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Sirtuins in tumorigenesis

Abstract

Sirtuins (SIRT) are group of enzymes that require nicotinamide adenine 
dinucleotide (NAD+) to catalyze their reactions. These chemical compounds 
have mono (ADP-ribosyl) transferase or deacetylases activities, and they can 
be found in nearly all species. The mammalian sirtuin family is described 
by seven proteins, namely. Every group of sirtuins can be found in the dif-
ferent regions of the cells; SIRT1 is predominantly nuclear, SIRT2 is lo-
cated mainly in the cytoplasm (but it can shuttle between the nucleus and 
the cytoplasm), SIRT3, SIRT4, and SIRT5 are mitochondrial proteins, 
(SIRT3 can move from the nucleus to mitochondria during cellular stress), 
SIRT6 and SIRT7 are nuclear sirtuins. Sirtuins have a lot of functions in 
different physiological processes such as gene repression, metabolic control, 
apoptosis and cell survival, DNA repair, development, inflammation, neu-
roprotection, and healthy aging. Because of so many roles in physiological 
processes there is a huge interest not just in their functions but also in the 
different compounds which can modify their functions. In this article we 
will focus on the role of sirtuins in tumorigenesis.
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Abbreviatians: 
SIRT	 – sirtuins 
NAD	 – nicotinamide 
ADP	 – adenosine diphosphate 
SNPs	 – single nucleotide polymorphisms 
HDACs	 – histone deacetylases 
BMI	 – body mass index 
IDH2	 – isocitrate dehydrogenase 2 
GDH	 – glutamate dehydrogenase 
MnSOD	– manganese superoxide dismutase 
VNTR	 – variable number tandem repeat 
TNF-a	 – tumor necrosis factor – alfa
HIC1	 – hypermethylated in cancer 1 
FOXO 1	 – Forkhead Box 1 
FOXO 3	 – Forkhead Box 3 
Cdh1	 – cadherin-1 
Cdc20	 – cell-division cycle protein 20 
NEDD4	 – neural precursor cell expressed developmentally down-regulated protein 4 
AML	 – acute myeloid leukemia 
ROS	 – reactive oxygen species 
SOD2	 – superoxide dismutase 
ETC	 – electron transport chain 
Skp2-S	 – phase kinase associated protein 2
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INTRODUCTION

Each sirtuin is characterized by approximately 275 
amino acid conserved catalytic core region and by 

unique additional N-terminal and/or C-terminal sequenc-
es of variable length (1). Sirtuins are also known as class III 
histone deacetylases (HDACs), but their NAD+-depen-
dency distinguishes them from other HDACs classes (2, 3).

The main sirtuin structure is characterized by a large 
Rossman-fold domain (small part of compounds that is 
typical for NAD+ binding proteins), a small zinc-binding 
domain, and a number of flexible loops (4). The large 
Rossmann-fold domain is characterized by six parallel b-
strands and a different number of b-helices, depending 
on the type of sirtuin. Zinc-binding domain is character-
ized by the three antiparallel b-sheets, a variable b-helical 
region and a Zn2+cation (5). One of the most flexible re-
gions of sirtuins is cofactor binding loop that connects 
the large and the small domain of enzyme (6, 7). This loop 
conformation is dependent of the NAD+ or other reaction 
intermediates presence (the most important is 2-O-acetyl-
ADP-ribose) (8).

OVERVIEW OF SIRTUINS FUNCTIONS

Different roles of sirtuins have been described in a 
great number of physiological or pathological conditions. 

Some of them are metabolism, aging, circadian clock 
regulation, pathophysiology of cancer, different inflam-
matory conditions, nutritional behavior and obesity (5, 
9). However, different types of sirtuins have different 
physiological function in the human body (Figure 1).

A recent study has reported associations of SIRT1 
single nucleotide polymorphisms (SNPs) to the both obe-
sity and body mass index (BMI) (10). SIRT1 is linked to 
the mitochondrial biogenesis in some tissues. It also stim-
ulates fat and cholesterol catabolism in liver, skeletal 
muscle, and adipose tissue.

Some recent studies have shown impaired regulation 
of SIRT2 in glioma. SIRT2 deletion can cause tumor 
occurrence; to the contrary its repletion may be used as a 
tumor suppressive therapy (11). SIRT2-deficient mice de-
velop gender-specific tumorigenesis; mammary tumor in 
females and hepatocellular carcinoma in males (12). 
SIRT3 is presented in both mitochondria and nucleus. It 
has main role in cellular energy metabolism and redox 
regulation by deacetylating some mitochondrial proteins 
such as acetyl-coenzyme A synthetase 2, isocitrate dehy-
drogenase 2 (IDH2), glutamate dehydrogenase (GDH), 
manganese superoxide dismutase (MnSOD) (13). This 
sirtuin is the only one for which the correlation between 
a polymorphism and prolonged human life has been 
proven (12).

Figure 1. Location of the sirtuins in the cell. Their enzymatic activity, targets and substrates, function and involvment in various tumors are listed.
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It is known that a VNTR polymorphism in intron 5 
of the SIRT3 gene has an allele-specific enhancer activity. 
The allele which has not enhancer activity is almost absent 
in males older than 90 years (14).

SIRT4 is localized in mitochondria and has a role in 
the regulation of cellular metabolic functions like insulin 
secretion and fatty acid oxidation (15, 16). Some research 
has shown that SIRT4-depleted mice develop hyperinsu-
linemia and lung carcinoma (15, 17). SIRT5 is also mito-
chondrial sirtuin just like SIRT3 and SIRT 4.

Study of Nakagawa et al has shown that SIRT5-null 
mice can develop urea cycle defect and hyperammonemia 
after fasting (18).

SIRT6 is localized to the nucleus and has both deacet-
ylase and ADP-ribosyltransferase activity. SIRT6 has been 
shown to have a function in the regulation of transcrip-
tion, genome stability, TNF-a secretion, metabolism and 
life expectancy (19). SIRT6 deficient mice die around 1 
month after birth, showing premature aging phenotypes, 
hypoglycemia, cardiac hypertrophy, hypersensitivity to 
DNA damage, and genomic instability (19).

SIRT7 is the only sirtuin localized to the nucleolus and 
it is linked to the ribosome biogenesis by the regulation 
of transcription by positive regulation of RNA polymerase 
I transcription (20). SIRT7 deficiency induces apoptosis 
in human cells what indicates SIRT7 importance in cell 
survival. The results of some recent studies have shown 
that SIRT7-deficient mice die around 1 year after birth, 
and develop inflammatory cardiomyopathy (21).

SIRTUINS AND TUMORIGENESIS

Sirtuins require special attention in cancer research 
because of their biological role in metabolism, cell death, 
regulation of genomic stability, inflammation and cellular 
proliferation. Various studies have shown that studying 
sirtuins can contribute to answering the question about 
the connection between tumor development and aging.

SIRTUIN 1 AND TUMORIGENESIS

Sirtuin 1 (SIRT1) has a dual role in the development 
of tumors as a tumor suppressor or promoter depending 
on the type of tumor and the spatial distribution of SIRT1 
upstream and downstream factors (Figure 1).

SIRT1 participates in the development and progres-
sion of tumors through deacetylation causing inhibition 
of the function of the tumor suppressor p53, p73, and 
gene hypermethylated in cancer 1 (HIC1) (17-19). During 
aging reduction of HIC1 promoter hypermethylation oc-
curs as well as an increase of SIRT1 content. Both pro-
cesses increase cell survival and tumor development (19). 
SIRT1 promotes cell migration by direct interaction with 
cortactin (22) and promotes the expression of multidrug 

resistance – associated protein 2(23). Additionally, SIRT1 
promotes chemoresistance of tamoxifen – resistant breast 
cancer cells by deacetylating FOXO1 (23). Increased ex-
pression of SIRT1 in advanced prostate cancer promotes 
cell invasion, migration and metastasis through matrix 
metalloproteinase -2 (24). A study of SIRT 1 in colorectal 
cancer showed a correlation with increased expression of 
c – Myc (25). SIRT1 is increased in breast carcinoma (26), 
colon cancer (27), lung cancer (28), prostate cancer (29), 
thyroid cancer (30), gastric cancer (31), liver cancer (32), 
pancreatic cancer (33), ovarian and cervical cancers (34).

On the other hand SIRT1 can prevent tumor growth 
through mechanisms of genomic protection by enabling 
protection from stress, DNA reparation mechanism and 
regulation of metabolism. In addition, tumor cells them-
selves can prevent and control innate and adaptive im-
mune responses through inactivation of NF – kB tran-
scription factor and reduction of surviving (35, 36). 
SIRT1 expression is reduced in human head and neck 
squamous cell carcinoma and is associated with poor 
prognosis in patients with this type of carcinoma (37). It 
has been shown that inhibition of SIRT1 blocks p53-
dependent apoptosis and DNA damage signaling which 
favors the growth of tumors. Further studies are needed 
in order to clarify the different roles of SIRT1 in tumor 
development.

SIRTUIN 2 AND TUMORIGENESIS

In tumorigenesis, sirtuin 2 (SIRT2) can have the func-
tion of a promoter or a suppressor according to the type 
of tumor. SIRT2 functions as a tumor suppressor through 
the deacetylation of its substrates, such as FOXO1 (Fork-
head Box 1)(38), FOXO 3a (Forkhead Box 3) (39), Cdh1 
(12), Cdc20 (12), H3K56 (40), or H4K16 (41). These are 
important molecules that maintain cell cycles, replication, 
and DNA damage response. Several studies have shown 
that SIRT2 may function as a tumor suppressor by main-
taining mitotic integrity in a cell (11). It was shown that 
the expression of SIRT2 is down-regulated in breast can-
cer (41), head and neck squamous cell carcinoma(37), 
gliomas (11) and esophageal adenocarcinoma. The defi-
ciency of SIRT2 increases the levels of mitotic regulators 
such as Aurora A and Aurora B (12).

There are also some opposite data suggesting that 
SIRT2 may have tumor-promoter characteristics. It was 
observed that the expression of SIRT2 was increased in 
acute myeloid leukemia (42), neuroblastoma cells, pan-
creatic cancer cells (43), and hepatocellular carcinoma 
(44). It is upregulated in pancreatic cancer cells by c-MYC 
and in neuroblastoma cells by N-MYC. SIRT2 stabilizes 
N-MYC and c-MYC protein by downregulation of ubiq-
uitin-protein ligase NEDD4 expression. In AML cells 
SIRT2 and NAD+ salvage enzyme nicotinamide phos-
phoribosyl transferase are upregulated and included in the 
abnormal proliferation and survival of leukemic cells.
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SIRTUIN 3 AND TUMORIGENESIS

Metabolic transformation is one of the major charac-
teristics of tumor.

It has been shown that knock-out mitochondrial-derived 
Sirtuin 3 (SIRT3) increases spontaneous tumorigenesis in 
mammary glands, indicating a role of SIRT3 as a tumor 
suppressor (45). SIRT3 participates in mitochondrial me-
tabolism, counteracts oxidative stress, defends cells against 
apoptosis and prevents cell ageing and tumor formation.

Several studies have shown that under conditions of 
stress SIRT3 regulates ROS homeostasis through deacet-
ylating and activating superoxide dismutase (SOD2) (46, 
47). Reduced expression of SIRT3 leads to increased pro-
duction of ROS by reducing activity of SOD2 or increas-
ing leakage of electrons in the electron transport chain 
(ETC), which promotes genomic instability and the de-
velopment of tumors (45). Some studies have shown that 
lack of SIRT3 increased glycolytic metabolism by enhanc-
ing the stability of HIF1a (48).

Moreover SIRT3 inhibits tumorigenesis by deacetylat-
ing and inactivating S – phase kinase associated protein 2 
(Skp2), a subunit of the E3 ubiquitin kinases that are im-
portant in the S phase of the cell cycle (49). Accordingly 
SIRT3 is reduced in human breast cancers, hepatocellular 
carcinoma, and head and neck squamous cell carcinoma 
(50). Further studies are needed in order to explain the 
possible role of SIRT3 in therapeutic procedures.

SIRUINT 4 AND TUMORIGENESIS

The role of Sirtuin 4 (SIRT4) has not yet been eluci-
dated, but recent studies have shown that it may have a 
role as a tumor suppressor (17, 51).

Expression of protein SIRT4 is decreased in human 
gastric, ovarian, bladder, and breast carcinoma compared 
to normal tissue. Increased content of SIRT4 reduces 
transformation and cell proliferation (51). Some other 
studies have shown that a lack of SIRT4 leads to increased 
glutamine – dependent cell proliferation and genome in-
stability caused by the stress resulting in tumorigenesis 
(17). SIRT4 knock-out mice were shown to have increased 
spontaneous lung tumors compared to wild-type mice 
(17). Future research should show the significance of 
SIRT4 expression in various cancers, and the significance 
of its interaction with glutamine.

SIRTUIN 5 AND TUMORIGENESIS

The role of Sirtuin 5 (SIRT5) in the development of 
cancer is not known.

SIRTUIN 6 AND TUMORIGENESIS

Some studies have shown that Sirtuin 6 (SIRT6) may 
have a tumor suppressor function through reduction of 
Myc and HIF1a transcriptional activity (52).

Expression of SIRT6 is reduced in human pancreatic 
cancer and colon carcinoma. Some studies have shown 
that SIRT6 can suppress the initiation of liver cancer 
through reduction of survivin expression by deacetylation 
of H3K9 (52).

Additionally, SIRT 6 reduces the activity of NF–kB 
(53). SIRT6 also participates as a tumor suppressor in 
breast cancer by regulating DNA repair and metabolism.

Some studies have shown that SIRT6 can increase the 
secretion of cytokines in cancer and produce an increase 
in angiogenesis through regulation of Ca2+ responses or 
deacetylation of TNFa (54).

Increased expression of SIRT6 can increase resistance 
to chemotherapy such as paclitaxel and epirubicin by in-
hibiting FOXO 3a activity (55).

These data suggest multiple mechanisms by which 
SIRT6 exerts its effects in cancer cells. Future studies 
should investigate the biological effects and molecular 
mechanisms of SIRT6 in individual tumors.

SIRTUIN 7 AND TUMORIGENESIS

Biological role of Sirtuin 7 (SIRT7) in tumors is not 
fully explained.

Previous results have shown that SIRT7 can be onco-
gene, activating oncogenes capacity of cancer cells such 
as loss of contact inhibition and anchorage -independent 
growth. Lack of SIRT 7 reduces tumor potential of cancer 
cells (56). Recent research has shown an increase of SIRT7 
in hepatocellular carcinoma and that deletion of SIRT7 
may cause suppression of cell growth (57).

Further studies should investigate the molecular mech-
anisms of SIRT7 activities in cancer.

CONCLUSIONS

Sirtuins play a significant role in inflammation, me-
tabolism, cellular proliferation, regulation of genomic 
stability, and cell death. Based on their involvement in 
these processes sirtuins are involved in cancer pathophys-
iology. It became clear that sirtuins can help to address 
the question on the molecular relationship between the 
tumor and aging. Future research is needed in order to 
determine the molecular mechanism of action of each 
sirtuin in cancer and the possible role of sirtuins in cancer 
therapy.
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