R =xxR + aR; + xx,
R1 = XXR1 + aR.

Then, using the morphism 6(x) = 8(a) = t/2 and lemma 28, we have 8(a(R) = r(t)
and r(t) is given by

-
BUR e

This function is the even part of the generating function of the Fibonacci numbers
and we have

PROPOSITION 29. The number of dcc-polyominoes having an area n is the
Fibonacci number Fyy_y).

Note that the number of stack polyominoes having a bound perimeter 2p+4 is also
the Fibonacci number Fy, (see Ref. 5). Surprisingly, the parameter perimeter for stack
polyominoes is transformed into the area parameter for the dcc-polyominoes.
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SAZETAK

Prebrojavanje konveksnih zZivotinja zadanog perimetra
i povrsine, usmjerenih po stupcima

Maylis Delest i Serge Dulucq

Dane su toéne formule za broj konveksnih Zivotinja zadanog perimetra i povrsine, usmjere-

nih po stupcima. Dokaz je zasnovan na bijekcijama i kombinatornim rezultatima preuzetim iz
algebarske teorije jezika.
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