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A brief review is given of our recent theoretical and experimental work
on static and dynamic light scattering from aggregating polystyrene lattices
in solutions and percolating dense microemulsions. The former is charac-
terized by formation and growth of reaction limited fractal aggregates in-
duced by addition of salt, and is basically a nonequilibrium phenomenon. The
latter, however, is characterized by formation and growth of clusters of
dynamically percolated microemulsion droplets, as one approaches the per-
colation threshold from below, and is an equilibrium phenomenon. Theories
of static and dynamic light scattering from these polydispersed fractal
clusters are formulated, emphasizing calculations of the universal scaling
functions measurable in the experiment. Experimental data are then
analyzed to substantiate the theoretical predictions. The similarity of the lat-
ter case with the well-known results from the equilibrium critical
phenomena is pointed out.
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I. INTRODUCTION

In the last several years, the understanding of the kinetic processes which govern
the aggregation of the colloidal particles and the structure of the resulting clusters
have been the subject of considerable general interest.!>3 In particular, in recent ex-
periments, a fractional power law dependence of the mass m on the size of the aggre-
gates was found. It is well known that small particles can aggregate to form porous,
low-density macroscopic clusters that behave quantitatively in a way different from or-
dinary bulk matter.? The resulting structures are characterized by the fractal dimen-
sion D¢ which relates a typical dimensjon of the aggregates to their masses. Quantita-

tively, the radius of gyration, defined as the second moment of the mass distribution
according to:

=

e > M (1)

i=1

1
m

where 7 is the distance from the center of mass of the ith particle, obeys the relation-
ship:

R, ~mV?; (@)

This kind of aggregation process is relevant for a variety of colloidal and hetero-
geneous systems, including hydrophobic sols, micelles, microemulsions, liposomes, gels
and foams. The connection between non-equilibrium growth and aggregation proces-
ses, with well defined scaling and universality properties, remains to be explained.
Several theoretical models,!* which provide realistic descriptions of the aggregation
processes occurring in colloidal systems, have been developed recently.

In this paper, we discuss interpretation of measurements of the growing ag-
gregates of polystyrene latex particles in solution, made by the dynamic light scattering
technique. The use of colloidal suspension of charged particles in aqueous media offers
the possibility that the physical properties of the suspension can be tuned easily by
simply varying the ionic strength of the aqueous phase. Polymer lattices present a
model colloidal systems due to the availability of monodispersed particles of suitable
dimensions, convenient for light scattering experiments. We model the lattices in solu-
tion as a system of hydrophobic polystyrene spheres stabilized by double layer repul-
sions derived from adsorbed emulsifier ions or from sulfate endgroups of the polymer
molecules. If the emulsifier is removed, or the thickness of the double layer reduced
by adding an appropriate amount of a simple salt, the particles will lose their charges
and aggregate to form large structures. The importance of this model system lies in
the fact that different aggregation mechanisms, such as reaction limited or diffusion
limited processes, can be realized by varying the external conditions. Moreover, if the
charge groups are left in the H* form, conductometric titration® with a base allows
their number to be determined, giving a full characterization of particle charges.

Certain compositions of three-component mixtures of water, oil and ionic or non-
ionic surfactants may form homogeneous, thermodynamically stable and optically
transparent liquid phases known as microemulsions.® The microemulsion, in the case
of water/decane/AOT [sodium bis di-2-ethyl hexyl sulfosuccinate] system, consists of
water droplets, coated by a monolayer of the surfactant, dispersed in the oil.” The ave-
rage size of the droplets is governed by the molar ratio w = [H,0]/[AOT]. When o is
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equal to 40, the dimension of the droplet is of the order of 160 A, which explains the
fact that the solution is optically transparent. Nevertheless, the microemulsion scatters
enough light to be observable by photon correlation spectroscopy.® At constant pres-
sure, upon changing the amount of oil, keeping the w fixed, the volume fraction of the
droplets can be varied continuously from a few percent to 90%, without changing the
average size and size distribution of the droplets. On varying the temperature at a fixed
volume fraction, the microemulsion system shows a variety of interesting physical phe-
nomena including a binary phase separation having a consolute lower critical point for
the volume fractions below 0.4,° and an electrical percolation occurring over the whole
range of the volume fractions at different temperatures.'® It has been shown that the
electrical percolation phenomenon below the percolation threshold can be described
by a dynamic percolation process in which the counterions migrate from droplet to
droplet, owing to a strong mutual attraction, when the centers of the two droplets ap-
proach to within a certain distance.!! Another transport coefficient, namely the vis-
cosity of the microemulsion, also shows percolation behavior.!? This indicates that,
above the percolation threshold, the droplets show an increasing connectivity between
them and the system evolves toward, possibly, a bicontinuous structure.

In this paper, we shall discuss the approach to the percolation threshold from
below, studied by static and dynamic light scattering. Even though the functional form
of the cluster sizes distribution remains the same, as governed by the percolation
theory, the divergence of the average cluster size on approaching the percolation
threshold has a profound effect in both the light scattering intensity and the droplet
density-density time correlation function. An analytical theory will be presented for
the calculations of these two quantities, in analogy with the aggregation problem.!® We
will show that the essential difference, as far as the light scattering properties are con-
cerned, between the aggregation problem and the percolation problem, lies in the fact
that the polydispersity exponent 7 has different values for the two cases. In the reac-
tion limited aggregation problem, z has a value 1.5 and is unrelated to the fractal
dimension Dy of the cluster, which is found to be equal to 2.1. On the other hand, in
the case of percolation, 7 has a universal value 2.2 and is linked to the fractal dimen-
sion by a hyper-scaling relation? Dr-1) = d, leading to a fractal dimension D; = 2.5
in three dimensions (d=3). For 7 smaller than 2, the first cumulant in the dynamic
light scattering shows a crossover from a g® to another g behavior at a certain char-
acteristic g value, while for 7 greater than 2, the first cumulant shows an interesting
crossover from a g? to a g° behavior at a certain characteristic g value related to the
average cluster dimension.

II. GENERAL THEORY OF LIGHT SCATTERING FROM POLYDISPERSED
FRACTAL AGGREGATES

Let us imagine scattering of light from an arbitrary cluster of % identical spherical
particles of diameter R;. In the cases under study, the size of particles is such that R,
is less than 500 A. The Bragg wave number for scattering of a laser light of wave
length A from a medium of index of refraction n at a scattering angle 6, is given by
g = (4nn/A)sin6/2. For a common light scattering setup using He-Ne laser and a scat-
tering angle of 90 ° from a aqueous medium, g = 1.87x10-3 A-, and gR, is less than
unity. Then, the particle form factor can be taken effectively equal to one. The scat-
tering intensity due to a cluster of k particles is proportional to an interference factor
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<| > Ay exp[ii’ﬂ]f). This quantity is equal to Ak? at ¢ = O for identical particles of
i=1

scattering amplitude A. Thus, if we introduce an intra-cluster structure factor S,(q)
which is normalized to unity at g = 0, then the light scattering intensity at small q
can be written as:

I(g) =4 3 N(k)F* 5,(a) ®

k=1
In this equation, N(k) is the number of clusters with k particles, which is related to

the total number of particles N in the scattering volume by N = E kN(k) . Thus, the
k=1

scattering intensity at ¢ = 0 is given by: I(0) = N A% <k%>/<k> where the bracket
denotes the average over the cluster size distribution function N(k). It should be noted
that in writing eq. (3), we make an implicit assumption that the cluster-cluster inter-
ference effect can be neglected in the calculation of the total scattered intensity. This
assumption is certainly true of dilute systems. But, it can also be justified for dense
systems in the following way. Since the scattered intensity is heavily weighted by the
larger clusters and the larger clusters are presumably scattered around in the sea of
smaller clusters, the system can be taken to be effectively dilute in this sense.

The calculation of the scattered intensity, therefore, reduces to specifying the
intra-cluster structure factor Si(g) and the cluster size distribution function. For a frac-
tal cluster of & particles and fractal dimension Dy, Chen and Teixeira'4 have previously

written an approximate intra-cluster structure factor. In the normalized form it can
be written as:

sin [(D1) arctan(gR,)]
Sk(q) = § 4 ) Dl:_)I “4)

(Dr1) gR, (1+¢°RY) 2

In the above formula, R, is the radius of gyration of the k-cluster. R, and R, are con-
nected by:

R, = R, kY7 )

Two asymptotic forms, which will be extensively used in the next section, can be
deduced from the structure factor given in equation (4).

For low values of gRy, the structure factor can be approximated by:
S{(q) = exp[-D, (D,+1) g°R}, /6] (6)
On the other hand, for large values of QR,, it takes the limiting form:

in[(D~1)7/2] (gR,)™P
SP(q) = sin( F(;”{{I; (gR,) @

The cluster size distribution function N(%) in both cases can be written in the fol-
lowing scaled form: N(k) « k—*f[(k/s)].2 In this expression, the parameter s is a measure
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of the number of particles in a typical cluster. For a fixed value of s, the exponent
specifies the degree of polydispersity of the cluster sizes; the smaller the 7 value, the
broader the distribution. Remembering that the value of k starts from unity, the nor-
malized form of the cluster size distribution function can be written as:

N(k) = Lzlk't exp [— E] (®

r(2=y) :

where I'(a,b) is the incomplete Euler Gamma function.

The dynamic light scattering measures the particle density-density time correla-
tion function, which can be computed according to the formula:

©

k% N(k) S,(q) exp[-D, ¢? {]
=1

cit= & 9)

> K N(Ek) S, (@)
k=1

The first cumulant can be calculated by taking the t=0 limit of the logarithmic
derivative of C(?)

k* N(k) S\(q) D, ¢°
k=1

I'(p) = (10)

> K2 N(k) S,(a)
k=1

The D,, in these equations is the effective cluster diffusion constant, including both
the translational and rotational contributions. It can be approximately written as:!%

D, =D,k [1+ ﬁ] (1)

where D, = is the Stokes Einstein translational diffusion coefficient for a single

KgT
6 s R,
particle, 7, is the viscosity of the solvent and p is the ratio of the hydrodynamic radius
to the radius of gyration of the cluster.

III. THE SCALED SCATTERED INTENSITY AND CUMULANT

In practice, the summation over k in equations (3), (9), and (10) is replaced by an
integral over k from 1 to infinity. In order to obtain analytical expressions, the struc-
ture factor has been taken to coincide with the two asymptotic forms (6) and (7),
depending on whether the parameter gR;, is less or greater than one. Thus, the integra-
tion over k can be split into two ranges, one from 1 to ky and the other from k&, to
infinity, where k, = (gR;)"?f. For example, the intensity is calculated as:
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R0t 3
Iq) = [ deNE)E*SP (q) + [ dkN(k) K SP(q) (12)
: @R
The result of integration gives:!
Dg3-7) _D
i S -, 2 = ol
1659 = T [F(3 7,x) [1+x— 7 + G(2-7,x) [h] ] (13)

where x = g£ and the correlation length & is defined as & = hR; s¥Pr This quantity is
very close to the average radius of gyration of the clusters. In eq (13), F(a,x) = I'(a)-
- I(a,u) with: u = [R*(1+x?) / 22]P02; h = [D(D+1)/6]'/%; and G(a,x) = sin[(D~1)/2]
I(a,(x/h)P0/(Di-1) -

Equation (13) can be reduced to simpler forms in two limiting cases:
a) For x<

I(x,s) = r(zL-r) I(3-7) (1+a2)-P@-02 (14)
noting that I(x=0,s) = I, =sI'(3-7)/T'(2—7).
b) For x>1
: =Dy
sin | (D1)5
Itxs) = 1 (ZS—t) F(3—7,0) xPr3-0) + —J-D,——IZl I'(2-7) (%) ] (15)

In the large g limit, applicable to neutron and X-ray scattering experiments, two
different asymptotic forms can be observed, depending on the value of the polydisper-
sity exponent 7. For the reaction limited aggregation (RLA), the exponent 7 is known
to be 1.5. In this case, the asymptotic behavior of the scattered intensity goes like:
I(x) - (x)™Pf giving directly the fractal dimension. On the other hand, for the percola-
tion case, 7=2.2, and the asymptotic intensity is I(x) - (x)"?3-9 = (x)-2, which does
not give information on the fractal dimension. It should be remarked here that this
asymptotic regime is an intermediate regime in g where one is probing the length scale
of £&. On further increase of g, the intensity would eventually approach the Porod
regime (g)~* where the length scale of the size of the spheres is probed. In order to
obtain this regime, the particle form facto has to be multiplied to the intensity formula
given in equation (3).

The calculation of the cumulant can be similarly made starting from equation (10).
Defining a reduced cumulant by I'.* = I'./(D;R,q%), one can show.!?

F3—r—Di,x G(2—r—Dif,x)

-D
T r £ Lo 2t Al L
| P g [1 + 2Pt == 1/Dp/2 4 [1 + 2p2] i) [h]
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Again, two limiting cases can be identified. For x -+ 0, I'.* goes like 1/x according to:

1
5 F<3—I—E>

but for large x limit, the two cases have different asymptotic behavior. For RLA we
have:

1
I‘<2—-t—3{>

' —~ h _L —
Ii(x) = = (1 + 2,02) @< %) (18)
which shows a linear dependence on 1/x. while for the percolation case, we have:

1
F(B—t—a,co>

L5 Mmoo (19)

which is independent of x.

It is possible to cast the time correlation function C(t) also into the scaled form,
C(x,v), where v is a natural non-dimensional scaled variable given by:w = D, g% s~'/P,
The detailed expression is given in Reference [13]. It is sufficient here just to note that
in the long time limit, the time correlation function approaches a stretched exponen-
tial form given by:

C(v) = exp[—(D; + 1) (v/DF] (20)

where the stretch exponent $ is universal and given by f=D./(1+Dy). Thus, it can be
seen that the droplet time correlation function starts off at short time as an exponen-
tial with a well defined first cumulant and tends, at long time, to a stretched exponen-
tial having an universal stretch exponent. The crossover from the exponential to the
stretched exponential occurs at I';t = 1.

IV. AGGREGATION OF POLYSTYRENE LATEX PARTICLES IN
AQUEOUS SOLUTIONS

It has been shown by Cametti et al.'® that polystyrene lattices can be made to ag-
gregate in aqueous medium by adding the simple salt NaCl. For example, for latex par-
ticles of 455 A in deionized water, the addition of 0.17 mol/l of NaCl would result in
irreversible reaction limited aggregation, with hydrodynamic radius of the typical
cluster growing exponentially in time, with a time constant of about 5000 minutes. For
light scattering experiments, a typical concentration of latex particles is about 5x10-%
in volume fraction. Recently, Lin et al.!> have experimentally shown that, for three
completely different colloids, namely gold, silica, and polystyrene particles, a universal
behavior of the reaction limited aggregation exists. According to these authors, for
RLA clusters the fractal dimension Dy is equal to 2.10+£0.05, and the polydispersity ex-
ponent v = 1.50+0.05. The fractal dimension D¢ can be best determined by a combined
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Figure 1. A plot of the reduced cumulant I'c* vs. 1/x in a log-log scale for an aggregating poly-
styrene latex sphere of radius 455 A in deionized water upon addition of 0.17 mol/l of NaCl. The
correlation length & = h Ry s¥Pfand the typical cluster size s(¢) grows exponentially in time with
a time constant of about 5000 minutes.

static light scattering and X-ray small angle scattering using equation (15), as it was
originally shown by Schaefer et al.!”. This was possible because the polydispersity ex-
ponent 7 is significantly smaller than 2. When 7 is above 2 as for the case of percola-
tion, the slope obtained by plotting log I(q)) vs. log (q) would not give the correct frac-
tal dimension, as it can be clearly seen from equation (15). Knowing that D; = 2.1,

one can then proceed to show by using dynamic light scattering that the exponent 7
has a value 1.5.

If one plots the logarithm of the reduced first cumulant, log ([.*), vs. log (1/x),
then equation (16) will give a solid line shown in Figure 1.!8 It can be seen from the
asymptotic formulae (equations (17) and (18)) that the universal scaling curve for the
reduced cumulant vs. log (1/x) should show a slope of unity at high x and also a slope
of unity at low x, with a crossover occurring at approximately x = 10. The absolute
level of the universal plot is sensitive to the magnitude of z. In this figure, the solid
line has been drawn by assuming z = 1.5. In the same figure, dynamic light scattering
data, taken from solutions having different salt concentrations, have been plotted as
solid circles. It is striking to see that the experimental data span the region of cross-
over and agree well with the theoretical predictions.

In Figure 2,!® the solid lines are plots of In[-In (C(v)] vs. In [v] where the photon
correlation function C(v) is calculated according to equation (9) assuming Dy = 2.11
and 7 = 1.5. At large v, the time correlation function tends to a stretched exponential
with a stretched exponent 8 calculated according to 8 = D¢/(1+Dy). In Figure 2, the
slope of the lines at the upper end is 0.68 as predicted by equation (20). Solid circles
represent experimental data. The & value has to be determined by knowing the time
dependence of s(¢). In this case, it is known that the cluster size grows exponentially
in time, so that an empirical form s(f) = sy exp(at) is used. The parameters sy and a
are separately determined at each salt concentration. It is again noted that most of
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Figure 2. Double log of the photon correlation function plotted as the logarithm of the scaled
time v = D; ¢% t s~V/Df for the same system of aggregating polystyrene latex particles as in Figure
1. The solid lines are theoretical predictions and the dots are experimental points. It should be

noted that the asymptotic region where exponent b can be determined is experimentally very
hard to reach.

the time correlation functions are taken at the crossover range so that the determina-
tion of B is difficult in practice.

V. PERCOLATING DENSE AOT/WATER/DECANE MICROEMULSIONS

Many three-component water-in-oil ionic microemulsions show the percolation
phenomenon as a function of temperature at a constant volume fraction of the dis-
persed phase. As the temperature is increased from below the percolation threshold
Ty, the low frequency conductivity o increases sharply near T, and can be described
by a power law divergence o = constX(T,—T)~*" where the dynamic percolation ex-
ponent has a value s’ = 1.2+0.1.1° The conductivity far below the threshold (say 10
°C away) can be well described by a formula o = ¢ecBT/(8n%yr?), where ¢ is the volume
fraction of the droplets of radius r,e and 7 are, respectively, the dielectric constant and
the shear viscosity of the oil. This expression follows from a charge fluctuation model
of Eicke and Borkovec!® in which the mechanism of charge transport is attributed to
the transfer of ionic species, either the surfactant molecules or their counterions. The
migration of charged species from droplet to droplet produces a mean square charge
fluctuation <(ez)?>, which is calculated by applying a thermodynamic fluctuation
theory in conjunction with Born’s theory of ionic solvation. The conductivity is then
obtained by calculating the mobility of a charged sphere of radius r carrying a mean
square charge <(ze)?>>. Above the percolation threshold, the conductivity further in-
creases towards the value of the aqueous phase in a power law fashion according to s
= const.x.(T-T,)t with the static percolation index ¢ = 1.9+0.1.1

AOT /Water/Decane three-component ionic microemulsion has a special feature of
interest owing to the existence of a well defined percolation locus in the T—p phase
diagram. Referring to Figure 3, the percolation line cuts through the phase diagram
from 40 °C at a volume fraction 0.08 down to 23 °C at a volume fraction ¢ = 0.65.
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Figure 3. T—¢ phase diagram of AOT/water/decane system at @ = 40.8. The solid line is the
percolation locus as determined by electrical conductivity measurements.

This means that one can approach the percolation threshold from below by keeping
the volume fraction constant and increase the temperature or keeping the temperature
constant and increase the volume fraction. The basic percolation phenomena observed
in the two paths of approach are the same. We shall describe the results of light scat-
tering experiments taking the latter path keeping the temperature at 23.5 °C and 25 °C.2!

A. Light Scattering Intensity

The basic theoretical prediction is equation (13). Taking the value of polydispersity
exponent 7 equal to 2.2 from percolation theory, and the fractal dimension D; = 2.5
as implied by the hyper-scaling relation Dfz-1) = 3, the intensity in the region where
x = g€ is small as compared to one, is predicted by the theory (cf. equation 14) to be:

D,
e L @1

(1+a22¢77

This means that I(x) diverges at small q like £Pf. This is shown in the inset of Figure
4 where we plotted the measured intensity data I(x) as a function of g at a temperature
25 °C and a set of volume fractions ranging from 0.05 up to 0.58. From fitting the cur-
ves using equation (21), we get:

E=& (4, - ) @22)

where & is 257 A, ¢, = 0.59, and the exponent v = 0.88, which is consistent with the
percolation theory.?' The value of &, is of the order of the droplet size which is 180
A and the value of the percolation threshold ¢, agrees with the percolation locus
depicted in Figure 3. In the same graph, we also show that I(x)/I, is an universal func-
tion of x, following equation (13), which is the solid line and the experiment data are
taken from reference.?!
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q&

Figure 4. Scaling plot of the reduced scattered intensity vs. the scaling variable x = g&. Solid
line is equation (13) and the symbols are experimental points from reference 21. In the inset,
we show the low angle scattered intensities vs. g for volume fractions ranging from 0.05 to 0.58
taken from reference [21]. The solid lines are the relations given by equation (21).

B. The First Cumulant

The first cumulant of the droplet density-density correlation function is the easiest
quantity to measure in a dynamic light scattering experiment and therefore is the most
accurate quantity to be determined. We focus attention on the reduced cumulant I.*
= I'./(D:1R1¢®). As noted before, equation (16) is the complete form of the scaled first
cumulant. At low value of the scaling variable x,I':* is proportional to 1/x, according
to equation (17). This regime corresponds to the solid line with a slope of unity ap-
pearing on the right hand part of Figure 5. On the other hand, at large values of x,
the scaled first cumulant is independent of x (see equation 19). This regime cor-
responds to the horizontal line drawn on the left hand side of the Figure 5. It should
be noted that this latter feature is in sharp contrast to the behavior described for the
aggregation problem in the previous section. The symbols in Figure 5 are taken from
published experimental data of Sheu et al.? taken at 22.6 °C and Magazi et al.2! taken
at 25 °C. It should be observed that the theoretical prediction of transition of I', from
the g® behavior at small x to a g° behavior at large x, is well substantiated by the ex-
perimental data.

C. The Droplet Density Correlation Function

The main theoretical prediction for the time correlation function is that it begins
with an exponential decay at short time with a well defined cumulant and gradually
evolves into a stretched exponential decay at long time with an universal stretched ex-
ponent 8 = 0.714. The theoretical prediction can be summarized by a set of curves in
Figure 6, where In (-In(C)) is plotted as a function of In (I'.¢), for different values of
dimensionless parameter g. We see from the solid lines that these universal curves
all start with a slope of unity at small values of ¢ and cross over to another slope 8 at
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Figure 5. Scaling plot of the reduced first cumulant vs. the scaling variable x = g£. Note that

the experimental data clearly indicate the transition from a linear behavior to a constant as the
percolation threshold is approached.
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Figure 6. Double log of the droplet density time correlation function vs. the logarithm of I'ct for
different values of x. The crossover from a linear (single exponential decay) to another linear
behavior (stretched exponential) takes place around I'et = 1. Note again that asymptotic region
is very hard to reach experimentally.

large values of ¢. The crossover occurs at approximately ¢ = 1/I. depending on the
values of g&. In practice, this crossover happens at about 1 ms. Thus, in order to obtain
the precise value of B, one has to measure the time correlation functions starting from
‘microsecond range to several seconds. The correlation functions decay to the back-
ground level at a time of the order of 100 milliseconds, making the determination of
exponent f extremely difficult. Nevertheless, this universal curve has been tested
against experimental data by Tartaglia et al.!3 and was proven to be valid. The earlier
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experiment and analysis by Sheu et al.?- indicating a continuously changing f as func-
tions of g and volume fraction was due to the fact that the correlation functions were
largely taken at the crossover region where they had not reached the asymptotic form
given by eq. (20).

VI. CONCLUSION

In this article we have shown that static and dynamic light scattering data from
both reaction limited colloidal aggregates and percolating droplet microemulsions can
be analyzed in a common and general way. Due to the fractal nature of the aggregates
formed in both cases, the theory requires as an input the cluster size distribution func-
tion N(k) given by equation (8) and the intra-cluster structure factor S.(q) given by
equation (4). Two exponents, 7 and Dy, enter into these two central quantities. In the
former case, v has a value 1.5 and D; a value 2.1 and the two are unrelated. In the
latter case, 7 has a value 2.2 and Dy a value 2.5, the two being connected by the hyper-
scaling relation. The physics of the RLA is controlled by the fact that the typical
cluster size s(#) grows exponentially in time when salt is added. On the other hand,
the physics of the percolating microemulsion is controlled by the growing cluster
dimension £ as the percolation threshold is approached. This latter fact brings the
physics of percolating microemulsions closer to the equilibrium critical phenomena.??
We see, for example, that the g dependence of the scattered intensity obeys a relation
similar to the Ornstein Zernike relation, with the intensity at ¢ = 0 diverging like
&Pt and the g dependence of the first cumulant of dynamic light scattering changing
from g2 to g® as the percolation point is approached, much the same as in the equi-
librium critical phenomena. What remains to be seen and explained is why the density
time correlation function, although decaying exponentially initially in both cases, cros-
ses over to the stretched exponential at the long time in the case of percolating
microemulsions, was not also observed in critical phenomena.
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SAZETAK
Raspr3enje svjetla na polidisperznim fraktalnim nakupinama
S. H. Chen, J. Rouch i P. Tartaglia

Natinjen je kratki pregled nasega dosadasnjeg teorijskog i eksperimentalnog rada na sta-
tickom i dinamic¢kom rasprsenju svjetla na polistirenskim lateksima, koji agregiraju u otopina-
ma, te rada na gustim mikroemulzijama u kojima se javlja perkolacija. Agregacija je karakteri-
zirana nastajanjem i rastom reakcijski limitiranih fraktalnih agregata, induciranih dodatkom
soli; u osnovi ona je neravnotezna pojava. Perkolacija je, pak, karakterizirana nastajanjem i ras-
tom nakupina dinami¢ki perkoliranih mikroemulzijskih kapljica kada se priblizava perkolacij-
skom pragu odozdo; to je ravnoteina pojava. Formulirane su teorije stati¢kog i dinamickog
rasprienja svjetla na takvim polidisperznim fraktalnim nakupinama, pri éemu je osobita paznja
posvecena izraunavanju univerzalnih skalnih funkcija mjerljivih u eksperimentu. Analizirani su
eksperimentalni podaci da bi se potkrijepila teorijska predvidanja. Naglaena je sli¢nost posljed-
njeg slu¢aja s dobro poznatim rezultatima ravnoteznih kriti¢nih pojava.
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