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An automated iterative method is developed for predicting secondary
conformation in membrane proteins. The initial set of parameters are a-helix
preferences and associated conformational preference functions extracted
from the data set of known soluble protein structures. The secondary struc-
ture segments are assigned to each of 14 tested membrane proteins by using
the prediction method, which evaluates and compares preference functions
in the tested protein. A new set of parameters are then calculated which is
based on the predicted protein structure from the previous iterative cycle.
The method takes advantage of the similarities in local sequence patterns
found in the tested proteins. Residues in membrane proteins are predicted
with 84% accuracy and with the correlation coefficient for the a-helix struc-
ture equal to 0.68, which is a considerably better performance than that of
neural network programs or Garnier-Robson’s algorithm.

INTRODUCTION

A knowledge of protein three-dimensional structure is necessary to propose realistic
models for protein function. More than 300 protein structures have been determined
from the X-ray diffraction patterns of crystallized proteins, but the number of known
sequences with unknown three-dimensional structure is about 100 times larger. This
situation is even worse for membrane proteins because three-dimensional structures of
sufficient resolution to allow detailed analysis are available for only a few of them.!-?
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A goal of the theoretical methods of structure determination is to predict the ter-
tiary structure of folded protein. A protein folds spontaneously into the three-dimen-
sional structure under the direction of its amino acid sequence,* but folding rules are
still largely unknown. A more modest goal of locating regular secondary structure ele-
ments along the chain has been vigorously pursued during the last 20 years because an
accurate secondary structure prediction can be used as the first step in tertiary struc-
ture prediction by energy minimization or other predictive techniques.® In addition,
recent experimental work has suggested that secondary structure formation precedes
tertiary organization.®

Methods for secondary structure prediction often use statistical analysis of the data
base of crystallographically solved soluble proteins to predict the secondary structure of
unsolved protein.”-? Amino acids have distinct conformational preferences.!’ A statis-
tical method that can use conformational preferences is the recently described preference
functions method.!'-!3 It has been applied to prediction of the membrane proteins
secondary structure'* and shown to be much more accurate than Chou-Fasman’s method.”
Indeed, the membrane proteins structure is not well predicted by other statistical
methods.!5 Instead, hydrophobicity analysis is widely used to predict the location of
transmembrane segments in the primary structure of such proteins.!%-!% Recently, com-
putational neural networks have proved superior to any other method in predicting the
a-helix structure in soluble proteins,!®?° and have been applied to predicting the secon-
dary structure in membrane proteins as well.2122

The aim of this work is to examine whether preference functions can be used to
exploit similarities in folding patterns of integral membrane proteins that have well
known locations of helical segments. We have shown before that the preference func-
tion method can be used to select an optimal amino acid scale for predicting the secon-
dary structure of a chosen set of test proteins.?? In this work, a chosen set of integral
membrane proteins is used for an automated training procedure which results in op-
timal amino acid scales for all proteins of the set. The results obtained for the prediction
of a-helices are considerably better than those obtained with neural network programs,
trained on a-class proteins,?’ or Garnier-Robson’s®?¢ algorithm.

METHOD

Two training sets of proteins are used: a set of 90 soluble proteins with secondary
structures assigned by the DSSP program of Kabsch and Sander,?® and a set of 14 integral
membrane proteins (Table I). Since only membrane proteins with residues predominantly
in two conformational states, helix and coil, are tested, all secondary structures of
soluble proteins are modified so that only helix and coil conformations are retained.
The method of preference functions as well as additional details concerning selection
and preparation of protein data bases have been described previously.!®!* The present
data base of 14 membrane proteins has more recent structures for photosynthetic reaction
center subunits (Table I), which is the only difference. Another data base of soluble
proteins, all of a-class and all known to equal or better than 2.5 A resolution, has been
also selected from the Brokhaven Protein Data Bank (PDB).?® These 55 proteins are
listed here with their PDB code: labp, 1bp2, lcch, lccr, lepv, lcsc, 1lcye, lecd, 1fdh,
1hds, 1hmgq, 1gox, lhho, 1hmd, 1lrd, 1lzl, 1mba, 1mbd, 1mbs, lomd, 1p2p, lpmb,
1ppt, 1169, 1sdh, lycc, lypi, 256b, 2ccy, 2cdv, 2¢cpp, 2cro, 2¢yp, 2dhb, 2lh1, 21hb, 2122
2lzm, 2mhr, 2mlt, 2ts1, 2utg, 2wrp, 3adk, 3c2¢, 3cln, 3hhb, 3ich, 3ins, 3pgm, 451c, 4cts,
5cyt, 5Stne, 7xia.
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In this work, the method of preference functions!®!* uses preferences as preference
environments. Preference environments x are calculated by averaging four left and
four right preferences of neighboring residues in the sequence for all residues in the
data base of soluble protein structures. The frequency distributions of environments
for each amino acid type and for each secondary conformation are approximated using
normal curves G(x)."* For a chosen amino acid type i, the preference for a particular
conformation j is found as a ratio of a normal curve for that conformation to a sum
of normal curves for helix and coil conformations:

_ _(N/Nj) Gy(x)
Pij(x) = G,‘](.X)J‘F C;jlz(x)
where

Gy(x) = (Ny/oy) exp{-0.5[(x—u;)/o;1*}

Nj; is the total number of environments x in the frequency distribution, N;/N is the
fraction of conformation j in the protein set, while 4 and o are the average and sample
standard deviations of parameters x, respectively. The correlation between the struc-
ture and amino acid sequence environment x is found when preference function P(x)
depends strongly on x.

New FORTRAN programs SPH, PDIS, SP1 and SP2 were written for this work.
Programs SPH and PDIS are used on soluble proteins for extracting an initial set of
a-helix preferences (SPH) and for finding class limits for preference environments that
would leave a roughly equal number of environments in each class (PDIS). Two pre-
viously described programs, PR and FREQ,!? are used after SPH and PDIS, to extract
conformational preference functions from the data set of soluble proteins. Preference
functions are utilized by iterative programs SP1 and SP2.

The same training set of membrane proteins is used both to produce an optimized
set of conformational parameters (program SP1), and to predict the secondary struc-
ture of individual proteins from that set (program SP2). The membrane protein to be
tested is first removed from the training set (jack knife test?’). Program SP1 uses the
overall correlation coefficient for helical residues of all membrane proteins, except the
tested one, to stop the iteration when correlation starts decreasing. The output of SP1,
14 optimized sets of conformational parameters (with a choice of the above mentioned
training set of membrane proteins), is used as input for program SP2, which predicts
the structure of the »unknown« protein after two additional iterations on that protein.
Prediction results are smoothed along the sequence by averaging seven preferences in
the case of helix and five preferences in the case of coil conformation.

In each iterative cycle the old scale of conformational parameters is »mixed« with
a new one derived from the prediction results. A »mixing« factor of 0.6 was used for
all calculations, which means that the conformational parameter for each amino acid
type retained 60% of the initial value from the previous iterative cycle.

New conformational parameters are calculated from predicted secondary struc-
tures found in the previous iterative cycle just as preferences would be calculated from
known secondary structures.!® The SP1 program uses the predicted structures of all
proteins (except for the one to be tested with the SP2 program) to calculate a new set
of parameters, while the SP2 program iterates only one tested protein at a time. Both
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programs use the same set of conformational preference functions, but these functions
are evaluated by new conformational parameters in each iterative cycle and the results
for helix and coil preferences are compared to predict the secondary structure.

The procedure for testing protein of a completely unknown secondary structure
is slightly different. Such protein must also have both primary and secondary struc-
tures present in the protein file. All residues in its secondary structure are then as-
sumed to be in the unknown (U) conformation. During the second stage of the training
procedure (iterative programs), such protein must be present in the list of membrane
proteins of known or partially known secondary structures. Of course, all the reported
performance parameters would be meaningless in that case.

The performance parameters used in this work are the correlation coefficient C;, of
Matthews? for the a-helix structure, the percentage @, of correctly predicted residues,
and the percentage @y, of correctly predicted residues in helical conformation. The Cy
and @, values reported in our two state model (helix and coil) can be compared with
the previously reported C, and Q@3 values for membrane proteins that have very few,
if any, ff-sheet residues.!* The overall performance parameters are calculated as the
weighted average of parameters for individual proteins. The source codes of FORTRAN
programs mentioned in this work are available from the first author.

RESULTS AND DISCUSSION

The final results are presented in Table I. The larger number of iterative cycles
with program SP2 increase prediction accuracy for the photosynthetic reaction cen-
ter?® (Cy, above 0.6 for both subunits), but a decrease occurs for some other proteins
so that, on average, it does not help to continue iteration on individual proteins in the
absence of some physical, chemical or structural criteria that can tell us when the
iteration procedure with the protein of unknown structure should stop.

To compare these results with the results obtained in other laboratories, we have
used the best algorithm that was available to us: the neural network method trained
on a-class proteins.?’ These results are also provided in Table I. Naturally, the disad-
vantage of the neural network method in this comparison was that it was trained only
on soluble proteins. This observation serves to underline the fact that the neural network
method works best when it can be trained on the largest number of proteins belonging
to the same class as the tested proteins and that the set of membrane proteins of solved
structure is extremely limited and, therefore, not suitable as a training set for that
method.

Our method works even with only two proteins if they are homologous. For in-
stance, the same iterative procedure applied to the training and testing of the photo-
synthetic reaction center L and M subunits?® results in correlation coefficients for heli-
cal residues of 0.68 and 0.59 for L. and M subunits, respectively. As it can be seen from
Table I, these performance parameters decrease when the training set of proteins used
for the extraction of optimized preferences is enlarged with proteins belonging to the
same class but not necessarily homologous to reaction center subunits. Sequence homol-
ogy is not used directly by our algorithms, but as a secondary structure homology be-
tween the predicted and experimental structures for the training set of membrane
proteins. There is a feedback mechanism that modifies initial preference as long as the
above mentioned homology increases.
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The performance parameters obtained with the Garnier-Robson algorithm®%* applied
on our list of membrane proteins are not given in Table I, but we give here the overall
values of 52% for the accuracy, and 0.12 for the correlation coefficient for residues in
helical conformation. These results were obtained using decision constants appropriate
for a-class proteins.®

In this work, optimal conformational parameters for evaluating preference func-
tions are found automatically. Therefore, both the initial and final choice of confor-
mational parameters are not arbitrary, but defined by the chosen training set of proteins
and derived by our programs SPH and SP1, respectively. The final set of conforma-

TABLE I

Results for predicting the secondary structure of integral membrane proteins

; Iteration results* Neural network results*

Protein code*

Q2(%) Q21(%) Ch Q3(%) Q3n(%) Ch
BROD 85 86 0.67 79 87 0.51
PRCM 81 79 0.61 75 79 0.57
PRCL T2 70 0.43 12 69 0.49
LAC2 87 92 0.71 59 74 0.10
RHOD 89 88 0.79 48 64 -0.07
CIKA 89 93 0.78 65 94 0.44
GALA 85 87 0.70 58 75 0.19
VIRU 85 94 0.84 61 100 0.41
ARAB 82 88 0.65 57 85 0.14
C561 90 93 0.80 7Al 90 0.45
CO44 81 85 0.63 63 85 0.31
MDR1 82 97 0.67 50 85 0.18
OPS1 85 88 0.70 59 76 0.21
HMDH 87 84 0.74 62 79 0.06
Overall 84 87 0.68 63 79 0.28

*The nonstandard code used by us for integral membrane proteins listed below:

BROD - Bacteriorhodopsin (H. halobium).2

PRCL - Photosynthetic reaction center L subunit (R. viridis).29

PRCM - Photosynthetic reaction center M subunit (R. viridis).2?

LAC2 - Lactose transporter (E. coli).30

RHOD - Rhodopsin (human).3!

CIKA - S1-S6 segments (181-541 fragment) from the potassium channel protein (fruit fly).32
GALA - galactose transporter (without first 80 amino acids at the N-terminal)(yeast).33
VIRU - Matrix M2 protein of the influenza virus (strain A/Bangkok/1/79).34

ARAB - Arabinose-H* transporter (E. coli).35

C561 - Cytochrome b561 (bovine).36

CO44 - C-terminal fragment (amino acids 1201-1600) from the sodium channel protein (electric eel).37
MDRI - N-terminal fragment (1-372) of the P-glycoprotein3® (human).

OPS1 - Opsin RH1 from photoreceptor cells (fruit fly).39

HMDH - 3-Hydroxy-3-Methylglutaryl-Coenzyme A reductase (human). N-terminal fragment (first 240 amino
acids).40

* The performance parameters Q2, Q2n, and Cy, are, respectively, prediction accuracy, prediction accuracy
for the a-helix residues and the correlation coefficient?8 for the a-helix. The correlation coefficient for the

coil (or undefined) conformation is not listed, because it is equal to C} in our two state (helix and coil)
model.

# The three state model (helix, sheet and coil) was used by the neural network program?2?, but performance
parameters are directly comparable with our two-state model results because in all 14 proteins only several
residues from photosynthetic reaction center subunits are in the g-sheet conformation.
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tional parameters for each of 14 membrane proteins included preferences close to 1.4
for isoleucine, valine and phenylalanine, which represented a significant increase over
initial values (close to 1.0) for the a-helix preferences for these amino acids. The itera-
tive procedure has arrived, in effect, at the values of conformational parameters that
are closer to f-sheet preferences than to a-helix preferences. The results in Table I are
in accord with a recent observation! that a-helix preference functions extracted from
the soluble proteins data base can be used for accurate prediction of a-helical segments
if these functions are evaluated with §-sheet preferences in tested membrane proteins. The
advantage of finding the optimal conformational parameters for each tested protein
in this work, with respect to our earlier results'® is seen as a 10 point increase in over-
all accuracy (percentage) and an 0.10 increase in the correlation coefficient for a-helix
residues.

In order to check how much the results depend on the choice of the training set
of soluble proteins, we selected 55 soluble proteins of a-class (listed in Methods) and
extracted a-helix preferences and a-helix preference functions from such a data base.
The results obtained by our iterative programs applied to the same set of 14 membrane
proteins were similar: the overall accuracy 84% and overall helix correlation coefficient
0.67. The selected data base of a-class proteins included 22 a-class proteins that Kneller
et al.?’ used for training and testing the neural network program. The same set of 22
proteins was used for extracting a-helix preferences and a-helix preference functions.
By using these preference functions, the same accuracy of 84% and helix correlation
coefficient of 0.67 were obtained in our iterative procedure with 14 membrane proteins.
This performance in testing membrane proteins is much better than that of the neural
network program trained on the same set of soluble proteins (Table I).

To check prediction on soluble proteins, the remaining 33 proteins of a-class were
used to extract a-helix preference functions. These functions were evaluated by our
iterative programs on the Knellers data set of 22 a-class proteins. Overall performance
parameters of 65% for accuracy and of 0.33 for helix correlation coefficient indicated
that our present procedure should not be used without modification if protein classes
other than integral membrane proteins with transmembrane «-helices are examined.
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SAZETAK

Predvidanje sekundarne strukture membranskih proteina:
metoda sklonosnih funkcija za nalazenje najboljih
konformacijskih parametara

Davor Juretié, Bono Lu¢ié i Nenad Trinajstié

Razvijena je automatska iterativna metoda za predvidanje sekundarne strukture membran-
skih proteina. Poc¢etni skup parametara ¢ine sklonosti aminokiselina za konformaciju a-uzvojni-
ce i pridruzene im funkcije konformacijskih sklonosti koje se dobiju iz baze podataka topljivih
proteina poznate strukture. Elementi sekundarne strukture pridruze se svakomu od 14 testira-
nih membranskih proteina tako da se izra¢unaju i usporeduju numericke vrijednosti za funkcije
sklonosti u tim proteinima. Zatim se izra¢una novi skup parametara koji se osniva na pred-
videnoj sekundarnoj strukturi iz prethodnoga iteracijskog ciklusa. Ova metoda koristi se sli¢no-
stima koje postoje u primarnim strukturama skupine proteina za testiranje. To¢nost predvidanja
konformacije aminokiselinskih ostataka u membranskim proteinima jest 84%, a koeficijent ko-
relacije za strukturu a-zavojnice iznosi 0.68, $to je bitno bolji rezultat od onoga koji se moze do-
biti primjenom programa neuronske mrezZe ili Garnier-Robsonova algoritma.
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