[^0]
Calculation of the Thermodynamic Functions of Tetrafluorodiphosphine

Olivera Nešković
The Boris Kidrič Institute of Nuclear Sciences, Vinča, Belgrade, Yugoslavia

Received November 4, 1988
The heat capacity, free energy function, heat content function and the absolute entropy of tetrafluorodiphosphine $\left(\mathrm{P}_{2} \mathrm{~F}_{4}\right)$ have been calculated.

INTRODUCTION
The homolytic dissociation of tetrafluorodiphosphine, which is of fundamental importance in the chemistry of this compound, has been investigated by some workers. ${ }^{1-4}$ The occurrence of dissociation has been demonstrated, but the entropy of dissociation has not been determined. The derived enthalpy of dissociation from mass spectrometric data has been determined as $\Delta H^{2}{ }_{\text {diss,298 }}=(239 \pm 42) \mathrm{kJ} \mathrm{mol}^{-1}{ }^{5}$ This value is based on electron impact investigation of the appearance potential of $\mathrm{PF}_{2}{ }^{+}$ion from $\mathrm{P}_{2} \mathrm{~F}_{4}$ molecule using the estimated value of the ionization potential of PF_{2} radical from the appearance potential of $\mathrm{PF}_{2}{ }^{+}$ion from $\mathrm{PF}_{3}, \mathrm{PF}_{2} \mathrm{I}$ and $\mathrm{PF}_{2} \mathrm{H}$ inolecules. Recently, $\Delta H^{\circ}{ }_{\text {diss }, 0}$ has been determined ${ }^{6}$ as $(170 \ldots 176) \mathrm{kJ} \mathrm{mol}^{-1}$. These values are based on the photoionization mass spectrometric investigation of the ionization potential of PF_{2} radical and appearance potential of $\mathrm{PF}_{2}{ }^{+}$ion from $P_{2} \mathrm{~F}_{4}$ molecule. As an estimated value, $\Delta H^{\nu}{ }_{\text {diss }, 0}=(173 \pm 5) \mathrm{kJ} \mathrm{mol}^{-1}$ is adopted (see Appendix I).

CALCULATIONS

Since there are no published data on the entropy of dissociation for the reaction of dissociation and the total statistical thermodynamic functions for $\mathrm{P}_{2} \mathrm{~F}_{4}$ molecule, it was deemed worthwile to obtain these value by statistical calculation.

Using the ideal-gas harmonic oscillator approximation and structural parameters, ${ }^{7}$ together with the observed infrared and Raman fundamental frequencies, ${ }^{1}$ translational, rotational and vibrational contributions to the total statistical thermodynamic functions for $\mathrm{P}_{2} \mathrm{~F}_{4}$ molecule were calculated ${ }^{8}$ (see Appendix II).

By varying bond lengths, bond angles and vibrational frequencies, within the experimental error limits, and repeating calculations with adjusted data, the maximum relative errors over the temperature range considered were
found to be $\pm 0.3 \%$ for $C_{p}{ }^{\circ}, \pm 0.2 \%$ for $\left(H_{T}{ }^{\circ}-H_{\mathrm{O}}{ }^{\circ}\right) / T, \pm 0.4 \%$ for - $\left(G_{T}{ }^{\circ}-\right.$ $\left.-H^{\circ}{ }_{o}\right) / T$ and $\pm 0.4^{0} \%$ for S°.

TABLE I
Computed thermodynamic functions for $P_{2} F_{1}$ molecule (ideal gas at $101.3 \mathrm{kN} \mathrm{m} \mathrm{m}^{-2}$)

T	$\mathrm{C}_{\mathrm{p}}{ }^{\circ}$	$\left(H_{T}{ }^{\circ}-H_{0}{ }^{\circ}\right) / T$	$-\left(G_{\mathrm{T}}{ }^{\wedge}-H_{0}{ }^{\circ}\right) / T$	S°
K	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	$\mathrm{J} \mathrm{K}^{1} \mathrm{~mol}^{-1}$
100.0	48.5	37.8	214.0	251.8
200.0	71.0	50.5	244.3	294.8
298.2	92.4	62.4	265.0	327.5
300.0	97.8	62.6	267.4	330.0
400.0	103.7	72.6	287.0	359.6
500.0	115.3	80.4	304.2	384.7
600.	117.4	86.7	319.6	406.2
700.0	123.1	91.7	333.4	425.1
800.0	124.2	95.8	346.0	441.7
900.0	127.0	99.6	357.5	457.1
1000.0	128.0	102.0	368.1	470.1

APPENDIX I

We found ${ }^{6} \Delta H^{*}{ }_{\text {diss }, 0}\left(\mathrm{P}_{2} \mathrm{~F}_{4}\right)$ from the ionization potential of PF_{2} radical and the appearance potential of $\mathrm{PF}_{2}{ }^{+}$ion from $\mathrm{P}_{2} \mathrm{~F}_{4}$ molecule, i. e.,
I. P. $\left.\left(\mathrm{PF}_{2}\right)=8.84{ }_{7} \pm 0.01\right) \mathrm{eV}$, and
A. P. $\left(\mathrm{PF}_{2}{ }^{+} / \mathrm{P}_{2} \mathrm{~F}_{4}\right)=(10.606$ to 10.670$) \mathrm{eV}(\pm 0.01 \mathrm{eV})$
$\Delta H^{\circ}{ }_{\text {diss }, \mathrm{o}}\left(\mathrm{P}_{2} \mathrm{~F}_{4}\right)=1.76$ to 1.82 eV , or 170 to $176 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The estimated value for ΔH° diss is $173 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the absolute error in the determination of the enthalpy of dissociation arises from the error in the determination of I.P. and A.P., and from the indeterminacy for A. P. values. This value was found to be $\pm 5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

APPENDIX II

The structural parameters for $\mathrm{P}_{2} \mathrm{~F}_{4}$ were published ${ }^{7}$ as

$$
\begin{aligned}
r(\mathrm{P}-\mathrm{P}) & =(2.81 \pm 0.006) \AA \\
r(\mathrm{P}-\mathrm{F}) & =(1.587 \pm 0.003) \AA \\
<\mathrm{PPF} & =(95.4 \pm 0.3)^{\circ} \\
<\mathrm{FPF} & =(99.1 \pm 0.4)^{\circ}
\end{aligned}
$$

Using these data, the product of three principal moments of inertia is $6.893168 \times$ $\widetilde{\times} 10^{-113} \mathrm{~g}^{3} \mathrm{~cm}^{6}$.

The vibrational contribution to the total statistical thermodynamic functions was computed using the fundamental vibrational frequencies, which were listed as (in cm^{-1}): $825\left(\nu_{1}\right), 541\left(\nu_{2}\right), 377\left(\nu_{3}\right), 214\left(r_{4}\right), 843\left(r_{5}\right), 803\left(\nu_{8}\right), 453\left(r_{9}\right), 813\left(\nu_{10}\right), 365\left(v_{11}\right)$ and $361\left(\nu_{12}\right)$, by Rudolph et al. ${ }^{1}$ In this work no evidence for ν_{6} and ν_{7} bands was found in the gas phase infrared and Raman spectra of $\mathrm{P}_{2} \mathrm{~F}_{4}$. These values were estimated as $348 \mathrm{~cm}^{-1}\left(\nu_{6}\right)$ and $157 \mathrm{~cm}^{-1}\left(\nu_{7}\right)$ from the similar spectrum of $\mathrm{P}_{2} \mathrm{Cl}_{4}$ molecule. ${ }^{9}$

NOMENCLATURE

SUPERSCRIPTS 0

SUBSCRIPTS
diss
0 or 298
temperature
enthalpy
entropy
heat capacity
free energy function
heat content function
ionization potential
appearance potential
vibrational frequency
standard state
dissociation
reference temperature

Acknowledgement. - This is part of a project supported by the Science Association of Serbia. I wish to thank Dr. K. F. Zmbov, Fellow of Acad. Sci. for comments on the manuscript.

REFERENCES

1. R. W. Rudolph, R. C. Taylor, and R. W. Parry, J. Amer. Chem. Soc. 88 (1966) 3729.
2. M. S. Wei and J. H. Current, J. Chem. Phys. 52 (1970) 1592.
3. D. Solan and P. L. Timms, Chem. Commun. (1968) 1540.
4. D. Solan, U. S. Goverment Res. and Develop. Report 70 (1970) 61.
5. C. R. S. Dean, A. Finch, P. J. Gardner, and D. W. Payling, J. Chem. Soc. Faraday Trans. I 70 (1974) 1921.
6. J. Berkowitz, J. P. Green, J. Foropoulos, and O. M. Neškovi ć, J. Chem. Phys. 81 (1984) 6166.
7. H. L. Hodges, L. S. Su, and L. S. Bartell, Inorg Chem. 14 (1975) 599.
8. G. N. Lewis and M. Randal, Thermodynamics, McGraw Hill comp., N. Y. 1961.
9. S. G. Frankiss and F. A. Miller, Spectrochim. Acta 21 (1965) 1235.

SAZ̆ETAK

Izračunavanje termodinamičkih funkcija i disocijacijske ravnoteže tetrafluorodifosfina

Olivera Nešković

Izračunati su toplotni kapacitet, funkcija slobodne energije i apsolutna entropija za tetrafluorodifosfin. Na osnovu eksperimentalno određene entalpije disocijacije i izračunatih statičkih vrednosti termodinamičkih funkcija, izračunate su konstante ravnoteže i stepeni disocijacije za ravnotežu $\mathrm{P}_{2} \mathrm{~F}_{4} \rightleftarrows 2 \mathrm{PF}_{2}$.

[^0]: Note

