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Conformational preference functions are derived from the statistical
analysis of the data base of soluble protein structures. These functions use
local sequence information to modify the Chou-Fasman’s preference of a
given residue in a protein for secondary conformation. The secondary struc-
ture prediction algorithm that compares preferences is constructed. For the
testing set of 14 membrane polypeptides the prediction accuracy is 78% in
the three state model and 90% for the a-helix residues alone. Correlation
coefficients are 0.58 and 0.57 for the a-helix and turn structures, respectively.

INTRODUCTION

The predicted secondary structure of membrane proteins is of limited reliability
when available schemes for predicting the secondary structure of soluble proteins are
used.!2 Are the folding motifs of membrane proteins so different from such motifs in
soluble proteins that predictive schemes trained on soluble proteins are inappropriate for
membrane proteins? We shall present in this work the predictive scheme for membrane
proteins which is based on a novel statistical analysis of the data base of soluble
proteins.

The preference functions method has been described in recent publications.®6 It
is based on the idea that secondary structure preference of an amino acid in a sequence
depends on coded properties of its sequence neighbors. The idea that each amino acid
in a sequence influences not only its own conformation, but also the conformation of
its sequence neighbors, is not a new one. The best secondary structure prediction
programs also take into account local sequence patterns,”8 but do not allow a choice
of folding parameters that can uncover such patterns in local sequence interactions.
We have shown previously that prediction of secondary structure segments can be im-
proved when constant preferences are replaced with preferences that are functions of
carefully chosen folding parameters.®
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In this work, the chosen folding parameters are 20 a-helix conformational para—
meters of Chou and Fasman.%!? These parameters are employed to extract conforma-
tional preference functions from the data base of known soluble protein structures. Ex-
tracted functions can be used in a secondary structure prediction program® for any
class of proteins, but our hope was that such functions would prove particularly useful
for predicting the secondary structure of membrane proteins. It turned out that success
in prediction depended also on the method of evaluation of preference functions in the
membrane protein primary structure. The empirical and well known observation that
p-forming residues (according to Chou-Fasman’s scheme) form a-helices instead of f—
sheets in most transmembrane segments is used in the present paper to improve the
prediction. Preference functions are evaluated for integral membrane proteins with
known transmembrane helices by using 20 f-sheet conformational parameters of
Chou and Fasman.? The results are more accurate than those obtained after applica-
tion of the original Chou-Fasman scheme,!! Garnier-Robson scheme’ or after applica-
tion of an improved neural network procedure trained on a-class proteins.!?

METHODS

The Protein Data Base

The data base consisted of 90 different proteins, known at 3 A or better resolution,
from the Brookhaven Protein Data Bank (PDB).!? Secondary structures (a-helix, -
sheet, turn and undefined) were assigned to all residues using the Kabsch-Sander pro-
gram DSSP.14 In the three state model, turn and undefined conformations were con-
sidered jointly as coil conformation.

Preference Functions

The sequence environment of a residue, found in a particular secondary confor-
mation, was defined as an arithmetic average of Chou-Fasman’s a-helix preferences®10
for its four left and four right neighbors. The frequency distributions of all environ-
ments from the data base were collected for each amino acid type and for each secon-
dary conformation considered (a-helix, S-sheet, turn and undefined). These distribu-
tions were then approximated by normal curves and preference functions constructed
as described elsewhere.’ The data set of parameters needed for each Gaussian curve
is given in Table I. For a chosen amino acid i, the preference for a particular confor-
mation j is found as a ratio of a normal curve for that conformation to a sum of all
four normal curves. The preference P;; can have a strong dependence on sequence en-
vironment x of amino acid i:%

(N/N;) (Nij/oij) exp (—0.5((x—usj) / 03)?)
4

Z(Nij/fI ij) exp (—0.5((x—uy) / 7)?)
i

Pix) = (1)

Nj; is the total number of environments x associated with amino acid i in conformation
J» Nj/N is the fraction of conformation j in the protein set, while x4 and o are the
average and sample standard deviation of parameters x, respectively. As an example,
the procedure of calculating how preference for the alanine in the a-helix conforma-
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Parameters* for the construction of Gaussian curves
derived from the list* of 90 soluble globular proteins

TABLE I
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AA Nij Hij gjj AA ij Hij Tij
a-helix (N/N;=3.4589) B-sheet (N/N;=4.5352)
ALA 509 1.0539 0.0948 ALA 199 0.9822 0.1056
CYS 82 1.0123 0.1086 CYS 98 0.9626 0.1016
LEU 433 1.0481 0.0969 LEU 314 0.9857 0.1083
MET 98 1.0639 0.0863 MET 71 0.9939 0.1074
GLU 350 1.0571 0.0921 GLU 114 0.9926 0.1077
GLN 186 1.0482 0.0955 GLN 107 0.9580 0.0952
HIS 103 1.0274 0.0936 HIS 78 0.9877 0.1117
LYS 365 1.0624 0.1003 LYS 160 0.9989 0.1047
VAL 2901 1.0493 0.0977 VAL 421 0.9814 0.1041
ILE 223 1.0475 0.0950 ILE 295 0.9719 0.1088
PHE 187 1.0507 0.0875 PHE 165 0.9656 0.1051
TYR 134 1.0390 0.0991 TYR 171 0.9636 0.0960
TRP 69 1.0188 0.0883 TRP 75 0.9619 0.0960
THR 219 1.0394 0.0968 THR 258 0.9741 0.1013
GLY 186 1.0481 0.0999 GLY 183 0.9698 0.1024
SER 225 1.0388 0.0958 SER 241 0.9607 0.0992
ASP 243 1.0491 0.0997 ASP 88 0.9641 0.0932
ASN 149 1.0443 0.1052 ASN 101 0.9658 0.0858
PRO 105 1.0482 0.0895 PRO 55 0.9551 0.1064
ARG 176 1.0580 0.0948 ARG 110 0.9893 0.0968
turn (N/N;=3.9458) undefined (N/Nj=4.2070)
ALA 255 0.9783 0.1077 ALA 266 0.9826 0.1049
CYS 72 0.9515 0.1120 CYS 90 0.9381 0.0882
LEU 189 0.9650 0.0957 LEU 221 0.9786 0.1039
MET 37 0.9722 0.0981 MET 50 0.9814 0.1017
GLU 202 0.9932 0.1065 GLY 134 0.9794 0.0996
GLN 141 0.9750 0.1035 GLN 117 0.9681 0.1070
HIS 77 0.9751 0.1187 HOS 96 0.9917 0.0978
LYS 280 0.9977 0.1035 LYS 206 0.9825 0.1049
VAL 135 0.9629 0.0977 VAL 237 0.9698 0.0986
ILE 100 0.9660 0.1060 ILE 157 0.9714 0.1002
PHE 97 0.9890 0.1109 PHE 107 0.9808 0.1060
TYR 113 0.9545 0.1062 TYR 114 0.9513 0.1076
TRP 42 0.9269 0.1067 TRP 43 0.0795 0.0953
THR 221 0.9463 0.1099 THR 242 0.9747 0.1018
GLY 603 0.9847 0.1088 GLY 316 0.9731 0.1066
SER 319 0.9613 0.1079 SER 313 0.9672 0.1024
ASP 290 0.9828 0.1109 ASP 260 0.9884 0.1012
ASN 246 0.9835 0.1100 ASN 204 0.9807 0.1036
PRO 242 0.9828 0.0998 PRO 279 0.9878 0.0977
ARG 134 0.9569 0.0965 ARG 111 0.9748 0.1056

* Nijj is the total number of environments x (sece Methods) associated with amino acid i in conformation j,
Nj/N is the fraction of conformation j in the protein set, while 4 and o are the average and sample standard

deviations of parameters X, respectively.

* The list of 90 soluble proteins (PDB code) is: labp, lacx, 1bp2, lcac, lcc5, lcer, lctf, letx, leco, 1fbj, 1fc2,
1fx1, 1gen, 1ger, 1gpl, 1gpd, lhho, 1hip, 1hmg, 1hmz, lig2, lins, 1ldx, 11z1, 1mbd, 1mlt, 1pp2, 1ppt, 1pyp,
1rhd, 1rn3, 1sn3, luhq, 156b, 155¢, 2abx, 2act, 2adk, 2alp, 2apr, 2atc, 2aza, 2b5c, 2cdv, 2cga, 2cpp, 2cyp,
2ebx, 2est, 2fd1, 2gn5, 2grs, 21h7, 2lhb, 2mdh, 2mt2, 2pab, 2pka, 2rhe, 2rhv, 2sbt, 2sga, 2sns, 2sod, 2stv,
2tbv, 2tgt, 3c2¢c, 3cna, 3cpv, 3cyt, 3fxc, 3gap, 3ich, 3ldh, 3pgk, 3pgm, 3rp2, 4adh, 4dfr, 4fxn, 4sbv, 451c,

5cpa, 5pti, 5rxn, 6pad, 6pcy, 7tin, 8cat.
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tion depends on sequence environment x is illustrated in equation (2). Inserting the
values from Table I, the preference function for the alanine in helix becomes:

P“ALA(X) = 34589D1/(D1 + Dz + D3 + D4) (2)
where
D; = (509/0.0948)exp(~0.5((x~1.0539)/0.0948)2)
D, = (199/0.1056)exp(-0.5((x-0.9822)/0.1056)2)
D3 = (255/0.1077)exp(-0.5((x-0.9783)/0.1077)2)

D4 = (266/0.1049)exp(-0.5((x~-0.9826)/0.1049)2)

The Procedure for Testing Membrane Proteins

When membrane proteins were tested, the secondary structure prediction program
used B-sheet conformational preferences? to calculate the sequence environment x of
each residue. That value was used as an argument for conformational preference func-
tions (1). The obtained values for «-helix, 8-sheet, turn and undefined preference func-
tions were smoothed by computer as 7 point moving average (for a-helix), 5 point
moving average (for S-sheet), or 3 point moving average (for the turn and undefined
conformations). The resulting numbers were compared for each residue and the con-
formation with the highest value assigned to a residue. The decision constants were
not used except when so stated. When used, it was to add the constant factor to all
preferences for a particular conformation. The decision constants for f-sheet, a-helix
and coil were, respectively, labelled DCB, DCH and DCC.

Other Secondary Structure Prediction Programs

The Garnier-Robson program with added features for calculating the prediction
accuracy and correlation coefficients was written in FORTRAN as described,”!5 while
Chou-Fasman’s program was Prevelige algorithm!6 written in C. Kyte-Doolittle program!?
and an improved version of a neural network program written in the C language was
also used.!? The source codes of all programs for finding and using preference func-
tions are available from the author. Programs are written in FORTRAN 77 and can
be run on any personal computer.

Test Sets of Membrane Proteins

The test set of proteins contained two lists of membrane proteins: a shorter one
with 5 proteins and a longer one with 14 proteins. In the short list, bacteriorhodop-
sin,'® rhodopsin,!® lactose permease,? and subunits L and M of the photosynthetic
reaction centre?!?? were tested just as in the previous work.5 However, more recent
and presumably better known structures of bacteriorhodopsin and lactose permease
were used in this work. For the longer test set of membrane proteins, primary and
secondary structures were extracted from the SWISSPROT data bank. For all of these
proteins, the secondary structure of transmembrane segments is either known or as-
sumed to be the a-helical structure. The location of transmembrane segments is based
on hydrophobicity analysis and experimental data collected by the cited authors. All
residues found in extramembrane segments are assumed to be in the undefined con-
formation except for the case when their structure is known.
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Figure 1. Preference profiles for the a-helix conformation predicted for four membrane proteins:
bacteriorhodopsin (bR), photosynthetic reaction centre M subunit (M), cytochrome b561 (C), and
T-cell surface antigen (T). Preference functions are calculated (see Methods) by using P,,confor-
mational parameters of Chou and Fasman® and plotted against P4 environments in membrane
proteins. P environments are calculated from Ps conformational parameters of Chou and Fa-
sman.? The preferences are smoothed by computer (as a seven point average) and the resulting
points are connected by hand. Experimental data for the a-helical transmembrane segments (bR
and M) or the best estimates for the location of such segments from the hydrophobic analysis
(C and T') are shown on the x axis in the form of empty boxes while shaded boxes denote a-helical
segments found outside the membrane.

Performance Parameters

The correlation coefficient C, of Matthews?3 is used to estimate how well the
predicted secondary structure conformation is correlated with the observed one for
each secondary structure of type «. The success rate (in the three state model) is found
as percentage Q3 of correctly predicted residues. An overall Q3 index (average predic-
tion accuracy) for a list of proteins is calculated as the weighted average of all Q3 in-
dexes for individual proteins so that longer proteins give a correspondingly larger con-
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tribution to the average prediction accuracy. The performance parameter Q, is the
percentage of correctly predicted residues found in the a-helix conformation, while y,
and z, are numbers of under-predicted and over-predicted residues, respectively, for
the a-helix conformation. The same parameters for the coil conformation (turn and
undefined) are denoted with a subscript »c«.

RESULTS AND DISCUSSION

Prediction Results for Individual Membrane Proteins

The Chou-Fasman preferences®!? are employed in our scheme to extract (in soluble
proteins) and evaluate (in membrane proteins) preference functions.? Our basic as-
sumption is that the «-helix preference for a residue in membrane protein increases
together with an increase in the average f-sheet preference of its primary structure
neighbors.

For membrane proteins, which have one or more transmembrane segments in the
a-helix configuration, our method can be utilized to predict the location of such seg-
ments without using the concept of hydrophobicity. The a-helix preference profiles for
four membrane proteins are shown in Figure 1. Both transmembrane helices and ex-
tramembrane turns and helices are accurately (see Table II as well) predicted for three in-
tegral membrane proteins of well known structure: bacteriorhodopsin,!8 photosyn-
thetic reaction center M subunit?! and cytochrome b561.24 All existing extramembrane
helices of the photosynthetic reaction centre M subunit are correctly predicted, but one
such helix (at N-terminal) is predicted where none is found. The transmembrane helix
B of the photosynthetic reaction centre subunit L is predicted by us to extend from
residues 85 to 112, which is also seen in the X-ray data base. Helix B has 5 charges in the
C-terminal half and because of that is not easily predicted as the transmembrane seg-
ment by Kyte-Doolittle!” and similar schemes.25

A set of rules for locating candidate transmembrane segments in the a-helix con-
formation can be automated or applied manually after preference profiles have been
created. For instance, an a-helix preference greater than 1.25 in 14 or more consecutive
residues would identify all transmembrane segments in the proteins from Figure 1.
The detected a-helix transmembrane segment for the T-cell surface antigen CD2 precur-
sor® illustrates that membrane anchors can be predicted as well. The transbilayer seg-
ments of the glycophorin A precursor,?” which is known to span the red cell membrane,2®
and the membrane anchor of the photosynthetic reaction centre H subunit (Rhodobac-
ter sphaeroides)?® are also correctly predicted. The signal peptide of the glycophorin
A precursor is predicted as an a-helix extending over the first 20 amino acids on the
N-terminal, while transmembrane segment is predicted as an a-helix from residues 91
to 118. The transmembrane segment 12-31 of subunit H is slightly over-predicted as
an a-helix extending from residues 11 to 34.

Long helices outside the membrane are not confused with transmembrane helices.
One such example is TolA: an E. coli membrane protein that contains an extended
helical region.? Its one membrane spanning region in the N-terminal region is cor-
rectly predicted by our program, but in the very long a-helical region, extending from
amino acids 48 to 310, the a-helical conformation is not found at all.
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TABLE 11
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Performance parameters* for predicting the secondary structure of integral membrane proteins

A) Prediction results when preference functions are compared with all decision constants

set to zero.

Protein*

# Ae.A.) Qs Ca Qe Ya 2 Ce Qsc Ye Ze
ARAB(472) 69 0.56 97 8 107 0.47 40 139 4

BROD(248) 85 0.68 92 14 19 0.66 68 24 10
C561(273) 73 0.69 96 5 40 0.53 49 69 4

CIKA(360) 68 0.59 95 6 78 0.49 63 111 4

C044(400) 69 0.57 96 8 90 0.49 46 117 5

GALA(494) 70 0.61 93 16 88 0.51 50 132 8

LAC2(416) 72 0.52 96 9 85 0.41 33 107 8

MDRI1(372) 62 0.54 98 3 102 0.43 44 138 3

PRCL(273) 74 0.54 83 30 28 0.53 63 34 22
PRCM(323) 76 0.63 90 20 37 0.53 63 41 25
RHOD(348) 68 0.49 89 21 68 0.40 42 9l 15
VIRU(97) 74 0.55 89 2 17 0.47 71 23 2

OPS1(373) 74 0.64 90 18 52 0.55 59 79 13
HMDH(240) 75 0.53 88 19 30 0.48 50 40 13
OVERALL 71 0.58 93 0.49 50

B) Prediction results with an improved neural network program trained on soluble a-class
proteins!2

Proteint

* AA) s G

BROD(248) 79 0.51 0.51

PRCL(273 72 0.49 0.45

PRCM(323) 75 0.57 0.53

* Percentage Q3 of correctly predicted residues. Correlation coefficient C, of Matthews.23 Percentage Q3.
of correctly predicted residues found in the a-helix conformation. Numbers y, of under-predicted and z,
of over-predicted residues, respectively, for the a-helix conformation. The same parameters for the coil con-
formation (turn and undefined) are denoted with subscript »c«. Overall Q3 and C indexes for a list of
proteins are calculated as the weighted average of indexes for individual proteins so that longer proteins
give a correspondingly larger contribution to the average prediction accuracy.

+
ARAB - Arabinose-H* transporter (E. coli)43

BROD - Bacteriorhodopsin (H. halobium)!8
C561 - Cytochrome b561 (bovine)24

CIKA - S1-86 segments (181-541 fragment) from potassium channel protein (fruit fly)44
CO44 - C-terminal fragment (amino acids 1201-1600) from sodium channel protein (electric eel)45

GALA - galactose transporter (without first 80 amino acids at N-terminal)(yeast)46
LAC2 - Lactose transporter (E. coli)20
MDR1 - N-terminal fragment (1-372) of the P-glycoprotein)47
PRCL - Photosynthetic reaction centre L subunit (R. viridis)2!
PRCM - Photosynthetic reaction centre M subunit(R. viridis)2!
RHOD - Rhodopsin (human)!9
VIRU - Matrix M2 protein of influence virus (strain A/Bangkok/1/79)48
OPS1 - Opsin RH1 from photoreceptor cells (fruit fly)4®
HMDH - 3-Hydroxy-3-Methylglutaryl-Coenzyme A reductase (human). N-terminal fragment (first 240
amino acids)
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Testing Sets of Integral Membrane Proteins

The performance parameters for 14 integral membrane proteins are listed in Table
II. Comparison of parameters y and z reveals that a-helical segments are over-predicted,
while coil (turn and undefined conformations) segments are under-predicted. Addition
of constant values (»decision constants«) to smoothed preferences can improve perfor-
mance. For instance, the overall success rate in the three state model (a-helix, B-sheet
and coil structure) is increased from 71% to 78% when the following decision constants
are used: DCB=-0.2, DCH=0.0, DCC=0.2. The correlation coefficient and the accuracy
of coil prediction is then also increased to 0.57 and 68%, respectively, but this improve-
ment is due to our initial assumption that all extramembrane residues (except in the
photosynthetic reaction centre) are in the undefined conformation. The correlation
coefficient for the a-helix structure remained 0.58, while the accuracy of helix predic-
tion decreased to 90%.

In our recent paper,® 55 different hydrophobicity scales were tested with respect
to their ability to predict the secondary structure of membrane proteins. In each case,
the same scale was used to extract preference functions from the data base of soluble
proteins and to evaluate and compare these functions for membrane protein sequen-
ces. Our scale of conformational parameters, which are formed for each amino acid
as an average of the corresponding Chou-Fasman’s parameters®!? for a-helix and g-
sheet, was the best predictor of secondary structure segments in five membrane poly-
peptides. The best accuracy was 67% for all conformations, while the prediction accuracy
and correlation coefficient were 76% and 0.46, respectively, for the a-helix conforma-
tion alone. These performance parameters are clearly inferior to the results obtained
in the present paper: the overall prediction accuracy of 74%, and a-helix prediction ac-
curacy and correlation coefficient of 91% and 0.56, respectively, for the same testing

set of five membrane polypeptides. This result was obtained with all decision constants
set to zero.

Comparison with Other Methods

The presented empirical method can be compared with other proposed methods
for locating transmembrane helices,!”2% for deciphering the topography of membrane
proteins®'-%5 and for secondary structure prediction.”®!! The need to »train«
preference functions on a sufficiently large data set of solved protein structures is com-
mon with more sophisticated empirical prediction algorithms of statistical nature’-8
Our algorithm, based on eq. (1), is simpler and also provides for greater flexibility both
in the choice of 20 initial folding parameters and in the choice of 20 parameters for
the evaluation of preference functions. The training set of crystallographically solved
soluble proteins defines the initial set of constant preferences. An optimal set of
preferences for the evaluation of preference functions depends on the nature of tested
proteins. The training set of proteins does not have to be the set used 15 years ago
by Chou and Fasman or the set used in this paper. As long as all protein classes are
included in a training set, the results (not shown) are not very sensitive to the choice
of the training set. A quite different situation arises during the testing procedure. An
optimal set of preferences for the evaluation of preference functions depends strongly
on the nature of tested proteins. These preferences can be found either automatically3®
or by using empirical knowledge about the tested proteins as in this paper.
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Most of the other secondary structure prediction programs, trained on soluble
proteins, have a much weaker performance when applied to membrane proteins. For
instance, the Garnier-Osguthorpe-Robson program”!5 applied to the same set of 14
membrane polypeptides results in a prediction accuracy of 51% (in the three state
model), while correlation coefficients for the helix and turn (or coil) structure are only
0.11 and 0.20, respectively. For the testing set of five membrane proteins, the Garnier-
Osguthorpe-Robson program predicted 58% of residues in the correct conformation (in
the three state model). Correlation coefficients for the a-helix and turn (or coil) struc-
tures were 0.23 and 0.25, respectively. The choice of decision constants was: DCH= 100,
DCC=0, DCB=50, which is appropriate for proteins having more than 50% of helical
residues.

The Chou-Fasman-Prevelidge algorithm!® applied to the same testing set of five
membrane proteins predicts only 34% of residues to be in correct conformation. Such
prediction results are not better than random association of secondary conformations
to the primary structure (in the three state model). In addition, most transmembrane
segments are wrongly predicted to be in the -sheet conformation. However, the Chou-
Fasman preferences®!? can still be valuable tool for predicting the structure of membrane
proteins, as seen in this paper. The most likely reason for this is that statistical preferences
contain important determinants for the protein folding process besides the solution
hydrophobicity values.’” The importance of steric factors, the accessible and buried
surface area for detecting helical structure in membrane proteins has been pointed out
earlier.5:38

The performance of an improved neural network program, trained on soluble a-
class proteins!? is quite good (Table IIB). The results tend to confirm that there is
similarity of folding motifs for helices in soluble and membrane bound proteins. Our
results (Table IIA) for predicting helices in membrane proteins are even better than
neural network results. In part, our results also confirm the similarity of folding motifs
in soluble and membrane proteins because we have been using a-helix conformational
parameters and a set of preference functions, all extracted from a data base of soluble
proteins, to predict helices in membrane proteins. In addition, it was simple in the
preference functions method to take into account one important difference in folding
motifs: that transmembrane helices often contain stretches of g-forming residues.

The fact that for a specific protein class - integral membrane proteins with trans-
membrane helices, our simple scheme works better than the best available secondary
structure prediction algorithms”!2 provides a clue why our method may be expected
to work better in certain situations. Both the conformational preferences and coded
folding properties of amino acids in a sequence of tested proteins are used by us. The
methods that use hydrophobicity alone to locate secondary structure elements, such
as transmembrane helices, do not make use of pattern recognition techniques, while
methods that use such techniques do not make use of coded folding properties in
tested sequences. The prediction accuracy for secondary structure segments of integral
membrane proteins may well depend on the ability of a prediction scheme to find fold-
ing parameters that are most important for the folding process of such proteins.

Figure 1 results for the photosynthetic reaction centre illustrate that transmembrane
helices, just as extramembrane helices, can be located without using the polarity profile
analysis, and often with better accuracy. As another example, the nice separation of
transmembrane peaks for the case of cytochrome b561 (Figure 1. C), is not so easily
seen in the polarity profile analysis. Furthermore, the high accuracy of turn prediction
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in our scheme can be combined with the pattern of minima and maxima in the a-helix
preferences for more precise determination of transmembrane segments.

A better positive prediction can be achieved when transmembrane segments con-
tain an unusually high number of charges like in the case of helix B of the photosyn-
thetic reaction center L subunit. Amphiphilic helices are often difficult to predict as
transmembrane helices by polarity analysis. Since such helices play a major role in the
structure and function of membrane transport proteins and membrane active polypep-
tides, it is of interest that the membrane spanning ability of amphiphilic helices can be
evaluated by our method. The amphiphilic helix of mellitin, which can assume trans-
membrane orientation® is an example of the transmembrane helix being predicted by our
criteria. Of the two regions in the nicotinic acetylcholine receptor, MA and M2, which
are proposed as ion channel forming regions,4 only the M2 segment is found by our
program with a capability to span bilayer.

An example of better negative prediction is trypsinogen, a soluble protein with an
apparent »transmembrane segment« according to the polarity analysis.2> No such can-
didate transmembrane segment is found in trypsinogen when preference profiles for
trypsinogen are created by using our scheme.

The weakness of the presented empirical method is its poor performance in predicting
the location of extramembrane and transmembrane 3-sheet structures. For instance,
for porin?! and Omp A fragment*? from E. coli, the overall accuracy of B-strand predic-
tion is Qss = 38%, while the correlation coefficient Cs = 0.26. For 16 soluble proteins
of the f-class,® the same parameters are 50% and 0.27, respectively.

Another problem of the presented prediction scheme is that extramembrane helices
can be predicted (Figure 1) but prediction accuracy does not exceed the performance
parameters achieved with the neural network procedure (not shown). Long extra-
membrane helices are missed (the TolA example mentioned before) just because the
prediction scheme has been fine tuned to predict transmembrane helices. The best
strategy for membrane proteins may be the application of our method to locate trans-
membrane helices and then the neural network procedure to locate extramembrane
secondary structure elements.

When a structure of a larger number of membrane polypeptides becomes known,
it will become possible to extract preference functions from such a data base and to
choose separate scales of 20 folding parameters that are most appropriate for predict-
ing either a-helix or -strand structures. The scheme described in this paper will easily
select the optimal hydrophobicity scale or an optimal scale of statistical preferences
for each secondary structure considered.
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SAZETAK

Sekundarna struktura membranskih proteina: Predvidanje
s pomocéu konformacijskih funkcija sklonosti za topljive proteine

Davor Juretié

Konformacijske funkcije sklonosti dobivene su statisti¢ckom analizom baze podataka struk-
tura topljivih proteina. Te se funkcije koriste podacima o primarnoj strukturi ispitivanog pro-
teina da bi se modificirala Chou-Fasmanova sklonost uodenog aminokiselinskog ostatka za se-
kundarnu strukturu. Izgraden je algoritam koji predvida sekundarnu strukturu usporedivanjem
sklonosti. Za proucavani skup od 14 membranskih polipeptida toénost predvidanja iznosi 78% u
modelu sa tri stanja i 90% za aminokiselinske ostatke koji imaju konformaciju a-zavajnice, a koe-
ficijenti korelacije su 0.58 za strukturu a-zavojnice i 0.57 za strukturu zavoja.
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