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Coagulation is interpreted as a second-order process caused
by efficient collisions either between free primary particles (FPPs),
FPPs and aggregates (AGGs) or between AGGs themselves. The
following relations and definitions are derived theoretically: size
distribution of AGGs: Pi(I) = (T—1)P, +I<P,=TP, <P, I@X =
=(T +1)P,—I+1 for 1 <1< P.; total number of PPs present
in AGGs defined by the distribution parameter T: S, (T) = 2V (T) P,

P,
2 2' = 4V (T) P, (2" —1); relative volume in which AGGs defined
1=1

by a given T are present: V(T) = (T + 1) V (T = 1)/2; number of
AGGs of size Pi(I) and P.(I): A/ ()= N,(I)/P; and A.() =
= N, ()/P;; number of PPs in AGGs of size P (I) and P:(I):
N, (I) = V(T) P.2'; coagulation time of FPPs: T;= Te/Tes =
= Sp (Po)/[Sy — S, (P))] where S, =S, (Poma); coagulation time of
AGGs: T. = Tew/Tez = 1/(A.— 1); number of AGGs of average size
P.; A.(T) = S, (T)/P, = V (T) To/T where T, = S,/P,, 1< T < T, and
0 <T.< oo, It is demonstrated that A4, is the reciprocal ratio of
reactant concentration, P, is the relative reaction product concen-
tration for the coagulation of AGGs. The reaction product con-
centration for the coagulation of FPPs is S, (P,)/V (T =1) and
[Se (Po,max) — S5 (Po)]/V (T = 1) is the reactant concentration. The
relative coagulation times of FPPs and of AGGs resp. are defined
as the ratio [reaction product]/ [reactant] of second order reactions.
The formation of AGGs defined by P, =6 from FPPs and the
growth of AGGs defined by T =1 into those defined by T = 2
in steps of AT =1/P, is also demonstrated numerically as an
example. Simple programs can be set up to demonstrate graphi-
cally the shift of the histograms ”A4;, A. vs, Py, P,” and ”N, vs.
Py, P.” with increasing T. and to calculate the values A. for any
value of P, the computer can process. One of the aims of the
experiments should be to evaluate the values of S, (exp). Then,
as rule, a P, value can be established for which S, (P,) < S, (exp) <
S, (Po + 1) is valid and a correction factor F for which F = S, (exp)/
/Sy (Po) is valid. Then is F the number of AGGs of maximal size.
When only T-th AGG size is present in the coagulating sol, then
the smallest AGG size is PA1(I=1) =T and the width of the
histogram is defined by P, = TP, instead of P..

Notation: P, = parameter defining the width of the AGG size
(= number of PPs) histogram; Pom. = the same when all FPPs
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have reacted and transformed into AGGs; T = parameter defining
the sizes Pi, P., P. of the AGGs; P, P.,, P. left hand, average
and right hand size of the AGG size histogram; T = time and
Ty half-life of coagulation of FPPs; T.», = time and T. = half-
-life of coagulation of AGGs; V(T = 1) volume in which S, of

PPs are present; D(T) =3V V(T) = side length of the cube of
vglu-me V(T), Vu(T) = volume in which one AGG of maximal
size P, (I = 1, T) ds present.

INTRODUCTION!

The purpose of the present theoretical investigation is to interpret coagu-
lation as a second order process which is a consequence of collisions of single
free primary particles (FPPs) and of aggregates (AGGs) due to Brownian
motion. As PPs those particles are understood which form during coagula-
tion the AGGs. The space between the PPs in AGGs is filled up with inter-
micellar liquid. As a rule in experimental systems, PPs are polydisperse
with an average size and form. A theoretical sol with monodisperse average
PPs is supposed to coagulate in the same manner as the polydisperse real
sol. Prior to the start of coagulation, induced by addition of a coagulator, it
is supposed that all PPs are dispersed as FPPs.

Suppose that a sol, prior to the addition of a coagulator, consists of a
given number concentration of FPPs. Due to the absence of the coagulator
the sol is stable, i.e. the rate of coagulation is infinitesimally small. Due to
Brownian motion, FPPs collide but their surface prevents the colliding FPPs
to adhere to each other, ie. to form AGGs.

After addition of the coagulator, all, or a given fraction of collisions,
are efficient. This means that AGGs of 2, 3, ... PPs are formed. We call the
number of PPs in an AGG the (number) size, P, of the AGG. After a suffi-
ciently long time, all FPPs will disappear from the sol and the coagulation
will proceed due to collisions of the AGGs only. A fundamental assumption
here is that only those collisions can be efficient which, at a given time of
coagulation, produce AGGs of sizes, P, and PPs numbers, N;, between a mi-
nimal and a maximal value which fit into the histogram.

At the absolute time T., an average number of AGGs, A, of the average
number size, P, and of a constant number of PPs in all AGGs, S, in a rela-
tive volume V(T = 1) = 1 would form theoretical sol.

The aim of the present paper is to propose an AGG size and number
distribution, a histogram, as function of the coagulation time, while coagu-
lation is supposed to be a second order process, i.e. a reaction caused by
efficient collisions between two FPPs, a FPP and an AGG or two AGGs,
respectively. There are no whatsoever speculations on the actual form of
the AGGs because they are evidently no dense regular spheres. They are
loose flocks of PPs filled with intermicellar liquid between them and can
be of a very irregular form and size indeed.

Useful theories on coagulation should be able to predict or to explain
the absolute value of the halflife of coagulation (Ttb, Tcab), Oor at least, the
influence of sol concentration, coagulator concentration and charge, electric
chagers or potentials on PPs and AGGs, diffusion coefficients, viscosity, tem-
perature, and others.
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THEORETICAL
Collisions of free primary particles

After addition of a coagulator, as long as FPPs are present in the coagu-
lating sol, the AGG size due to unit efficient collisions can be calculated
using the equation:

P+1=({P+1) (1)
The size of IFPPs is P = 1, the size of the colliding AGGs is 1 < P, that of the
newly formed AGG is (P +- 1). A sequence of efficient collisions can produce
AGGs of any size P < S, + TP,.
Sizes of AGGs can be defined in the following way:
P<(T—1)P,+I<P,=TP,<P,=(T+1)P,—I+1 )

for 1<TLT,, 1 X1 P, (all are integers, for T, see eq. 19). This means
that the dependence of PP number and AGG number is represented by a
"istogram. The lcft hand side of the histogrem form AGGs of size P; and
the right hand side those of P,. The average size is P, = TP,.

As long as FPPs are present in the sol T =1 and characteristic stages
are obtained when P, stepwise increases by one. The smallest AGG has the
size P} = 1. The average size is P, = P, and the biggest AGG has the size
P, = 2P,. The number of PPs in an AGG of size P is N(P).

The number of AGGs of any size P can be designated by A(P) and de-

fined by (for T = 1):
A(P) = N(P)/P 3)

and it must ko valid: 7
AP, —1)> A(P) > AP, @)

Sinne A{2P,) = 1 must be minimum and conbequently N(ZPO) = A(2P,) =
= 2P, the following is also valid: ’ ,

A@QP,—1)>1 )

The smallest integer factor greater than one is 2 and

N(@2P,—1) > N(@2P,) (6)
and as a consequence:
N@eP,—1)=2- P, )
and, for any P,:
N(P)=N@P,—I+1)=2'P, 1<I<P, ®)

The rate of efficient collisions of the smallest AGGs is the highest, be-
cause the smallest AGGs can collide efficiently with any AGG of size P

according to eq. (1). Consequently, the following is valid: )
AP) < AP + 1) (9)
and also
NP) < NP, + 1) : (10)

The number of PPs disappearing in all P, is equal to the number of
PPs for which P, increase. Consequently, the histogram will be symetric
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and we shall assume that N(P = 1) = N(2P,) = 2P,(I = 1) and N(P,) = N(P, +
+ 1) and again the smallest rational integer factor greater than one is 2 and
the following must be valid:

NP =2 =2NP=1)=2-2P, 11
and for any P; = (T — 1)P, + I:
NP)=2'P,, 1ZIZP, 12)

An additional argument for basis 2 in equations 8, 12 is the fact that the
PP number of the left hand side of the histogram must be even so that all
PPs can react and dissappear in collisions of two AGGs. Analogously, the
right hand side PP number must be even since it is always formed from
the left hand side PPs.

The AGGs increase from 1 to the size P, = 2P, which will be reached
when the last FPP will disappear. We shall assume formally that a part of
PPs of size Py =1 are AGGs of size P = 1. The formation of AGGs of the
maximal size P, ma.x can be described by the stepwise increase of P, =1 to
Py max, 1.6. when 1 < Py < P, . In Ttable I, the formation of AGGs defined
by Pomax = 6 and S, = 1512 is illustrated as an example.

TABLE I

Formation of aggregates of maximal size P. = 2P, = 12 when P, stepwise in-
creases from P, =1 to 6. The number of primary particles is N(P) = N(P,) = P, 2".
The number of all primary particles in all agregates for a given P, is Sy(P.) and
for Py = 6, Sy = Sp(6) = 1512, The relative coagulation time of free primary particles
is Te for 1 < Po < Po max.

" G

“-P 1 2 3 4 5 6 7 8 9 10 11 12 Sp(Po) T
1 12! 12! 4 .0027
2 221 222 222 22! 24 .0161
3 321 322 323 323 322 32! <« <~ N(P) =P, - 2 84 0588
4 42! 422 423 42% 42% 423 422 421 240 .1887
5 52! 522 523 52% 525 525 52t 523 522 521 620 .6951
6 6.21 622 6.23 6.2% 625 620 626 625 6.2¢ 62° 622 82! 1512 oo
P, 1 1 < P < Po < Pr=2P,—1+1K 2P,

1 < I < P, P, >1 = 1

Coagulation time of free primary particles
The total number of PPs in the AGGs will be designated by Sp(P,) and
can be calculated as the sum of all PPs in all AGGs using the summation:
2P, P, 1 P,
S,P)=3S NP)=P, S 2°+P, 3 2'=2P, I 2 a3
p=1 I=1 I=P, I=1
for 1<IL P,

It can be proved (see *Remark) that the same sum can be calculated
using the following very simple equation:
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5,(P,) = 4P,(2F* —1) (14)

The sum Sy(P,) can also be calculated in the following way. For T =1
P, = P,, the maximal A,, and E, can be calculated when inserted in eq. (3)
by the following equation:

Ao = Sp(P)/P, = 25 (= T,) (15)

where A, is the number of AGGs of average size P, = T, P,. We define the
exponent E, by the following equation:

2% = 42 —1) (16)
The logarithm of the same equation after rearrangement gives:
E, = 1g [42F° —1)] /182 amn

The sum S,(P,) can therefore be obtained also from the following very simple
equation:
Sp(P,) = P 2" (18)

The sum for P, = Pomax will from now on be designated by S, =
= Sp(Po,max) and the parameter T, defined as:

T, = 5,/P, (19)

The number of FPPs, in the relative volume V(T = 1) = 1, equals their con-
centration and it can be calculated by the equation:

N(FPP) = S, — S5,(P,) (20)

According to the theory of second order reaction kinetics, the relative
reaction time is defined by?3.

relative reaction time = [reaction product] / [reactant)] (21)

The reaction product concentration or activity of FPPs will be assumed to
be equal to Sp(P,)/V(T = 1) and the reactant activity to N(FPP)/V(T = 1).
The coagulation time of FPPs is Tty and the halflife of FPPs is Ty, and the
relative coagulation time of FPP, Ty is then defined by:

Ty = T/ Tia (22)

and it can be calculated as the ratio:

* Remark:
& B , P, P,
232 =32 +2Pt ;. aPFl vt sy
1=1 =2 I=1 1=2

P, P, P, P,
2Pl —2=232— (32 +2); 22"—1) =232 33
I=1 I=2 I=1 I=1

P, P,
22" —1) =32, 4P, —1) = 2P, 3 2' (see egs. 13, 14)
I=1 1=1
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T = S,(P) / [S,—S,(P)l, 1<P, <P, 23)

For illustration, the values of N(P), Sp(P.) and Tt for 1 < P, < Py max = 6,
Sp = 1512 are listed in Table I.

Coagulation time of aggregates

The size off all AGGs defined by a given T can be replaced in calcula-
tions by their average size, P,, and defined by:

P, =TP_ (24)

Then, the average number, A,, of AGGs of average size P, can be obtained
using the equation:
A,=S8,/P,=T,JT (25)

Now, the supposition is made that a monodisperse sol with AGGs of size,
P,, and their number, A,, in the relative volume 1 < V(T) would coagulate
at the same rate as the polydisperse sol. o

The reaction product concentration in eq. (21) is proportional to P,/V(T),
and the reactant concentration to (S, — P,)/V(T). The absolute coagulation
time is T.,, the halflife of coagulation of AGGs is T, the relative coagulation
time is T. and the following is valid:

Tc = Tcab/TCZ (26)

The safne entities inserted in eq. (21) give the definition of the relative
AGG coagulation time, T., which reads:

T.= P,/(S,— P)=T/(T,—T) @7

The latter equation combined with eq. (25) reads
=(A,— D)1= (T/T—1" (or I+ T)'=1—A4A" (28)
or , A, =1+T]! (29)

For illustrative calculations, as independent presst parameters, integers of
A, > 2 or powers A, =2E for E, > E (integers) == 1 in eq. (28) or integers
of T =1 in eq. (29) can be used (Tables III a and IIIb). The preset values of
V(T), Vu(T), T, or P, can also be rationally chosen. In this way, an evenly
distributed sufficient number of calculated values can be obtained for illu-
stration. In Tables IIla and III b, the preset parameters are marked with
an asterisk®.

The progress of coagulation is a consequence of efficient collisions of
AGGs of size 1 < P, P’ < P, = TP, which are already present when T. < oo
and 1< T T . The general equation for the calculation of the AGG sizes
can be written in the form

P+ Py =P —J)+ @ +J) 30)

where 1 < Py < P’ and 1 < JX Pi. Each of the AGGs of any size can collide
with any ; other AGG. If (Pl +. J) and N(Py + J) are equal to the values of
the right hand side of the histogram for the last T, the collision can be
efficient. The newly formed AGG of size Pjpew = (P1—J) will collide effi-
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ciently again and produce (P + J) if it fits in the right hand side of the
histogram and the collisions of Pjn.w Will be repeated as many times as
nocessary that the last Prpew to disapper. The halflife of Pjnew << P; are
extremely small as compared with those fitting in the histogram.

When T = T,, ¢, = N,/V;, one single maximal AGG of size P, = (T, + 1) P,
will be formed in an absolute volume V, defined by

¥/ = (T, + DS e, 31
Here ¢, is the concentration and N, the number of PPs in an absolute volume
of the system V. When 1 < T < T, then:

V(T) = (T + 1) S,/c, (32)
and for T =1

V(T = 1) = 2S,/c, 33)

The volume, V'(T), in which one maximal AGG is formed for a given T,

can therefore be defined by:
V(T) = V') (T + 1)/2 (34)

The volumes V,’, V’(T), V’(1) are absolute volumes. We can define a relative
reduced volume

V(T =1) = V(T =1)c,/25, = 1 (35)
a relative volume
V(T) = (T + 1)/2 (36)
and a relative volume
V(T,) = (T, + 1)/2 37)

The length of the sides, D(T), of the corresponding cubes are defined by:

D(T) = *V V(T) (38)

N
TABLE II
Size of aggregates P, and P. in which the number of primary particles is
NI =P2' for 1ISI<P,=6 and 1 <T<2 The relative coagulation time is T.
cnd the relative volume in which one aggregate of maximal size (T + )P, is for-
med is V(T). If assumed to be a cube, its side lenght is D(T) =V V(T), V.(T) =
= 1/A(T, I = 1) is the volume in which one aggregate of maximal size AT, I = 1)

is present.

I 1 2 3 4 5 6 6 5 4 3 2 1 Tc-10°  V(T) Vau(T)
N(I) 6.2' 6.22 6.2% 6.2" 6.2 6.20 6.20 6.2° 62" 6.2° 622 62!
1+0/6 1 2 3 4 5 6 7 8 9 10 11 12 39841 1 1
1+1/6 2 3 4 5 6 7 8 9 10 11 12 13 46512 1083 1.1527
1+2/6 3 4 5 6 7 8 9 10 11 12 13 14 53191 116 1.305
1+3/6 4 5 6 7 8 9 10 11 12 13 14 15 573 125 1.483
1-+4/6 5 6 7 8 9 10 11 12 13 14 15 16 6.6578 7 1.61°
1--5/6 6 7 8 9 10 11 12 13 14 15 16 17 7.323% 1.416° 1.7638
1+6/6 7 8 9 10 11 12 13 14 15 16 17 18 i 1.5 1.916°

T § (T—1)Po+1< P. < TP, LF° < Py < (T+1)Po
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All this means that one single AGG of maximal size (T + 1)P, is present
in the relative volume V(T). A rational increase of T is 1/P, which repre-
sents the increase of P, by one. Then, the new Ty = T + 1/P, and the new
Poew = P + 1 and also Pynew = P, + 1. If however I,y = I —1, then is Pjpew
for 2<I<P, and 1 <Ilew< P,—1 and the new sizes are defined by:

Ploew = Tpoy—DP,+ I—1< Ty Po<P, .= (T, +DP,—I+1 (39)

new” o r,new

In Table II, the values of P), P,, are listed for P, = 6. Each foregoing
line gives the values without index and each next line those with index

»new«. The following conclusions can be drawn for an increase of T to
1 4+ 1/P,:

(A) All AGGs of size P(I=1)=(T—1)P, + 1 dissappear and the same
number of PPs appears in one AGG of size P, .. because:

N(T—1)P,+ 1] =NT + )P, = NI =1) = N, (I = 1) = P 2! (40)
and also:
V... = (T

new

ew + 1)/2 (41)

(B) AGGs of size P(I = P,) =TP,+ 1 remain AGGs of equal size and
number of PPs, however designated by Pj,w = TP, while their number of
PPs remains unchanged, i. e.

N.(TP, + 1) = N(T,.,,P.) (42)

(C) The numbgr of PPs in AGGs of size (T —1)P, + 2 < Py < TP, reduces
to one half, and the number of PPs of AGGs of size TP, + 2 < P <

(T + 1)P, increases by a factor of two. Then the following is valid, namely
(for 1 < I < Py):

Ny + 1)/2 = Ny(D) 43)
NI+ 1)/2+ NI =N+ 1) (44)
NI+ 1) = 2N.(T) (45)

The values of Ni(I) are equal to those on N.(I) for any 1 < T = const < T..
The increase of T for 1/P, takes place in halflives of P(I=2) < P <

< P(I = P,). The halflife of AGGs of Pi(I = 1) is extremely small and the
halflife of AGGs of P(I = P,) is long as compared with those of 2 < I < P,.

In principle, using convenient experimental techni.ques, T,, T, Pa, Aa, Sp
can be measured. As a rule, S, (exp), determined experimentally, will be
gifferent for any Sp(P,) determined with any 1<TP, ie SpP,)<<S,
(exp) << Sp(P, + 1). In such a case a factor F should be introduced to fit
the equation:

FS,(P,) = S, (exp) 46)

Factor F can be explained as a relative volume from which, at T.— oo,
F' AGGs of maximal size V (S, + P,) or F AGGs of average size P, = V,S,
(A, = 1) would be the result.

It is evident that the interdependent variables T., A, T/T, are valid for
any second order experimental or theoretical process characterized by
concrete values of P, T, S, F. A useful theory of coagulation should be
able, therefore, to predict the values of Ty and T, F, P, for a given sol,
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that is the influences upon the parameters Ty, T, like: sol and coagulator
concentration, type and charge of the coagulator, dielectric permittivity
of the solvent or the solvent composition, viscosity, diffusion coefficients of
FPPs and AGGs, temperature and others, supposing that the model used
is correct.

TABLE III a

Coagulation kinetics of aggregates defined by P. =6, S, = 1512, T, = 252 for
1< T< T2 =126 If each Py =1IT and P = @P.—1I) T + 1, only 1 <I<P, is pre-
sent in the histogram, then is the size of the smallest aggregates Pyl = 1) = T.
Values valid for any second order process are E, A, T. T/T. Values valid for
I, = 6 only are T, P, V(T), Vu(T).

Valid for any second order reaction Valid for P, = 6, T, = 252, S, = 1512
E A, =2" T.=A.—1)"! T/T,=A.1 T="T.J/A. P. vV (T) Va(T)
E, = 179773 Ty =252 3.9841 103 3.968254 102 *1 6= P, *1 1
*7 *128 2.8740 103 7.8215 107 1.9688 11.8125 1.484 1.8380
6.9773 126 8 103 17.9365 103 2 *12 1.5 1.416
“6 64 1.5873 102 15625 102  3.9375 23.625 2.4688  3.6927
*5 *32 3.2258 102 3.125 102 7.875 47.25 44375 7.302
16,3 6.3291 102 59524 102 15 90 8 13.83
*4 *16 6.6 102 6.25 102 15.75 945 8.375  14.5208
*3 8 1.4286 101 .125 31.5 189 16.25 28.958
47547 2.6633 101 210 53 318 27 48.6°
*2 *4 3.3 10" .25 63 378 32 57.83°
*3 ~ 5 10! 3 84 504 42.5 77.083"
*1 *2 *1 5 126 756 63.5 115.583°

TABLE III b
The same as in Table IIIa for T./2 = 126 < T < 252.

Valid for any second order reaction Valid for P,=6, T,= 252, S, = 1512

A,=1+T/ 1 T,=@A,—)! T/T,=A T=TJ/A, P, V(T) V(D
2.0 i 5 126 756 635 115583
1.9843 1.016 50397 127 762 64 116.5
15 *2 6 168 1008 845  154.083
1.3 *3 75 189 1134 95 173.3°
1.25 *4 8 201.6 1209.6 101.3  184.883
1.2 *5 83 210 1260 1055 192,583
1.16 *6 8571 216 1296 1085  198.083
1.1429 o 875 220.5 1323 11075 202.208
1.125 *g 8 224 1344 1125  205.416
LT *9 9 226.8 1360.8 1139 207.983
11 *10 909 229.09 1374545 11505  210.083°
1.09 *11 916° 231 1386 116 211.83°
1.083' %12 9231 23261 139560  116.81  213.314
1.0416' *24 96 24192 145152 12146  221.843°
1.02083° *48 9796 24686 148114  123.93  226.368
1.01205 *83 9881 249 1494 125 228.3°
1.010416° *96 9897 24940 1496412 12520  228.702
1.00066 1510.999 9993 251.83°  *1511 126.416°  230.930

1 oo 1 252 1512 126.5 231.083
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In chemical reactions
A, = [reactant at time T /[reactant at time T == 0] =

= [reaction product at time T_ = oo]/[reaction product at T] 47)

is a relative dimensionless concentration ratio.

In Tables II, III a, III b, the coagulation is illustrated for 1 < Py < Pomax =
— 6, 2 < A, < 280, E,>> E(integers) = 1 or 1 < T(integers) < oo, in which
way a sufficiently illustrative and acceptable number of values was obtained.
The preset values of either E, A,, T. V(T) or V,(T) are marked with*

Broadening of histogram
Experiments suggest that the polydispersity of the coagulating sols is
much greater than the acceptable P, values permit. Broader histograms (in-
¢rcased polydispersity) can be obtained if each 2-, 3-,... N-th AGG size is
assumed to be present in the sol. Then, the sizes cf present AGGs can b2
defined by:
P, = TP,— NP, —1I) (48a)

P, = TP, + NP, —I)+1, 1<I<P, (48b)

r

The maximal possible N = T and from it the broadest possible histogram is

obtained. In this case:
\ P, =1IT (49a)

P,=@P,—DT+1,1<I<P, (49b)

while S, remains constant. Then, the smallest AGG sizes are Pi(I = 1) =T,
the average sizes are P(I = P, = TP,, and the biggest sizes are P/ (I =
= 1) = T(2P,— 1) + 1. The width of the histogram is defined by P’, = TP,.
In Tables, II, IIla, IIIb, the T integer values are at the same time also the
values of Pi(I = 1) if each T-th AGG size is present i1 the sol, i.e. Pi(I = 1) =
= T. The volume, V4(T), in which one AGG of maximal size is present is:

vV (T) =1/A(1=1) = [2P,—1) T + 11/2P, (50

The V,(T) values for P, = 6 are presented in Tables II, I1Ia, IIIb.

DISCUSSION
Von Smoluchowski’s Theory of Fast Coagulation

One of the probably most cited theoretical papers on Brownian coagu-
lation kin=tics is that of von Smoluchowski? Its eq. (24) reads:

1y = v (ar )Y (A + av t)<! (51)

where in our notation, T., = t, T = Vav,, Tc =t av, (in fact T¢ =t av,, be-
cause FPP of k = 1, never disappear) while k (= P in our notation) is the
AGG size ("k =1, 2, 3, ... fir die ein-, zwei-, drei-fachen Teilchen”). The
total number concentration of PPs is v, (»Teilchenzahl pro Volumeninhalt«)
and »x(= vp) is the corresponding number concentration of AGGs of size k.
The same equation can therefore be written (in our notation):
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vlv, = TS YA + TYH™! (52)

Eq. (52) can be transformed (after division with T2P*!l of the denominator
and numerator) into:

ro/ve = ToY(L + TS (53)
and the corresponding sum reads:
Al Sr= = TYQA + TS (54)
p=1

%g. (23) of ref. 3 can be written in the form:

Ay 2y =0 + T)! (55)

Combining eqgs. (54) and (55) one obtains:

V1 +T)= = T YA+ T, ! (56)
p=1

The same equation multiplied by T. after rearrangement reads:

\ T,= 3 1+TSH" (57)
p=1
Considering eq. (29), the same equation (57) can also written in the form:
T, = 5 A" (58)
p=1

By computation it can be proved that the T. values calculated with the A,
values (eq. 28) and those calculated using equation (57) are equal. By com-

putation, is alsc possible to prove the validity of

/vy 2v = (1 + T)' (Smoluchowski’, eq. 23, eq.55) =
=1—A," (eq.28) (59)

This means that Smoluchowski’s kinetics (ref. 3, eq. 24) follows the second
order kinetics of the present article (Tables IIIa, 1IIb).

Smoluchowski’s 2» is the total AGG number concentration, i.e. the sum
of the number of AGGs irrespectibily of their size, P(= k), per unit volume.
Its definition reads (obtained from eq. 52):

(Ur) Zv = (Av) =T v, = 3 TP+ T (60)

p=1 p=1
The number of PPs in unit volume in AGGs of size P is »,p (= »kk) and
for any T. the following is valid:

/vy £ Pry= X PT,YQ +T)"' =1 (61)
p=1 p=1
The numerical computation of equation (61) depends on the capacity of the
computer or on the desired precision of the result. In any case, the term
{1 + T)P*! cannot be bigger than the maximum number the computer can
process.
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1 the summation of equation (61) is performed according to:
P,
Z P[T(P)I"'/[(1 + T(P)I" =5 (62)
P=1

then P, is the average size of AGGs in the characteristic coagulation time
T.(P,). Since 1 < P, are integers, then the following T((P,) values are obtained:

Pa 1 2 3 4 6 8 9 11
T(Pa) 4142 5 1.5925 2.1866 3.3766 4.5673 5.1628 6.354
P, 13 14 16 18 19 21 23
T(P,) 7.5454 8.1411 9.3325 10.524 11.1198 12.3113  13.5029
F, 24 26 28 ...

Te(Pa) 14.0987  15.2902 16.4818 .....

However, equatioh (24) of Smoluchowski® is not applicable to experimental
systems. Some of the reasons are:

(1) It is impossible that P, <1 in coagulation times T.< V2 —1 = .4142
as it follows from equation (62). At any T., only PPs of size P =1 can be
tre smallest and for any V 2—1 2> T(P, = 1)P, > 1 zan only be valid.

(2) In experimental systems, PPs of size P = 1 dissappear very soon*
(Tables I, II).

(3) The average size of AGGs in observable coagulation times of appro-
ximatelly .01 < T. < 7, the average size P, is of the order of 103 to 10% and
not P, < 11 as it follows from equation (24) of ref. (3) or eq. (62).

(4) Hardly any argument can be cited why should not be valid in coagu-
lation the laws of chemical kinetics (eq. 21) but the law of the »radius of dense
spheric AGGs« used by Smoluchowski for the calculation of the collision
probability, a.

(5) AGGs are not dense sphere, they are spongy irregular structures
filled with electrolyte between the PPs (see e.g. ref. 4). Collision probabi-
lities calculated from the radius of dense spheres cannot, therefore, be cor-
rect.

(6) It is quite impossible that in coagulation times 1 <T. AGGs of sizes
P — oo would be present even in negligibly small concentrations as it fol-
lows from equations (23) and (24) of reference (3).

Valioulis, I. A. and List, E. J.5 extended Smoluchowski’s Brownian col-
lision rate theory taking into account hydrodynamic, van der Waals and
double layer forces between approaching particles. Since the Brownian col-
lision probability, a, is also here the basis of calculations, all what was said
above for the Smoluchowski’s theory is valid also for the latter extensions.
The same can be said for the work of Valioulis, I. A.6
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SAZETAK
Koagulacija kao proces drugog reda — temelj kompjutorskoj simulaciji
M. Mirnik

Koagulacija je zamiSljena kao reakcija II. reda prouzrokovana efikasnim su-
darima izmedu slobodnih primarnih ¢estica (FPP), izmedu FPP i agregata (AGGQG)
ili izmedu samih AGG. Na podlogi teorijskih pretpostavki izvedene su slijedece
definicije: veli¢ina AGG: Pi(I) = (T—1)P, + I < P.=TP, < P(I) = (T + 1)P,—1I +
+1zal<1IZX P,; ukupan broj PP koje su prisutne u svim AGG definiranima para-

nmetrom T : Sp(T) = 2V(T)P, 2"21 = 4V(T)P, (2*° —1); relativni volumen u kome su pri-
I=1

sutni AGG definirani s T : V(T) = (T + 1)V(T = 1)/2; broj PP u AGG-ima veli¢ine
PI) i P«I):N,I) = V(T)P, 2"; broj AGG: Ai(I) = N,(I)/P; A.(I)= N,(I)/P:; vrijeme
koagulacije FPP: T: = T/Ts2 = Sp(Po)/[Sp— Sp(Po)] a Sp = Sp(Po mar); Vrijeme koagu-
lacije AGG: T = Tcw/Te2 = 1/(A.— 1), broj AGG prosjetne veli¢ine P. : A.(T) = Sp/P. =
= V(T)TJ/T, gdje je To=Sp/Po, 1< T<T, i 0<T.< oco. Pokazano je da je A. re-
ciprotni omjer koncentracije reaktanta, a P, relativna koncentracija produkta, obo-
je za koagulaciju AGG. Koncentracija produkta koagulacije FPP je Sy(P.)/V(T = 1),
a  [Sp(Pomsx) — Sp(Po)l/V(T = 1) je koncentracija reaktanta koagulacije FPP. Rela-
tivno vrijeme koagulacije FPP i AGG je omjer [produkt]/[reaktant] reakcije II.
reda. Nastanak AGG definiranih sa P, = 6 od FPP i rast AGG koji su definirani
s T =1 u agregate koji su definirani sa T =2 u koracima AT = 1/P, takoder je
prikazan numeriéki. Jednostavnim programima moze se pokazati pomicanje histo-
grama sa rastu¢im T odnosno T. i racunati A., T, P., V(T), Vu(T) za svaku vrijed-
nost P, koju dopusSta kapacitet racunala. Jedna od svrha eksperimentiranja jest
utvrdivanje Sy(exp). U pravilu mora postojati vrijednost P, za koju vrijedi: Sp(P.) <
<! Sp(exp) < Sp(P, + 1), a faktor korekcije F = S,(exp)/S,(P,) jednak je broju AGG
rmaksimalne veli¢ine kada je T = 1. Ako je samo svaki AGG veli¢ine IT prisutan
u koagulirajuéem solu onda je najmanji AGG Pi(I =1) =T, a S§irina histograma
je definirana sa P’, = TP..

Simboli: P, = parametar koji definira Sirinu histograma; P, m.x = isto kada su
restale sve FPP; T = parametar koji definira P, P., P. = veli¢ine lijevih, prosje¢nih,
desnih AGGa u histogramu; T, = vrijeme, Ti = vrijeme polukoagulacije FPPa;
T.» = vrijeme, T = vrijeme polukoagulacije AGG; V(T = 1) = volumen u kome se
nalazi S, FPP; D(T) =°VV(T) = stranica kocke volumena V(T), V.(T) = volumen
u kojem je prisutan jedan AGG maksimalne veli¢ine AT, I = 1).
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