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NUMERICAL PREDICTION OF HYDROFOIL PERFORMANCE IN 
WAVE BY NURBS NUMERICAL WAVE TANK 

Summary 

Time domain simulation using a Mixed Eulerian-Lagrangian (MEL) formulation and a 
high-order boundary integral method based on the Non-Uniform Rational B-spline (NURBS) 
formulation is employed to develop a Numerical Wave Tank (NWT). At each time step the 
Laplace equation is solved in the Eulerian frame and fully nonlinear free surface conditions 
are updated in the Lagrangian manner through a time marching scheme. Two damping zones 
are adopted at both ends of the tank to reduce the reflected wave energy. The fully nonlinear 
free surface simulations by different orders of B-spline basis functions in the NWT are 
examined through the volume, momentum and energy conservation. Hydrofoil performance 
in wave is considered for the practical application of the fully nonlinear NWT. Thrust and lift 
coefficients of a foil are computed and compared with the experimental data and other 
numerical solutions. Instantaneous forces and pressure distribution over the foil body are also 
computed. 

Key words: Numerical wave tank, Mixed Eulerian-Lagrangian method, B-spline, 
 Potential flow, Hydrofoil 

1. Introduction 

A numerical wave tank (NWT) has been developed to investigate a fully nonlinear 
simulation of various phenomena in ocean engineering including wave propagation, wave 
deformation, and wave body interaction. In the past three decades, a great deal of effort has 
been made to develop computational tools equivalent to a physical wave tank. In general, 
these attempts are categorized into potential and viscous NWTs. Most of the work has been 
focused on obtaining fully nonlinear, inviscid time-domain solutions for wave generation and 
propagation problems in both two and three dimensions. The most popular approach taken in 
NWT is the Mixed Eulerian-Lagrangian (MEL) time-marching method developed by 
Longuet-Higgins and Cokelet [10]. The MEL scheme requires solving the Laplace equation at 
each time step in the Eulerian frame and updating the moving boundary points and values in 
the Lagrangian manner. The velocity potential at each time step is computed by a boundary 
integral equation method in the fluid control volume. 

The disturbance of fluid particles arises from putting a wave maker on the upstream 
boundary. Wave makers are sorted into two classes. One is a physical wave generator that 
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looks like a wave maker in a physical wave tank and moves with prescribed motion. The other 
one is an artificial wave generator which is used on the inflow boundary to distribute sources 
in the fixed vertical space. Since the inflow boundary is not involved in the boundary 
updating, the wave characteristics could be specified as a disturbance source for the wave 
generator. A review on different types of wave makers is presented in detail by Tanizawa [14] 
and Newman [11]. 

To prevent wave reflection from the wall at the ends of the wave tank, wave absorbers 
are adopted at the upstream and downstream boundaries. This function is essential for 
maintaining the unbounded region condition during a lengthy simulation and for avoiding the 
non-physical manner of the propagating wave reflected from the end walls within the 
computational domain. Wave absorbing methods used in NWTs are grouped into three 
categories. The simplest one is an active wave absorber used as the absorbing beach of a real 
wave tank. The second approach is Sommerfeld’s radiation condition that was adopted in 
linear free surface problems. The adoption of this scheme is a little tricky for nonlinear time 
domain simulations. The third one includes artificial wave absorbing methods named as 
sponge layer, artificial beach, and damping zone used as passive wave absorption. 

The boundary element method is used to solve the Laplace equation in potential flow 
problems. Solving the Laplace equation in the Eulerian manner is classified into direct and 
indirect methods. Description of boundary geometry and distribution of potential velocity 
over the boundary may affect the precision of boundary integral implementation. The indirect 
method is applied in NWT by Zhang et al. [18] to model the linear and the nonlinear wave 
propagation and wave shoaling on a submerged obstacle. 

The direct method has been widely used with different formulations. The constant 
element, as the simplest one, is employed by Ryu et al. [13] to simulate the current-wave 
interaction in the two-dimensional NWT. The linear elements formulation is an efficient 
approach used by Büchmann et al. [3] to predict the wave run-up on a structure. Analogously, 
this method was used to determine the Bragg condition.  

Reflection in a potential NWT is discussed by Tang et al. [15]. Boundary description 
with curvilinear elements was presented by Baudic et al. [1] in a nonlinear two-dimensional 
potential wave tank so that a cubic shape function over each four-node element is applied to 
describe the variation in the geometry and in the boundary functions. 

By substituting the normal flux and tangential derivation of free surface potential into 
the free surface boundary condition, the velocity and time derivation of the potential of free 
surface water particles can be obtained in each time step. Variables of the geometry and 
velocity potential function of free surface are updated in the Lagrangian manner for the next 
time step. The time integration method in a time domain simulation is efficient to keep 
stability and precision of the solution. The first order and the second order finite difference 
scheme were employed at each time step as a low-order time stepping method in NWTs by 
Wu & Tsay [16], Xiao et al. [17] and Ryu et al. [13] to find new boundary values and the 
geometry for the next time step. High-order approaches were used by Koo [8] (4th order 
Runge-Kutta method) and by Zhang et al. [18] (5th order Runge-Kutta-Gil and 4th order 
Adams-Bashforth-Moulton method). 

In the wave propagation problem, a discontinuity of flux, called the corner problem, 
which occurs at the intersection of the free surface and the tank wall surface, affects the 
solution stability severely. To overcome this difficulty, some remedies have been proposed. 
The double-node technique, developed by Grilli et al. [6], is suitable for NWTs. The other 
approach is that of discontinuous elements recommended by Brebbia [2]. The two techniques 
are compared in the standing wave problem by Hamano et al. [7]. 
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During the free surface simulation of nonlinear waves, the non-physical saw-tooth 
instability may occur. Instabilities may also arise from a variable mesh size or natural singular 
treatment at the intersection of the wave maker and the free surface. To remedy the saw-tooth 
instability, smoothing schemes have been used, such as the Chebyshev five-point smoothing 
scheme, Koo and Kim [9], and the B-spline smoothing scheme. 

In the present paper, nonlinear wave propagation is analyzed by a 2D fully nonlinear 
numerical wave tank. The NWT is developed based on the potential theory, mixed Eulerian-
Lagrangian approach, and high-order boundary element method. The material node approach 
scheme is treated as a time-marching scheme. The time-marching scheme consists of the 
following routines at each time step: (a) solving the Laplace equation in the Eulerian frame, 
(b) updating the moving collocation points on the boundary and specified values in the 
Lagrangian manner. The two damping zones proposed by Cointe [4] are implemented at the 
ends of the tank to absorb the wave reflection from the end wall and the wave maker. The 
wave maker is provided by specifying wave characteristics of one of the wave theories on the 
fixed inflow boundary. 

This paper is mainly focused on the development of the boundary integral method based 
on the Non-Uniform Rational B-spline (NURBS) formulation coupled with the Mixed 
Eulerian Lagrangian (MEL) formulation to simulate propagation in a nonlinear numerical 
wave tank. The direct boundary element method is employed to solve the potential flow 
boundary value problem. Discretization of the computational domain boundary and 
distribution of potential velocity over the boundary are based on the NURBS as a high-order 
interpolation function. The Gaussian-quadrature numerical integration approach is adopted as 
a high-order non-uniform numerical integration scheme. The fourth order Runge-Kutta is 
used for the time stepping integration of free surface boundary conditions and geometry. The 
position of instantaneous free surface is traced by applying the material node approach while 
the re-gridding of the free surface has to be done at each time-step. The non-physical saw-
tooth instability is solved via the Chebyshev five-point smoothing scheme. Computations of 
the second order Stokes wave propagation in the NURBS NWT are verified by analytical 
solutions. Different orders of B-spline basis functions in the fully nonlinear free surface 
approximation are examined through volume, momentum and energy conservation. 

In addition, a hydrofoil is put into the numerical wave tank to examine the 
computational procedure. A zero flux foil body boundary condition is added to the integration 
surface. The vortex problem arising from potential discontinuity at the trailing edge is treated 
through the distribution of constant strength dipoles over the wake surface extended between 
the trailing edge and the tank end wall. The foil performance in wave is compared with 
experimental results and other computational solutions. Time history of forces and pressure 
distribution over the foil body are presented. Numerical results for a hydrofoil show that the 
present high-order model is successful in the simulation of nonlinear phenomena in the fully 
nonlinear numerical wave tank.  

2. Theoretical development 

In this article, the fluid is assumed to be homogeneous, incompressible, and inviscid and 
its motion is irrotational. Consider the boundary value problem with a potential  , ,x z t , 

which satisfies Laplace’s equation in a finite two-dimensional control domain R . 
2 0      in  R   (1) 

A Cartesian coordinate system  ,x z  is taken. The x -axis lies on the still water level 

and the z -axis is directed vertically upward (see Figure 1). The NWT has a constant depth d  
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and the damping zones are located at the both ends. Flow about a hydrofoil with an angle of 
attack  , cord length c  and submergence depth 0d  underneath of wavy free surface is 

computed in the time domain. To solve the boundary value problem, boundary conditions are 
required on the bottom, free surface, hydrofoil surface, input and output boundaries.  

 

Fig. 1  Definition sketch 

2.1 Boundary conditions and initial condition 

There are two fully nonlinear boundary conditions on the free surface ( fS ), the 

kinematic (KFSBC) and the dynamic boundary condition (DFSBC), as defined below. 

2

  (KFSBC)
  on  

1
  (DFSBC)

2

f
t z x x S

gz
t

   

 

   
 

   


   


 (2) 

Both boundary conditions are satisfied on the exact free surface, in which  ,x t  is the wave 

elevation measured from the still water level,   is the free surface potential, t  shows the time 

of simulation, and g  is the gravitational acceleration. Impermeable condition is applied in the 

solution by the zero-flux potential on the rigid bottom boundary ( bS ), the foil body ( hS ) and 

the wall boundary at the wave tank end ( wS ). 

0  on  ,  and b h wS S S
n





 (3) 

Normal vector ( n


) in the control domain is directed outwards. Equation (3) states that the 
velocity of water particles in the normal direction ( n  ) to the boundary vanishes. Normal 

velocity at the input boundary ( iS ) is given based on the known incident velocity potential 

functions ( wg ). 

   on  wg
iS

n x

 
 

 
 (4) 

According to Koo and Kim [9], the nonlinear second order Stokes wave theory is 
applied to the input boundary condition. 
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where A , k ,  , d , and t  are the wave amplitude, wave number, angular frequency, water 
depth, and time, respectively. The wave number is obtained by dispersion relation. 

 2 tanhgk kd   (6) 

The incident wave on the inflow boundary is increased gradually by using a ramping function 
which smoothly approaches unity from zero. The ramping function is used to reduce the 
transient effect so that the numerical solution becomes stable and reaches the steady state 
properly. In the present modelling, the following ramping function is used: 

 
1

1 cos   ,  
2

1  ,                       

m
m m

m

t
t T

f t T

t T

  
      

 

 (7) 

in which, mT  is the modulation time. Initial conditions for the initial free surface value are 

 
 

, 0 0

, , 0 0

x t

x z t




 
 

 (8) 

Boundary integral equation based on Green's second identity is employed to solve the 
boundary value problem: 

d Δ d
t

j
i i j tS

G G
c G S

n n n


    

  
      
  , (9) 

where 2ic   ,    is the internal angle at a point i  on the boundary of the computational 

domain ( i b h w fS S S S S      ); and for two-dimensional problems, 

1 1
ln

2
G

r
   
 

, (10) 

which represents the  flow field generated by a concentrated unit source acting as the singular 
source. The second integral of Equation (9) is related to the distribution of singularity on the 
wake surface tS . Δ t  is the potential difference across the trailing wake and n  is the normal 

vector on the wake surface directed upwards. The trailing edge of the foil and the intersection 
of the wake surface and the wave tank end, where two vortices are positioned, represent the 
trailing wake surface. 

2.2 High-order boundary element 

By discretization of the boundary integral equation, a linear system of equations can be 
obtained. The inflow boundary, end-wall boundary, and bottom boundary are described 
exactly by linear elements and the Gaussian eight-point quadrature integration is employed 
for calculating the boundary integral on each element. Since the free surface boundary as a 
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moving boundary is severely fluctuating and must be updated at each time step, linear 
elements are not able to model this oscillatory free surface precisely. Exact geometry 
description and parameters of a complicated boundary such as normal vector, length, area, 
and spatial derivative of boundary values are significant advantages of curvilinear elements. 
Piegl and Tiller [12] summarized parametric interpolation functions which approximate 
arbitrary curves and surfaces in computational modelling, such as Bezier, B-spline, and non-
rational uniform B-spline curve (surface). The NURBS curve is described as: 

      
   
   

1

1

,

n p
i i ii

n p
i ii

N u P
C u x u z u

N u








  


 (11) 

where x  and z  represent the positions of the points on the NURBS curve. The knot vector u  
is the parametric value of the NURBS curve and n  is the number of control points in the u  
direction, ( 0 1u  ). iP  and i  are the control points and the weighted function, 

respectively.    p
iN u  is the basis function with a degree of p  in the u  direction. When the 

free surface is represented by a set of data, it is convenient to model the free surface by the 
NURBS curve. Equation (11) provides a system of n  linear equations for known curve data 
points, k , and the unknown iP . Using homogeneous coordinates, Equation (11) is 

decomposed into a set of linear equations. 
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Using mu  as the value of knots, the position of control points, iP , can be obtained by 

computing the n  value of rational functions    
1 ,...,p p

n  . mu  can be obtained as follows: 

1
1   for  2,..., 1m m

m mu u m n
l

  



     (14) 

where 1
1

n

m m
m

l   


  . 

To solve the boundary integral equation, the Gaussian points are selected on the free 
surface and the parameters of the Gaussian points are computed based on the NURBS. The 
Gaussian points Q  on the free surface, which are used as the collocation points, can be 
described by 

      ,Q u x u z u  (15) 

The unit tangent vector ( s


) for the collocation points iQ  in the u  direction can be defined as 

u
x z

u

T
s s i s k

T
  




 , (16) 
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where uT


 is the tangent vector along the u  direction. 

u

x z
T i k

u u

 
 
 

 
 (17) 

The unit normal vector n


 at the point Q  can be found from 

u

z x
i k

u un
T

 
 
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


  (18) 

2.3 Time marching scheme 

At each instant, the fully nonlinear free surface boundary condition is updated through 
the Runge-Kutta fourth order time integration scheme and the MEL approach to find the new 
boundary position and the value for the next time step. If the velocity of the free-surface node 
motion is represented by  , the material derivative will be formulated in the 

 t t      


 form. Then, the fully nonlinear free-surface boundary conditions in the 

Lagrangian frame are formed as: 

 

21

2
g

t

t z

    

    


     


    





 (19) 

In the present study, the collocation points on the free surface are moving with the water 
particle motion    


, which is called a material node approach. Specifically, when the 

material node approach is adopted, Equation (19) will be modified as 

21

2
g

t

t

  

 


   

 



 (20) 

where 

  is the location of free surface nodes  ,x z  with respect to the Cartesian coordinate 

system origin. 

2.4 Numerical wave absorption 

To obtain appropriate numerical solutions to the wave propagation problem in a 
numerical wave tank, artificial damping zones (sponge layers) are used at both ends of the 
wave tank to retain the unbounded condition so that the wave energy is absorbed 
progressively to reduce wave reflection from the ends of the wave tank. When simulating in a 
physical wave tank, however, the re-reflection takes place and no prevention is required. But 
in a NWT, a damping zone is prepared in front of the wave maker to dissipate the reflected 
wave before it reaches the wave maker. The energy dissipation scheme includes adding an 
artificial damping term to the fully nonlinear free surface boundary conditions over the 
specific regions of the free surface adjacent to the inflow boundary and the end wall 
boundary. Modified nonlinear free surface boundary conditions with the damping coefficient 
presented by Cointe [4] are as follows: 
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where the subscript e corresponds to the reference configuration of the fluid. The 
function  x  is the damping coefficient given by 

   
2

0 0 1 0

2
  ,  

2

k
x x x x x x x

k

 


        
 (22) 

In practice, the damping coefficient is equal to zero except in the damping zone  0 1x x x  , 

which is continuous and continuously differentiable, and is tuned to the characteristic wave 
frequency ( ) and the characteristic wave number ( k ). Strength and length of the damping 
zone are controlled by the dimensionless parameters   and  , respectively. The terms e  

and  ,e e ex z

  are the reference values. These damping terms absorb differences between 

the reference value and the simulated values. When the reference values are set to the calm 
water condition ( 0  ,  0e ez   ), the damping zone acts as a simple absorber. If a 

propagating wave is used as a reference value, the damping zone allows only this wave to 
pass through. 

2.5 Smoothing scheme 

The simulation of nonlinear wave motions requires attention to maintain numerical 
accuracy and avoid instability in a lengthy simulation. In the MEL method, a smoothing 
scheme is used in time marching to avoid the saw tooth instability which occurs during the 
free surface simulation of a highly nonlinear wave. In this paper, the variable node space 
Chebyshev  five-point smoothing scheme is applied to remove these non-physical oscillations. 

2.6 Corner problem in the tank boundary intersection 

At the intersection of the free surface and the tank walls, as well as at the intersection of 
the bottom and the tank walls, singularity in the solution occurs due to the discontinuity of 
normal vector on the boundary (Figure 2). Stability of the solution in a NWT depends greatly 
on intersection singularities. To remove this discontinuity, different techniques have been 
developed. In this paper, the double node technique is adopted to handle the corner point 
problem. The free surface boundary as a moving boundary is updated in every time step. 
Approximation of intersection point velocity at the junction of the free surface elevation and 
the inflow and the outflow boundary would be required.  As a matter of fact, at the inflow 
intersection points, the known values include the potential and the potential flux before the 
corner and the unknown value is the potential flux after the corner point. As shown in Figure 

2, points wP  and fP  are the double nodes collocated at the same position, and  ,f f x f zn n n


 

is the unit normal vector of the free surface while  ,w wx wzn n n


 is that of the wall surface. 

Since the intersection is a vertex, fn


 and wn


 point in different directions and the flux is 

discontinuous there. On the other hand, the velocity potential is continuous. The values of the 
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free surface velocity potential  fP  and the value of the wall velocity potential flux  n wP  

are given. Unknown velocity potential flux on the free surface  n fP  is obtained as a 

solution of the boundary element method. 

 

Fig. 2  Magnified view of intersection and the double node technique 

The double node approach is applied to deal with the discontinuity of velocity potential 

flux at the intersection. The velocity of the fluid particle at the intersection  ,V u w


  can be 

determined by the following equation: 

cos sincos sin

sin cossin cos
f f s fw w sw

f f n fw w nw

u

w

    
    

        
         

         
 (23) 

where s f , sw represent the tangential derivative of velocity potential on the free surface and 

the wall boundaries at the intersection point, respectively. The angles w  and f  correspond 

to the wall and the free surface angles with respect to the x  direction determined by the 
following equation: 

  /
/

/

tan w f
w f

w f

z
s
x
s








 (24) 

where ,w fz s   and ,w fx s   are the tangential derivative of each point coordinate on the 

walls and the free surface boundaries, respectively. The tangential derivatives along the 
curvilinear free surface are approximated by the NURBS at each time step. The inflow 
boundary angle in front of the tank is 2w  , while that of the wall boundary at the end of 

the wave tank is 3 2w  . The unknown derivative of the potential at the intersection point 

in Equation (23) can be obtained from the continuity of particle velocity as 

 
   

cos 1

sin sin

w f

s f n f nw

w f w f

 
  

   


 

 
 (25) 
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2.7 Treatment of vortices on the trailing wake surface 

If t
  and t

  are the velocity potential at the upper and lower faces of the foil trailing 

edge, as shown in Figure 3,   is the circulation around the foil and can be written as: 

t t t       (26) 

 

Fig. 3  Schematic diagram of the trailing edge treatment 

The corner point problem on the trailing edge of the foil is addressed in the same way as that 
described for double points. 

2.8 Discretization of boundary integral equation 

Consider the linear elements on the inflow, outflow, and bottom boundaries and on the 
foil body ( 1 i w b hS S S S     ) and the curvilinear elements on the free surface boundary 

( 2 fS  ). The boundary integral, Equation (9), is discretized as Equation (27). 1  is divided 

into 1N  elements and 2  is divided into 2N  high-order elements. Also, 3N  linear elements 

on the wake surface ( tS ) are considered. 

31 2
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 

    

  
 (27) 

Curvilinear elements are denoted by m  and linear elements by j  and l . The boundary value 

at any point on the linear boundaries can be described by a linear interpolation function with 
respect to nodal values and coordinates of each element. 

 
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/ 1 2 32
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  

   
                   

     

 (28) 

  denotes the values of coordinates, velocity potential and potential flux on each element, 
respectively.   is the local coordinate varying from 1 to +1. 1 2,   are two linear 

interpolation functions: 
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   1 2

1 1
1   ,  1

2 2
        (29) 

For the element j , the integral on the left hand side of Equation (27) can be written as: 
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where 1 1 1 2 2 1d   ,  d
j j

ij ij
ij ijh G n h G n 

 

         . Similarly, the integral on the right hand 

side of Equation (27) can be written as: 
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where, 1 1 1 2 2 1d   ,  d
j j

ij ij
ij ijg G g G

 

      . 

The integral components ( 1 2 1 2, , ,ij ij ij ijh h g g ) are evaluated by the Gaussian eight-point 

quadrature scheme. The free surface ( fS ) can be approximated by the NURBS as a novel 

approach applied in the numerical wave tanks. The modelling and re-gridding of 
instantaneous free surface are carried out precisely due to the high-order curve. The velocity 
potential and its flux distribution on the free surface nodal point are described by the NURBS. 
For instance, each curve element is defined by taking four nodes for a third degree basis 

function. According to Equation (12), four curve rational functions (        3 3 3 3
1 2 3 4, , ,    ) will 

be involved to discretize Green’s boundary integrals. 
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 (32) 

Integral terms of  the left hand side and the right hand side of Equation (27) for the free 
surface boundary part ( 2 fS  ) can be carried out for the element m  as: 
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The components ( 1 2 3 4 1 2 3 4, , , , , , ,ik ik ik ik ik ik ik ikh h h h g g g g ) can be obtained in the same manner as 

those indicated in Equations (30) and (31). Boundary integral over the wake surface and the 
linear boundary are included in the influence matrix. Dipoles of constant strength are 
distributed on the linear element of the wake surface. 

3

1

d
l

N
i il
t S

l

G
h S

n





  (35) 

Then i
th  is added to 1

ijh , corresponding to the upper edge element at the trailing edge, and 

subtracted from 2
ijh  of the element on the lower trailing edge. The discretized form of 

Equation (27) for  i w b f hS S S S S       can be written as: 
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
 (36) 

where N  is the total number of nodal points on the boundaries. 

3. Numerical application 

In this section, performance of the numerical wave tank is verified, first without a foil. 
The use of the NURBS in the free surface modelling and the updating of the NWT problem in 
the time domain make this study original. In the following, the performance of a foil beneath 
the wavy free surface is discussed. Computational results are validated with the analytical 
solution and compared with those of the past studies. 

3.1 Numerical wave tank simulation 

To investigate the influence of the free surface mesh size on the solution, a comparison 
between three different mesh sizes is drawn. A nonlinear second order Stokes wave of height 
( 2 5 cmA  ) and wave period ( 1 sT  ), is inputted at the inflow boundary to propagate 
downstream into the wave tank with a water depth of ( 0.5 md  ) in the absence of a 
submerged body. In the damping zone 1, 1   and 1   while in the damping zone 2, 1   

and 2  . The uniform mesh sizes of the free surface Δ 22x L , 26L , and 30L  are 

considered, where 2L k  is the wavelength. Also, the order of the NURBS basis function 

is 3p  . In each time step, the re-gridding scheme based on the NURBS approximates the 

free surface boundary and interpolates the same number of collocation points for the next time 
step. Evaluation of particle velocity for the time marching scheme is carried out through a 
derivative of the continuous NURBS basis function. For all runs, the time step Δt  is set 
to 30T . The inflow and the outflow boundary are discretized into linear elements with a 

20d  mesh size. The bottom boundary is divided by linear elements with a 10L  mesh size. 

In this test, twenty wave periods are generated and a numerical wave probe is deployed at 
3x L . Figure 4 shows the wave profile at the numerical wave probe for different meshes. It 

is found that solutions converge but the accuracy of computations to reach to the steady state 
depends on the nodal density on the free surface. 
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Fig. 4  Dimensionless free surface elevation (η/d) at x/L=3 due to a second order Stokes input wave of kη=0.104 

versus dimensionless time  ( / )t d g , for ∆t=T/30 

The stability of the solution for a lengthy simulation is shown in Figure 5. For this 
purpose, the previous problem is solved with a smaller time step of Δ 100t T  and different 

free surface mesh sizes, Δ 22x L , 26L , and 30L , for twelve wave periods. It seems that 

the time step size is a significant factor for the convergence and accuracy of computations. 

 

Fig. 5  Dimensionless free surface elevation (η/d) at x/L=3 due to a second order Stokes input short wave of 

kη=0.104 versus dimensionless time  ( / )t d g , for ∆t=T/100 

Simulation of previously discussed wave propagation problem is carried out for three 

time steps, Δ 30t T , 60T , and 90T , with a free surface mesh size ofΔ 22x L . The 

wave elevation is simulated for 20 wave periods at 3x L , as shown in Figure 6. It is found 
that solutions converge but the accuracy of the results for the steady state also depends on the 
time step size. To show the effect of the mesh size and time step size on the computation, the 
root mean square (RMS) error of the wave elevation is used. 
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 
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where K  is the number of time steps to complete one wave period at a fully developed wave 
condition in a fixed position and   denotes the analytical and numerical values of wave 
elevation. 

 

Fig. 6  Dimensionless free surface elevation (η/d) at x/L=3 due to a second order Stokes input short wave of 

kη=0.104 versus dimensionless time  ( / )t d g , for various time steps, calculated using a free surface mesh 

size of ∆x=L/22 

Figures 7 and 8 show the convergence of calculations for different mesh sizes and 
different time steps used in the previous simulation. It is shown that by increasing the mesh 
size by a fixed time step, the RMS increases. Also, for a fixed mesh size, the RMS increases 
by increasing the time step. 

 

Fig. 7  RMS of wave elevation for different time step sizes and different mesh sizes, for a fully developed wave 
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Fig. 8  RMS of wave elevation for different mesh sizes and different time steps, for a fully developed wave 

Comparison between Figure 7 and Figure 8 shows that the RMS change becomes 
smaller for a smaller mesh size with Δ 60t T . A smaller time step size makes the numerical 
procedure time-consuming, while the solution error is not corrected substantially. Proper 
performance of NWTs mainly depends on damping zones. If the damping of wave energy is 
too weak, a certain amount of energy will come back to the computational domain from the 
downstream boundary. On the other hand, if the absorbing strength is too high, the damping 
zone will act as a solid boundary and waves will reflect from the outflow boundary. Figure 9 
shows the free surface oscillations along the numerical tank from the inflow boundary 
( x d )caused by the previous input of the second order Stokes wave. Mesh size of Δ 30x L  

and a time step of Δ 40t T  are used in numerical modelling. In the damping zone 1,   and 
  are set to zero and in the damping zone 2, 1   and 2  . 

 

Fig. 9  The water surface elevation along the wave tank after the input of a second order Stokes short wave of 
kη=0.104, showing almost perfect damping (α=1, β=2) 

This simulation is run for  19.25t T  , 19.5 , 19.75 , and 20 . It shows that the wave energy 
in the wave period is reduced until it is completely absorbed in the damping zone 2. When a 
wave crest in 19.25t T   enters the wave absorber, the wave height is damped gradually with 
time and finally the wave height vanishes. Also, a comparison is made between the 
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performance of the artificial beach parameter   (strength of absorption) and that of   
(length of beach). Figure 10 shows a dimensionless wave elevation profile along the 
numerical wave tank for a fixed coefficient 1   and different values of 2,  3,  3.5   for 
twenty wave periods. By choosing the mesh size and the time step size and the inflow 
absorbing zone to be similar to those in Figure 9, one can note in Figure 10 that the calm 
water region in the damping zone 2 is wider when   is increased.  
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Fig. 10  Water surface elevations along the wave tank after the input of a second order Stokes short wave of 
kη=0.104 corresponding to different lengths of the damping zone 2 and α=1 

Similarly, Figure 11 shows the wave elevation along the tank with 1,  0.5,  0.25   and 
2  . It is shown that the input wave in the damping zone is vanishing rapidly when   is 

increased. 
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Fig. 11  Water surface elevations along the wave tank after the input of a second order Stokes short wave of 
kη=0.104 corresponding to different strengths of the damping zone 2 and β=1 

Fluid volume, momentum and energy conservation test have been widely used to 
evaluate the precision of computations by a NWT. During the time domain simulation, the 
following values must be controlled: 

   0 d d
fS

t v x


       (38) 

  d
d

d i fS S
t

t n

  



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  (39) 
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t gz v g x

n

         


              (40) 

where  ,  ,   are the volume, momentum and energy of the fluid, respectively. The 
effects of the NURBS order p  on the mean water level and on the change in the mass, 

momentum and total energy are shown in Figure 12. Mass conservation is the most significant 
parameter for testing the accuracy of the boundary integral equation and of the MEL 
approach. Therefore, an accurate definition of the boundary and an evaluation of the boundary 
value derivation are very important in the numerical procedure. Maximum errors have very 
small values. This shows that the NURBS can be applied accurately in the numerical wave 
tank simulation. It must be mentioned that variation in the change of above values is reduced 
when the order of NURBS increases and in the steady state, the volume conservation error 
should be zero. It seems that a NURBS NWT can be used to simulate wave flow problems 
appropriately. 

 

 

 

Fig. 12  Effect of the NURBS order on the change in the mass, momentum and energy conservation 

Figure 13 compares the present numerical time history of water particle oscillation on the free 
surface at 3x L with the analytical solution. The mesh size is Δ 30x L , time step size is 
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Δ 60t T  and the order of NURBS basis function is 3p  . It seems that the numerical 
solutions are in good agreement with the analytical results. 
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Fig. 13  Comparison between the time history of dimensionless water free surface elevation (η/d) obtained 
analytically and that of the present numerical solution at x=3L 

3.2 Numerical results of hydrofoil problem 

The hydrofoil used in this study is a NACA0015 with the chord length 40 cmc  , 
attack angle 8   , and submergence depth 0 55 cmd  . A wave with the amplitude 

4.8 cmA   is generated from a wave maker at the end of the tank. The hydrofoil is exposed 
to the linear wave in the wave tank with the water depth 71 cmd  . In this condition, an 
unsteady force is exerted on the foil body. The Bernoulli equation gives pressure distribution 
over the hydrofoil body as 
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gz

t

  



     


 (41) 

where the time derivation of potential velocity is approximated by the first order finite 
difference method over the hydrofoil body. By the surface integration of pressure in the 
directions x  and z , the thrust (drag) and lift forces are obtained, respectively. The thrust and 
lift coefficients are defined as follows: 
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where xF  and zF  are the force components in the x  and z  directions, respectively. The mesh 

size and the time step are taken as Δ 40x L , Δ 60t T  and the third order NURBS basis 

function is adopted to model and re-mesh the free surface. The thrust coefficients computed 
from the present numerical wave tank are compared with the experimental results and the 
available linear and nonlinear numerical computations, as shown in Figure 14. It can be noted 
that for a high value of kc , the NURBS NWT solution differs significantly from experimental 
measurements but the difference grows smaller when the wave length increases. For the same 
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case as in Figure 14, the instantaneous lift and thrust coefficients are shown for 1.08kc   in 
Figure 15. It is found that the maximum lift coefficient is achieved when the thrust (drag) 
coefficient has the minimum value. 
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Fig. 14  Comparison of thrust coefficient between the experiment and the linear theory by Isshiki,  
the nonlinear theory by Grue et al. and De Silva and Yamaguchi NWT [5] and  

the present NWT versus different wave numbers 
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Fig. 15  Instantaneous lift and thrust coefficients for 1.08kc   

A snapshot of pressure distribution over the hydrofoil body at 16.5 st   is presented in 
Figure 16. The positive pressure coefficient indicates the pressure side at the lower edge of 
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the hydrofoil and the negative one represents the suction side at the upper edge of the 
hydrofoil. 
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Fig. 16  Pressure coefficient     2 20.5p p A   distribution over the foil body   . .L Ex x c  

4. Conclusion 

Development of a high-order fully nonlinear two-dimensional NWT is considered in 
this paper. The simulation of a fully nonlinear wave using the NURBS formulation in a two-
dimensional potential numerical wave tank is successfully completed. The MEL method and 
high-order boundary element method are employed in the numerical procedure. A high-order 
boundary integral equation based on Green’s second identity is used to solve the Laplace 
equation in the Eulerian frame. NURBS formulation is employed to approximate the 
fluctuating free surface boundary and the regeneration of nodes. The material node approach 
and the fourth order Runge-Kutta time integration scheme compose the time marching 
scheme for the temporal updating of a fully nonlinear free surface boundary condition in the 
Lagrangian frame. The double-node technique is used to remove singularity at the corner 
nodes of computational domain to ensure the stability of the solution. To maintain the 
numerical accuracy and avoid instability in the MEL approach, the Chebyshev five-point 
smoothing scheme is applied every ten time steps. To obtain appropriate numerical solutions 
to the wave propagation problem in a numerical wave tank with a finite computational fluid 
domain, artificial damping zones (sponge layers) are deployed at the both ends of the tank. 
These damping zones are used to absorb progressively the wave energy in order to reduce the 
reflection from the ends of the wave tank into the computational domain. Perturbation sources 
are placed on the inflow boundary to generate the free surface oscillation during the 
simulation. Convergence and stability tests are performed for different mesh sizes and various 
time steps. The efficiency and performance of damping zones at the ends of the NWT were 
addressed. The changes in the mass, momentum and energy conservation are computed. The 
effects of the orders of the NURBS approximation on the results are presented and it is shown 
that the accurate solution can be obtained by the proposed procedure. Fluctuations in the 
computed values are reduced when the order of NURBS increases and in the steady state 
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condition, the volume conservation is satisfied. Volume and energy are less influenced by the 
order of basis function. The time history of a fully developed nonlinear Stokes wave in the 
NURBS NWT is compared with analytical results. The flow field about a hydrofoil located in 
the fully nonlinear wave tank was computed and horizontal and vertical force components are 
obtained. The present computational results are compared with the experimental and other 
numerical solutions and it is shown that the novel NWT procedure presented here gives 
accurate solutions. Also, the hydrofoil performance simulated in the time domain is shown by 
instantaneous forces and pressure distribution over the hydrofoil body. 
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