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Assuming the necessity of analysis, diagnosis and preservation of
cxisting valuable stonc masonry structurcs and ancient monuments in
today European urban cores, numerical modelling become an efficient
tool for the structural behaviour investigation. It should be supported
by experimentally found input data and taken as a part of general
combined approach, particularly non-destructive tecl ni(1ues on the
structure/model within it. For the structures or their detail which may
require more complex analyses three numerical models based upon
finite clements technique are suggested: SI ) standard linear model; (2)
linear model with contact (interface) clements; and (3) non-linear
clasto-plastic and orthotropic model. The applicability of these models
depend upon the accuracy of the approach or type of the problem, and
will be presented on some characteristic samples.

Introduction

The role of numerical modelling in structural analysis of
historical construction

Assuming that we are interested in safety aspect of
exisling stone and masonry structures under actual or
new (increasing) loading conditions and in preserving
architectural and cultural heritage, we need to agree with
the tasks imposed by present situation, i.e. to analyse,
diagnose and preserve such structures. While some small
structures will be reconstructed by simple civil engineer-
ing and stone-cutting works, other more significant
structures or their details will require complex analyses.

Different from the ancient constructors which built on
experience, at present time we use a number of investi-
gation and experimental techniques, together with con-
temporary calculation and numerical procedures and
methods. Here we need to emphasize that for masonry
and stone structures the combined use of experimental
and numerical techniques is required, as well as the
dialogue between different professionals. Combined use
of experimental and numerical techniques gives a con-
siderable contribution to the whole study which is consist
of historical analysis, direct observation (geometric sur-
vey, crack pattern investigation) support with continuous
monitoring (installation of a number of static and dy-
namic sensors on the structure, in order to continuously
record settlements, displacements, inclinations, opening
of cracks, vibrations, elc.), experimentation and instr-
mentation (determining the static conditions/mechanical
parameters using non-destructive or slightly-destructive
tests), and finally the mathematical/numerical model.
This combined approach than enables the assessment of
the structural reliability (diagnosis phase) and time evo-

Kljuéne rijeci: Kamene zidanc konstrukene, Nedestruktivne me-
tode, Numericko modceliranje
Uz pretpostavku uvaZavanja potrebe za analizom, utvrdivanjem
zaleCenog 1 pmjckf.irunng stanja, le ocuvanjem postojecih vrijednih
kamenih (i/ilt) zidanih konstrukeija i povijesnih gradevina u danasnjim
urbanim jezgrama curopskih gradova, numericko se modeliranje po-
javljuje kao uéinkovit suvremen »alat« za pracenje stanja konstrukeije.
Pri tome bi ulazne podatke trebalo odredivati cksperimentalnim
utem, a samu numericku analizu promatrati kao segment u ukupnom
combiniranom i interdisciplinarnom pristupu, posebice kao jednu od
nedestruktivnih metoda ispitivanja na konstrukciji/modelu. Za one
konstrukcije ili njihove dijelove koji mogu zahtijevati detaljniju analizu
predlaZze se uporaba triju numerickih modela po tehnici konacnih
clemenata: (1) standardni lincarni model; (2) lincarni model s kon-
taktnim (dodirnim) clementima; (3) nelincarni elasto-plasticni i orto-
tropni model. Primjenjivost navedenih modela ovisna je o razini
detaljnosti pristupa i tipu problema, te éc biti prikazana kroz nekoliko
karaktcristiénih primjera.

lution of the structural behaviour (prediction phase),
which finally lead to defining the possible restoration
works (prognosis phase).

Inside the study, and generally, investigation tech-
niques and tests can be described as: destructive tests on
the sample (laboratory determination of the physical and
mechanical characteristics); slightly-destructive tests on
the structure (coring techniques, borehole video survey,
flat jack test); and non-destructive testing techniques on
the sample or on the structure. The latest mentioned
non-destructive investigation on the structure can be
recognized as direct (dynamic techniques as sonic meas-
urements, sonic tomography, radar investigation, ther-
mographic analysis, rebound test, magnetometric
analysis) or indirect through the model of the structure.
At this point — if model is numerical model — numerical
modelling i.e. numerical analyses and techniques as
FEM approach can be considered as a sort of the indirect
non-destructive investigation technique on the struc-
ture, in order to give an additional information and
insight into the structural behaviour identification.

Numerical analyses becomes an efficient »tool« con-
nected to the knowledge derived from the physical ob-
servation, which often cannot be totally included in the
constitutive laws of the materials. Therefore, the criti-
cisms about the use of numerical analysis 1s basically due
to the suspicion that the physical reality and the consti-
tutive laws are not appropriately taken into account, but
some recent works (Haiman & Zagar, 1997,
IABSE, 1993; Loo & Yang,1991;Lotfi & Shing,
1991; Lourengo, 1996; Naraine & Sinha, 1992)

cal models with good experimental confirmation of the
results. Moreover, due to the complexity of this struc-
tures itself and a large number of influence factors, the
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Fig. 1. Samples for wall opening analysis: type (a) semi-circular, (b) segment, (c) flat, (d) gotic

analytical solution is impossible and numerical methods
are imposed as a reasonable practical approach.

Macro-modelling and micro-modelling

Reliable numerical models are necessary to assess and
strengthen existing stone structures. This paper presents
three numerical models based upon finite element tech-
niques which can be used to perform numerical analyses of
stone masonry structures (and other structures consist of
units and joints). Each of them can be applied to a certain
extent considering the accuracy of the approach and type
of the problem (Stambuk, 1996). Consequently, stone
structures can be generally analyzed according to the
macro-modelling or micro-modelling principles.

In macro-modelling the stone structures are treated as
a homogenous anisotropic continuum with average
properties of stone units (blocks) and joints, both for in
each element and for the entire finite element mesh
which is used to discretize the structure. This approach,
with the model of smeared cracks, makes it possible to
reproduce successfully the effects of material non-
linearity and progressive local failure, so that the effects
of local failure on the blocks and/or joints are »smeared«
over the finite element either fully or over its respective
part. This technique is sufficient for the analysis of stone
structures as large panels, globally, and it is applicable
up to that level of accuracy when local effects become
significant — e.g. in the region adjacent to a concentrated
load where stress gradients become high or when details
of the stress field and/or displacement should be solved.
Summarily, macro-models are applicable when the
structure is composed of solid walls with sufficiently
large dimensions so that the stresses across or along a
macro-length will be essentially uniform.

Higher level of accuracy of the approach to the analys:s
of stone structures can be obtained by micro-modelling
where the stone blocks are modelled by the continuum
clements, whereas the joints, as a source of weakening and
non-linearity, are separately modelled by interface cle-

ments. Hence, interface elements are used as materially
and geometrically non-linear element at the place of
geometrical discontinuities or joints, while the remain-
ing part is treated on the linear (or non-linear) analysis.

Clearly, macro-modelling is more practice oriented
due to the reduced time and memory requirements as
well as user-friendly mesh generation. This type of mod-
clling is most valuable when a compromise between
accuracy and efficiency is needed.

The application of the presented models will be illus-
trated by the analysis of several characteristic details of
stone structures. All the examples were analyzed for the
case of plane stress state.

Models for the stone structures analysis

The three mentioned FEM models for numerical
analyses of stone structures are presented in this paper
in a short form (only regarding the main features of the
material behaviour modelling), and include the follow-
ing: MODEL I — standard linear model; MODEL IT —
linear model with specific contact (interface) elements
for the joints; and MODEL I1I — non-linear elasto-plas-
tic and orthotropic model.

MODEL I — linear model

The application of the general or standard linear
model with finite element method based on the displace-
ment on stone structures is limited, i.¢. it can be applied
only within the limit of elastic behaviour, until the ap-
pearance of the first cracks. Nevertheless it can be ap-
plied in predicting the behaviour for the low levels of
loading, which is a frequent case for the existing stone
structures. It also represents the first step in the non-lin-
car analysis which enable a quick insight into the prob-
lem and represents the »mental control« of the solution.
Consequently, it is recommended that a linear analysis
should be performed first. The reasons for such a sug-
gestion can be additionally expressed by the following:
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Fig. 2. Semi-circular opening (a)) analysis

e improved linear analysis with the failure criterion or
tensile strength built in may provide a reasonable
description of the process leading to the crack pattern
for which we are concerned,

¢ nonlinear analysis is relatively long and expensive;
furthermore, the result should be checked with great
care, and numerical instabilities may appear when
cracking intervenes.

Subsequently, only the basic features are presented
without considering the details of the lincar model,
which represent the standard of the numerical analysis
and has been described in detail in literature (Hinton
& Owen, 1977; Jovi¢, 1993). Considering the limits
of the model applicability, it should noted that linear
behaviour (in 2-D models) for the stone is valid only
within the von Mises initial yield surface in biaxial com-
pression-compression stress state, i.e. within the tension
cut-off failure surface in biaxial tension-tension and ten-
sion-compression. Beyond these limits the elastic linear
model cannot be applied and elasto-plastic model be-
comes relevant (in biaxial compression-compression up
to the failure surface), as well as orthotropic non-linear
model for cracked stone (in all stress state beyond the
failure surface defined by von Mises failure envelope and
tensile cut-off).

Elastic behaviour is described by the incremental
stress-strain relationship:

do = Dde (1)

where D is elastic material matrix; do and de incre-
mental stress and strain vectors.

Thus, it is possible to define the material model, which
together with the standard finite element procedure
based on the displacement and frontal algorithm for
solving the system of equations, after respective post-
processing, form and entire model.

The application of the linear model or MODEL I is
illustrated by the analyses of a different shaped opening
in the wall, Figures 1, 2, 3, 4, 5, 6 where displacements
and stress fields for elastic level (loading scaling factor
F=0.4) are shown, together with the finite element
mesh.

MODEL Il — linear model with interface elements

This model deals with the stone blocks and their joints
separately. The previously mentioned linear model can
be applied to the continuum elements which form the
blocks. The formulation of 1-D non-linear interface ele-
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Fig. 3. Semi-circular opening (a2) analysis
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Fig. 4. Scgment-shaped opening (b) analysis

ments was described in detail in Gotovac et al.,
(1992 a. & 1992 b). Different possibilitics for interface
behaviour are included into the model: contact without
sliding, sliding, moving away (opening of crack).

Finite elements meshes on Figures 3,4 5, 6 present the
principle for the model development. Each stone block
consists of several continuum elements, while interface
elements which model the joints as geometrical disconti-
nuities, are placed along the block boundaries (determined
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Fig. 5. Flat opening (c¢) analysis

by bold lines), so that relative displacements between the
blocks are made possible. This can be noted from the
presentation of displacements, Figures 3, 4, 5, 6. In all
examples the characteristic vertical displacement (the
top of the opening) is grater than in macro-modelling.

MODEL Il — non-linear elasto-plastic and orthotropic
model

The appearance of cracks due to tensile stresses in the
system is one of the main causes of material non-linearity
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in stone structures. Consequently it is necessary to intro-
duce into the model, in addition to the average non-lin-
ear behaviour (of the bond) unit-joints, also the
appropriate treatment of the non-tension material and
cracks behaviour, which enable the analysis of the local
failure with the propagation of cracks under incremental
loading. Thus, it is possible to respect the principle that
accurate mathematical description of the mechanical
behaviour of the material is a necessary condition for any
calculations for the structures, and, at the same time, it
is possible to satisfy the requirement that stone struc-
tures are studied at a level higher than the one possible
with the linear model. In addition to the expansion of the
cracking zones it is possible to solve the problems of the
critical and yield loads, actual safety factor, the weakest
points and yield zones, the failure mechanism — for
specific levels of loads F in incremental approach.

With this objective in mind, the model for the non-lin-
ear analysis of stone structures was developed according
to the principle of macro-modelling and smeared cracks,
in accordance with similar models in the world (Lotfi
& Shing, 1991; Lourengo, 1996) according to the
basic elasto-plastic model. The model was presented
with more details by Stambuk (1996).

Until the failure criterion (defined by von Mises pa-
rabola through the point of uniaxial compressive
strength f.” and tensile cut-off through uniaxial tensile
strength f,” in the system of principal stresses) standard
elasto-plastic J, model is valid. The material matrix D
from equation (1) is substituted by elasto-plastic D,
which is of practical importance only in biaxial compres-
sion-compression. After reaching the failure criterion it
is considered that cracks are formed both in tension-ten-
sion and tension-compression, and crushing occurs in
compression-compression. The material becomes ortho-
topic, with orthotropy axes n-f normal and tangential
with regard to the direction of the crack.

For a single crack, the incremental stress-strain rela-
tionship in the local n-t coordinate system can be ex-
pressed as:

ddlnu - Drlnudslw: (2)

in which do"® = {dou, doy, dtn} " and de'™ = {den, de,
dy.,;}r. The local tangent stiffness matrix D™ of the
cracked material is generally of the following form:

E, O O
D*=| O E, O (3)
0 0G,

where Enn, Ey and Gy are the tangent moduli according
to the correspondent 1-D diagrams, cither tensile or
compressive, and the respective principle strains, in the
n and ¢ directions. Poisson’s effects in the cracking zone
is neglected. Actual values depend upon the »zone« of
principle stresses, i.e. the type of cracking and local
failure (tension-tension, tension-compression, compres-
sion-compression).

The transformation into the global system follows
after the determination of the local matrix:

D.=T"D/*T (4)

where T is the transformation matrix dependent upon
the cracks direction with regard to the global coordinate
directions. Finally, the relationship stress-strain in the
global system is:

do = D de (5)

If the laws of softening are added, so that the cracked
zones extend due to the redistribution of stresses, it is
possible to develop a complete material model which
should be implemented in the standard displacement-
based incremental-iterative finite element formulation,
Because of the softening behaviour, the conventional New-
ton-Raphson and modified Newton-Raphson iteration
schemes are not feasible and, consequently, the displace-
ments are evaluated with the initial stiffness method.

Some results for MODEL II1, namely displacements
and stresses with crack positions, for different load factors
F, obtained by a specially adapted post-processor, are pre-
sented in Figures 2, 3,4, 5, 6. The mesh-sensitivity, which is
introduced into the model with smeared crack approach, is
checked on the semi-circular opening sample through two
separated discretizations (ay) and (ay). Figures 2, 3. It can
be observed from obtained results that the »coarse« mesh
(a,) with a smaller number of finite elements is fine enough.
That conclusionwas used for further discretizations (b), (¢),
(d); respective Figures 4, 5, 6.

Conclusion

Since when the rehabilitation of existing stone and
historic structures has become a big interest for the
building industry, great effort was given to the study of
the mechanical behaviour of masonry structures, and
consequently, relevant numerical methods.

The application of the previously presented models
depends upon the required level of accuracy of the
approach and actual structure. There is no general solu-
tions which could be applied to all stone structures. The
linear model is sufficient only for a quick insight into the
structure state for low levels of loading or as an approxi-
mate calculation and a first phase of non-linear analysis.
However, more detailed approaches require the use of
micro-modelling. General non-linear model will yield
more data than a linear models at the macro-modelling
level. Macro-models will be satisfactory when normal
stresses are dominant, but they will not be sufficient if
failure occurs due to shear and in seismic analyses.
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