Morphology and anatomy of *Hedysarum pannosum* (Boiss.) Boiss. (Fabaceae)

HUSEYIN DURAL, BURCU YILMAZ CITAK*

Selcuk University, Faculty of Science, Department of Biology, Konya, Turkey

Abstract – The aim of this paper is to investigate morphological, anatomical, palynological, fruit and seed micromorphological properties of *Hedysarum pannosum* (Boiss.) Boiss. A detailed description of the species is reported for the first time in this study. The morphological features of the species have been compared with the results of previous investigations. Anatomical studies have been carried out on cross-sections of roots, stems, leaflets and petioles. The anatomical results show that the plants have secondary growth roots, protruding stems, amphistomatic and equifacial leaves with tannin, triangular shaped petioles. *Hedysarum pannosum* pollen are tricolpate, prolate and pollen exine ornamentation is reticulate. Fruits have trichomes on their setae and tomentose trichomes have papillae. Seeds are reniform and they have rugolo-reticulate ornamentation.

Keywords: anatomy, Fabaceae, fruit, *Hedysarum*, micromorphology, morphology, pollen, seed.

Introduction

Fabaceae, represented by 650 genera and 18000 species in the world, are a well-known family and have an economic value (POLHILL 1981). The genus *Hedysarum*, was established by LINNAEUS (1753). It belongs to the tribe Hedysareae of the family Fabaceae. The genus *Hedysarum* is represented by 154 species and the main origin of distribution of the genus is Central Asia. This genus has also an important distribution in the Anatolian-Iranian-Caucasian triangle. In Turkey, the genus *Hedysarum* is represented by 22 species (DAVIS 1970). *Hedysarum pannosum* was a synonym of *Onobrychis pannosa* (BOISSIER 1849). Later, PONERT (1973) reported *H. pannosum* as *H. pogonocarpum* Boiss. subsp. *pannosum* in Feddes Repertorium. However AKTOKLU (2012) determined *Onobrychis pannosa* and *H. pogonocarpum* subsp. *pannosum* as a synonym of *H. pannosum*.

The genus *Hedysarum* is a legume plant which has photosynthetic metabolism and N$_2$-fixing ability. Accordingly, investigations about the genus *Hedysarum* are concentrated on photosynthetic metabolism and N$_2$-fixing but there are also studies based on various scien-
scientific fields: molecular biology and karyology (Arslan and Ertugrul 2010, Arslan et al. 2012), palynology (Civelek et al. 1999, Pavlova and Manova 2000, Yildiz et al. 2009, Ghanavati and Amirabadizadeh 2012) and nuclear DNA content (Akpinar and Yildiz 1999). However, anatomical and micromorphological studies are very limited (Civelek et al. 1999). Anatomical characters are not always as useful as morphological characters for plant identifications. However, they are well-established criteria and can offer significant assistance in plant taxonomy (Guvenc and Duman 2010, Ranjbar et al. 2010, Guvenc et al. 2011). Furthermore, pollen exine ornamentation can also be used for plant taxonomy. The objectives of this investigation are to give a detailed account of the morphological, anatomical, pollen, fruit and seed micromorphological characteristics of *H. pannosum* and to evaluate their usefulness in the taxonomy of the genus.

Material and methods

The specimens of *Hedysarum pannosum* were collected from Konya, Obruk, Kızıltepe, low mountain steppe, 1250 m, 38°01′N 32°56′E, on 5th July 2011, and were deposited in KNYA herbarium (Dural-3500). Taxonomical description of the species was followed according to Davis (1970) and our observations.

Anatomical investigations were performed using an average of 20 fresh specimens which were kept in FAA solution (5%, v/v formalin, 5%, v/v acetic acid, 50%, v/v ethanol). The paraffin method was used for cross-sections. Sections were taken by a Thermo Scientific Shandon Finesse 325 Rotary microtome, stained with safranin-fast green and mounted with entellan. Only root cross-sections were taken with a razor blade and were stained with fluoroglisin-HCl. Slides were observed by Leica DM 1000 light microscope. Measurements were made with Cameram 21 program and photos were taken with a Canon EOS 450D camera attached to the light microscope.

For palynological investigations, pollen samples were obtained from herbarium materials. For light microscope investigations the pollen slides were prepared according to the Wodehouse technique (1935). Measurements and observations were made using a Leica DM 1000 light microscope with a Canon 450D camera and Cameram 21 program. The polar length (P), the equatorial length (E), the colpus length (CLG), the colpus width (CLT), thicknesses of exine and intine were examined for 30 pollen grains and P/E ratios were calculated. For scanning electron microscope investigations, unacetolyzed pollen grains were first mounted on a double sided carbon tape affixed to aluminum stubs, were covered with gold by a Cressington Auto 108 sputter coater and were photographed with ZEISS EVO LS10 SEM. Pollen terminology was followed according to Punt et al. (2007).

Size of fruits and seeds were screened with stereomicroscope and 30 mature fruits and seeds were measured. For SEM investigations, the mature fruits and seeds were placed on stubs directly and covered with gold and their diagnostic parts were photographed at several magnifications.

Results

Morphological characteristics

Hedysarum pannosum is an erect and perennial plant, up to 65 cm, stems branched at the base, stems surface densely covered with pannose trichomes. Leaves are mostly basal
with 4–10 pairs of ovate to elliptic or linear-lanceolate. Leaflets have a pannose indumen-
tum on both surfaces. The length of leaflet is 0.4–2 cm. Upper surface of leaflets is greenish
and more sparsely hairy than the lower surface, which is grayish-green. The apex of the
leaflets is acute. Petoioes are 3–11 cm. Stipules are 4–5 mm, broad triangular, brownish,
density and type of trichomes are the same as those of the stem. Peduncles are sturdy, 4–7
cm. Inflorescence is 9–16 cm, dense raceme. Bracts are c. 2–3 mm and bracteoles 2–2.25
mm. Calyx is 5–6 mm with subequal teeth ± same length and teeth are 2.5–3 mm. Corolla
is yellow; standard size is 15–16 mm; wings are 8–9 mm; keel is 11–12 mm. Stamens are
diadelphous, filaments are 11–15 mm, anthers are approximately 1 mm length. Ovary is
pilose. Lomentum has 1–2(–3) elliptic-ovate segments, 20–25 × 5–7 mm, fruit (juvenile) is
pinkish-red setae, fruit (mature) is brownish-cream with densely 5–10 mm length setae.

Anatomical characteristics

Root anatomy

Root anatomy shows that plants have a disintegrated periderm on the outermost layer as
a protective tissue, which has 8–9 layers and is composed of disintegrating or squashed
cells. Width of periderm cells is 81.16–128.59 μm (Tab. 1). Cortex, 7–8 layered, follows
periderm towards to the center. There are sclerenchymatic cell groups in cortex and phloem
(Fig. 1a). Phloem is well developed, phloem and xylem split up by 2–3 layered cambium.
Vessels in xylem are irregular, according to METCALFE and CHALK (1957) classification ves-
Sessel grouping. The centre of roots in transverse sections was covered with xylem (Fig. 1b).

Stem anatomy

The shapes of the cross-sections of stem are oval but stem corners are protruding. It is
evident on the transverse sections of stems that the one layered epidermis mainly consisted
of rectangular, frequently arranged cells with a not thick cuticle (0.68–4.18 μm) (Tab. 1). The
collenchyma is located below the epidermis; it has 6–7 layers at the corners of stem but
it has 1–2 layers at the margins. The cortex which includes tannin is composed of 7–8 lay-
ered oval parenchymatic cells and their dimensions are 4.5–18.4 × 7.6–30.3 μm (Fig. 2a,
Tab. 1). Phloem and xylem are well developed. Above the phloem, sclerenchymatic cells
are present. Diameters of the tracheas are 11.2–33.3 × 7.9–29.3 μm (Tab. 1). The pith re-
gion of the stem consists of large parenchymatic cells and some of them include tannin
(Fig. 2b).

Leaflet anatomy

The transverse sections of leaflets show that the upper and lower epidermis are made up
of oval, rectangular or isodiametric cells with adaxial and abaxial cuticles (adaxial cuticle
thickness is 0.69–4.18 μm, abaxial cuticle thickness is 1.88–5.93 μm). Cells of the upper
epidermis (8.63–50.45 μm wide × 6.75–22.74 μm long) are wider than those of the lower
epidermis (5.70–42.68 μm wide × 5.0–16.6 μm long) (Tab. 1). The leaflet is amphistomatic
and equifacial (Fig. 3a). The mesophyll thickness is 106.11–208.86 μm (Tab. 1). The pal-
sade parenchyma is 1–3-layered above and 1–2-layered below the mesophyll. The spongy
parenchyma cells which are 1–3-layered are present among the palisade parenchymatic
cells with large intercellular spaces. Leaflets of H. pannosum have hypodermis on the ab-
axial side. Vascular bundles are collateral types (Fig. 3b).
Tab. 1. The anatomical characteristics of *Hedysarum pannosum*. Mean value ± standard deviation (SD), n = 20.

<table>
<thead>
<tr>
<th></th>
<th>Width (μm)</th>
<th>Length (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min–Max</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Root</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peridermis cell</td>
<td>81.16–128.59</td>
<td>105.0 ± 11.7</td>
</tr>
<tr>
<td>Parenchymatic cell</td>
<td>214.6–348.8</td>
<td>275.3 ± 49.9</td>
</tr>
<tr>
<td>Trachea cell</td>
<td>9.35–48.02</td>
<td>26.31 ± 8.74</td>
</tr>
<tr>
<td>Stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuticle</td>
<td>0.68–4.18</td>
<td>2.35 ± 0.7</td>
</tr>
<tr>
<td>Epidermis cell</td>
<td>5.9–25.9</td>
<td>12.7 ± 3.9</td>
</tr>
<tr>
<td>Cortex parenchyma cell</td>
<td>7.6–30.3</td>
<td>15.0 ± 5.0</td>
</tr>
<tr>
<td>Trachea cell</td>
<td>7.9–29.3</td>
<td>18.3 ± 4.1</td>
</tr>
<tr>
<td>Pith cell</td>
<td>16.03–79.7</td>
<td>39.3 ± 15.9</td>
</tr>
<tr>
<td>Leaflet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaxial cuticle</td>
<td>0.69–4.18</td>
<td>2.34 ± 0.7</td>
</tr>
<tr>
<td>Abaxial cuticle</td>
<td>1.88–5.93</td>
<td>3.48 ± 1.15</td>
</tr>
<tr>
<td>Adaxial epidermis</td>
<td>8.63–50.45</td>
<td>22.3 ± 8.2</td>
</tr>
<tr>
<td>Abaxial epidermis</td>
<td>5.70–42.68</td>
<td>16.87 ± 7.8</td>
</tr>
<tr>
<td>Mesophyll</td>
<td>106.11–208.86</td>
<td>161.39 ± 25.5</td>
</tr>
<tr>
<td>Palisade parenchyma</td>
<td>2.57–16.66</td>
<td>11.0 ± 2.8</td>
</tr>
<tr>
<td>Spongy parenchyma</td>
<td>5.61–38.03</td>
<td>24.03 ± 6.85</td>
</tr>
<tr>
<td>Petiole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuticle</td>
<td>1.86–3.78</td>
<td>2.91 ± 0.52</td>
</tr>
<tr>
<td>Adaxial epidermis</td>
<td>1.66–20.6</td>
<td>7.7 ± 3.2</td>
</tr>
<tr>
<td>Abaxial epidermis</td>
<td>2.7–18.0</td>
<td>8.23 ± 3.0</td>
</tr>
<tr>
<td>Parenchymatic cell</td>
<td>22.9–95.4</td>
<td>55.7 ± 13.9</td>
</tr>
<tr>
<td>Trachea cell</td>
<td>4.8–29.88</td>
<td>19.71 ± 5.1</td>
</tr>
</tbody>
</table>

Fig. 1. The transverse sections of the root of *H. pannosum*: a) Pe – periderm, Sc – sclerenchyma, Co – cortex, X – xylem, Pi – pith region (scale bar = 250 μm); b) Ph – phloem, T – trachea, Ca – cambium (scale bar = 25 μm).
Petiole anatomy

The general view of petiole cross section is triangular especially in sections which have been taken from the midrib of the petiole. In petiole transverse sections, the epidermis is composed of one layer and epidermal cells of both surfaces are rectangular to oval and have trichomes (Fig. 4a). Cortex parenchymatic cells which are located under the epidermis are orbicular shaped and are composed of 8–9 layers. The dimensions of cortex cells are 18.4–
102 × 22.9–95.4 μm (Tab. 1). There are three large primary collateral vascular bundles in the corners of the petioles, with small secondary bundles among them. On the vascular bundles there is sclerenchyma shaped like an arc (Fig. 4a). The pith is composed of parenchymatic cells which are orbicular shaped (Fig. 4b).

Pollen characteristics

The pollen grains of *H. pannosum* are tricolpate, prolate and isopolar. The shapes of pollen grains are elliptical in equatorial view (Fig. 5a) and orbicular in polar view (Fig. 5b). The dimensions of the polar axis (P) and equatorial axis (E) are 20.303–24.608 μm and 13.493–17.737 μm, respectively. The ratio of P/E is 1.350–1.792 μm. Colpus length is 15.072–21.275 μm and colpus width is 1.305–2.834 μm. Colpus membrane has large sculptural elements but some of them are fused especially in the middle of colpus (Fig. 5c). The exine thickness is 0.604–1.058 μm and the intine thickness is 0.447–0.84 μm. Exine ornamentation is reticulate in both of equatorial and polar view but pores in equatorial view are larger than those in polar view (Figs. 5d–e).

Fruit and seed micromorphological characteristics

Stereomicroscope investigations show that mature fruits (lomentum) of *H. pannosum* have 1–2(–3) segments, ovate, 20–25 × 5–7 mm, and its lomentum has setae. Lomentum surface is densely covered with tomentose trichomes. Juvenile fruit setae are pinkish-red,
but mature fruits are brownish-cream and their length is 5–10 mm. The SEM investigations disclosed that both tomentose trichomes and setae are covered with papillae which are 1–2 μm long (Figs. 6a–b). Mature seeds are reniform (Fig. 6c), brownish-yellow, 6 × 4 mm, seed surface is rugolo-reticulate (Fig. 6d).

Discussion

The present study sought to provide useful information on the anatomy, pollen morphology, fruit and seed micromorphology of *H. pannosum*. This is the first report on the examined characteristics of the species. The morphological results (e.g. leaves, bracts, stipules dimensions and corolla color) are mainly congruent with the description reported in Flora of Turkey (DAVIS 1970). However the dimensions of some characters of the plant such as stems, petioles and lomentum segments are seem to be variable than previously and measurements of some characters of *H. pannosum* are such as filament and anther length are presented here for the first time (Tab. 2).

Little work appears to have been done on the anatomy of vegetative organs of *Hedysarum* species (WATARI 1934, CIVELEK et al. 1999). In the root of *H. pannosum* periderm cells have 8–9 layers, but the root of *H. aucheri* comprises 14–15 layers (CIVELEK et al. 1999). *H. pannosum* cortex parenchyma and pith ray cells do not contain starch. However, the pith rays and cortex cells of *H. aucheri* do have starch in their parenchymatic cells. Also cambium cells of *H. aucheri* are composed of 3–4 layers (CIVELEK et al. 1999). However *H. pannosum* are composed of 2–3-layered rectangular cells. The number of layers of cambium, periderm and the presence/absence of starch in roots can appear to be a taxonomically significant feature to distinguish the species.

The transverse sections of stem of *H. pannosum* are made up of four main tissues from outside to inside and their names are epidermis, cortex, vascular bundles and pith region, respectively. We found that at the corners of stem of *H. pannosum* there are 6–7 layered
collenchyma. Although *H. aucheri* has 4–5 layered (Civelek et al. 1999). Vascular bundles of *H. pannosum* are collateral type and over them there are sclerenchymatic groups like an arc. Furthermore the pith cells of *H. pannosum* have tannin but there is no tannin in *H. aucheri* (Civelek et al. 1999). The number of layers of collenchyma at the corners of stem, the presence/absence of tannin in stem anatomy can be useful characters for distinguishing the species.

Upper epidermis of *H. pannosum* is larger than lower epidermis in leaflet anatomy (Tab. 1). The leaflet of mesophyll of *H. pannosum* is equifacial that of *H. aucheri* is the same (Civelek et al. 1999). In leaflet anatomy of *H. pannosum* vascular bundles are of the...
lateral type and among the upper palisade parenchymatic cells there are cylindrical tannin cells in lysigenous secretory cells. Also tannins are present between abaxially palisade parenchyma in *H. pannosum*. Civelek et al. (1999) observed tannin in *H. aucheri* leaflets.

Watari (1934) emphasized that ‘the petiolar base is one of the most important regions in the vascular course of foliar organs of Leguminosae.’ He classified branching patterns of the vascular bundles at the petiolar bases into three types based on the number leaf traces and whether they are fused or free. In the present study leaf traces of *H. pannosum* are free. In petiole anatomy of *H. pannosum* there are three main median vascular bundles and also small secondary ones and they involve tannin. The shapes of petioles of *H. pannosum* show similarities with those of *H. micropterum* and *H. falconeri* (Choi et al. 1999). Metcalfe and Chalk (1957) pointed out that the stomata of Fabaceae is of the anizositic type and that those of *H. pannosum* and also *H. aucheri* (Civelek et al. 1999) are the same.

The results of our investigation show that pollen morphology of *H. pannosum* is comparatively homogenous and confirms the general description presented by Ohashi (1971), Ferguson and Skvarla (1981), Faegri and Iversen (1989), Moore et al. (1991), Choi and Ohashi (1996), Civelek et al. (1999), Pavlova and Manova (2000), and Ghanavati and Amirabadizadeh (2012). *H. pannosum* pollen are tricolpate, prolate, circular in polar view and elliptical-elongated in equatorial view and ornamentation reticulate. While *H. tauricum*, *H. grandiflorum* and *H. aucheri* pollen grains are prolate, triangular-obtuse in polar view, elongated, rectangular-obtuse to elliptic in equatorial view and their ornamentation is finely reticulate (Civelek et al. 1999, Pavlova and Manova 2000). The pollen grains of *H. pannosum* colpus membranes have large sculptural elements but some of them are united especially in the middle of the colpus. Pavlova and Manova (2000) declared that *H. tauricum* and *H. grandiflorum* colpus membrane was covered by differently sized sculptural elements. Also Ghanavati and Amirabadizadeh (2012) explained that *H. kopetdaghi* and *H. damghanicum* colpus membranes were covered by large and small sculptural elements.

There has been no investigation about the fruit micromorphology of *Hedysarum* genus. In this study, the fruit micromorphology of *H. pannosum* is presented for the first time. The fruits of the *H. pannosum* lomentum are oval shaped and have setae. The SEM investigations show that on tomentose trichomes of lomentum and setae there are papillae 1–2 μm in diameter. The investigation of the fruits of *Hedysarum* genus will be a guide for future discussions.

The seeds of *H. pannosum* are reniform, hilum small and the seed surface is rugolo-reticulate. The surface of seed coat sculpture is arranged irregularly (Fig. 6d). Sa (2007) showed that the seeds of *H. jaxarticusirides* were reniform, hilum small at upper part of seed and seed coat sculpture mainly cerebelloid, highly irregular, cell wall is sinuate and without ornamentation. Also the seeds of *H. gmelini*, *H. dahuricum* and *H. setigerum* were reniform, and their hilum region is grooved; the seed coat sculpture was irregular, the seed surface ornamentation was reticulate. Moreover *H. brachypterum* and *H. dasycarpum* seeds ornamentation were reticulate and seed coat cells were highly irregular. But *H. splendens* seeds coats were relatively smooth (Sa et al. 2010). *H. aucheri* seeds were reniform and seed surface ornamentation was smooth (Civelek et al. 1999). Hence these features of seed surface micromorphology can suggest taxonomical diagnostic characters for distinguishing species.
Anatomical, palynological and micromorphological (pollen, fruit and seed) characteristics might be useful in the definition of the species investigated. Nevertheless, these characteristics will be more valuable if other species of *Hedysarum* are also examined.

Acknowledgements

We wish to thank Selcuk University Scientific Research Unit for financial support (Project No: 11401072).

References

ARSLAN, E., ERTUĞRUL, K., 2010: Genetic relationships of the genera *Onobrychis, Hedysarum,* and *Sartoria* using seed storage proteins. Turkish Journal of Biology 34, 67–73.

THE MACRO AND MICROMORPHOLOGY OF *HEDYSARUM PANNOSUM*

Watari, S., 1934: Anatomical studies on some leguminous leaves with special reference to the vascular system in petioles and rachises. Journal of the Faculty of Science, University of Tokyo, Section III Botany 4, 225–365.