IMPLANT STABILITY COMPARISON OF IMMEDIATE AND DELAYED MAXILLARY IMPLANT PLACEMENT BY USE OF RESONANCE FREQUENCY ANALYSIS – A CLINICAL STUDY

Marko Granić¹, Davor Katanec¹, Vanja Vučićević Boras², Mato Sušić¹, Ivona Bago Jurič³ and Dragana Gabrić¹

¹Department of Oral Surgery, ²Department of Oral Medicine, ³Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Zagreb, Croatia

SUMMARY – The purpose of this study was to objectively evaluate the stability of dental implants by use of resonance frequency analysis (RFA). In this study, 60 Nobel Replace Tapered Groovy implants were placed in the premolar region of the maxilla in 60 patients. Thirty implants were placed immediately after tooth extraction and 30 implants were placed in healed bone sites. Implant stability quotient (ISQ) was obtained by use of the Osstell Mentor device and was recorded at the time of implant placement (T1) and 20 weeks after placement, at the time of implant loading (T2). All implants were not functionally loaded during the follow up period. Data were analyzed using simple linear regression. No implant failures were reported in the 6-month follow up period. The mean ISQ value for immediate implant placement was 61.43 at T1 and 66.23 at T2. The implants placed in healed bone showed higher ISQ values compared to the immediately placed implants (mean ISQ value was 64.17 at T1 and 68.83 at T2). Differences in the mean ISQ values were statistically significant (p<0.001). After the completed period of osseointegration, the mean ISQ value was 4.8 for immediately placed implants compared to 4.67 for implants placed in delayed sites.

Key words: Dental implants, stability; Resonance frequency analysis (RFA)

Introduction

The concept of immediate implant placement following tooth extraction has been studied extensively since its introduction in 1976 by Schulte and Heimke¹. Like all surgical techniques, immediate implant placement has its benefits and risks. Reduction in the number of surgical interventions, shortened treatment time, preservation of bone around the extraction socket, especially preservation of buccal bone, easier and more ideal orientation for implant placement, and soft tissue aesthetics have been claimed as the potential advantages of this treatment approach²–⁷. The main drawbacks of immediate implant placement are lower primary stability of implants compared to implants placed at healed sites and the lack of soft tissue healing with frequent flap dehiscence over extraction sites⁸. The prerequisites for immediate implant placement include absence of active infections, intact buccal bone, and narrow alveolar bone to ensure adequate mechanical retention. Due to decreased primary stability following immediate implant placement, several authors have examined the validity of long-term success of these implants when compared to implant placed in healed sites⁹,10. Primary stability is achieved through direct bone implant contact and it is defined as implant stability at the time of implant placement.
Primary stability has been applied as an indicator of future osseointegration and thus long-term success of implant therapy11. If primary stability is not sufficient, the healing process will be disrupted and osseointegration will not occur, which will lead to implant failure11. Primary stability of dental implants is most typically evaluated by percussion1, reverse torque test4, radiograph analysis11, Periotest (Siemens AG, Modautal, Germany)11, Dental Fine Tester (Kyocera, Kyoto, Japan)11,15 and resonance frequency analysis (RFA)12,13,15. For more than a decade, RFA has been used as a noninvasive, reliable, easily predictable and objective method for measurement of implant stability12,13. RFA has been widely used to determine loading protocols or assess changes in implant stability over time4,15.

The aim of this study was to compare the stability of 30 dental implants placed immediately after tooth extraction and 30 implants placed at healed sites using RFA.

Materials and Methods

All patients voluntarily agreed and gave their written consent to participate in the study, which was approved by Ethics Committee of the School of Dental Medicine, Zagreb, Croatia (201301). Inclusion criteria for this clinical study were subjects older than 20 years (completed bone growth of jaws), partially edentulous in premolar region, having at least 2 mm of attached keratinized gingiva on the buccal and palatal aspects of the bone, ready and ability to comply with pre- and postoperative diagnostic and clinical evaluation required for this study. Exclusion criteria were all local and general medical conditions known to interfere with bone healing (uncontrolled diabetes, detailed medical history of no drug therapy, radiation therapy or chemotherapy), severe osteoporosis, pregnancy, patients with poor oral hygiene, lack of cooperation and severe periodontal disease.

In this retrospective study, data on 60 patients (age range 22-65, mean age 44.25) were collected and evaluated. In each patient, one Nobel Replace Tapered Groovy Implant (Nobel Biocare, Gothenburg, Sweden) was inserted in the premolar region of the maxilla. All implants were placed by the same experienced surgeon. The subjects were divided into two groups, depending on the indication. First group of patients, with strong clinical indication for immediate implant placement, had 30 implants placed immediately after tooth extraction. Second group of patients had 30 implants placed at the healed bone site of the premolar maxillary area, four months after tooth extraction. All implants were placed following the concept of two stages. After implant placement, healing period was 20 weeks and then implants were planned to be functionally loaded with a single metal-ceramic crown.

All study patients received the same surgical and follow up post-surgical protocol: patients were prescribed amoxicillin (500 mg every 8 hours) starting 1 day before surgery, which they continued to use for the next 7 days. Clindamycin (300 mg every 8 hours) was prescribed only for improved penicillin-sensitive patients. After surgery, patients received suitable analgesics and 0.12% chlorhexidine gluconate oral rinse until suture removal 1 week after surgery. Follow up visits were scheduled at 1, 2, 6, 12 and 20 weeks after surgery. Radiographic images were taken immediately after implant placement and the latest 20 weeks after surgery.

In this study, Osstell Mentor (Integration Diagnostics AB, Goteborg, Sweden) was used for recording Implant Stability Quotient (ISQ) measurement at

<table>
<thead>
<tr>
<th>Paired differences</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Standard error of mean</th>
<th>95% Confidence interval of the difference</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate</td>
<td>4.80</td>
<td>1.30</td>
<td>0.24</td>
<td>4.32</td>
<td>20.27</td>
<td>29</td>
<td>0.000</td>
</tr>
<tr>
<td>Healed site</td>
<td>4.67</td>
<td>0.88</td>
<td>0.16</td>
<td>4.34</td>
<td>28.91</td>
<td>29</td>
<td>0.000</td>
</tr>
</tbody>
</table>
the time of implant placement (T1) and before loading (T2) after 20 weeks of dental implant placement in both study groups.

Stability of the implants was measured based on the detection of vibration with SmartPeg (Integration Diagnostics AB, Goteborg, Sweden), the 1 cm high commercially manufactured resonance frequency probe that was screwed to the implant. SmartPeg has a magnetic material in the upper part, which forms a magnetic field with the Osstell Mentor and its values are expressed as ISQ, which may range from 1 to 100. ISQ values are derived from stiffness (N/µm) of the implant-bone connection and calibration parameters of the SmartPeg. A high ISQ value indicates high stability, whereas low value indicates low implant stability. The manufacturer's guidelines were followed on SmartPeg placement: interposition of no soft tissue, transducer tightening at 5-8 Ncm manually with specific screwdriver, none of the transducer parts in contact with neighboring teeth, and upon completion of each measurement, the transducer was completely removed from the implant. For more precise measurements, SmartPeg was replaced after every 10 measurements. Four different measurements were taken for each implant and averaged to yield the mean ISQ value.

Implant survival was evaluated according to Misch criteria (2008)\(^{16}\): implant remained in patient’s mouth, no pain on function, no mobility, no history of peri-implantitis, and less than 1 mm of crestal radiographic bone loss.

The IBM SPSS Statistics 18 program was used on statistical analysis. A paired sample t-test was used to determine whether ISQ values were statistically different between the two groups. The Kolmogorov-Smirnov test was used to determine distribution of variables.

Results

No implant failures were reported during the 6-month follow up. Results are presented in Figures 1 and 2. The mean ISQ value for immediate implant placement was 61.43 (standard deviation, SD 1.65; range ±7) at T1 and 66.23 (SD 1.81; range ±6) at T2. Implants placed at healed sites showed higher ISQ values compared to immediate implant placement.

Fig. 1. Comparison of initial and final mean implant stability quotient (ISQ) values in immediate and delayed maxillary implant placement.

Fig. 2. Comparison of initial and final implant stability quotient (ISQ) values in each patient from both study groups.
These implants had mean ISQ of 64.17 (SD 1.74; range ±8) at T1 and 68.83 (SD 1.89; range ±9) at T2. These differences in the mean ISQ values were statistically significant (p<0.001), as shown in Table 1. At 20-week follow up, the mean ISQ raised to 4.8 for immediate implant placement as compared to 4.67 for delayed sites.

Discussion

Primary stability is one of the crucial factors in determining long-term success of implant therapy. Lower primary stability is considered to be the major cause of implant failure, as well as inflammation, bone loss, traumatic injuries and biomechanical overloading17. As mentioned earlier, the main drawback of immediate implant placement compared to implants placed at healed sites is lower primary stability. Careful planning and case selection are needed to ensure implant success. Many authors report that quantity and quality of bone, implant design and surface treatment have a significant influence on increasing implant stability4,11,18. Valente et al.19 showed that better primary stability was achieved using tapered implants in comparison to the cylindrically shaped implants. In this study, we used tapered shape of implants to enhance primary stability. In addition, primary stability is the basis for determination of loading protocols20. Many studies have shown that implants whose ISQ values exceed 65 before functional loading have 99% survival rate and ISQ values of 57 to 82 have been used as threshold values for implant success11,21-24. ISQ values less than 45 indicate failure of the implant25. The ISQ values recorded in our study at T2 (66.23 for immediate compared to 68.83 for healed sites) support previous studies on the recommended ISQ values before functional loading and therefore long-term implant success. Turkyilmaz and McGlumphy26 in their study showed that 170 successful implants had a mean ISQ value of 62.6 compared to 20 failed implants with the mean ISQ value of 54.9. In this study, all implants were functionally loaded 20 weeks after implant placement. Kim et al.27 compared immediate loading with delayed loading in posterior maxilla following implant placement in healed sites, and their mean ISQ value for delayed implant loading was 66.2 compared to the value of 64.17 in our study. The same authors27 report on three implant failures, all seen in implants that were immediately loaded. Rowan et al.28 also compared ISQ values between 41 implants placed immediately and 96 implants placed at healed site. All implants were also functionally loaded 20 weeks after initial implant placement. Their results showed the mean ISQ value of 68.56 at T1 and 71.23 at T2 for immediate placement, as well as the mean ISQ value of 70.14 at T1 and 77.31 at T2 for delayed placement. Compared to the mean ISQ in the present study, their values were higher because they evaluated both jaws, where the mean ISQ values are usually higher in the mandible. Although numerous reports in the literature19,21,25,28 indicate that successfully integrated implants show an increase of ISQ values and that RFA is suitable for prediction of implant success/failure, the results by Kim et al.27 indicated that RFA measurement taken at the time of implant placement in posterior maxilla remained questionable to predict the risk of implant failure. In their study27, 46 implants placed in the posterior region of the maxilla were evaluated and they report three implant failures. The mean baseline ISQ values for these implants were 62.7, 66 and 72, respectively, and all failures occurred within the first 6 weeks after implant placement and they were immediately non-functionally loaded with single unit restorations. These results are not comparable to the results of our study due to the posterior implant site in the upper jaw, where all implants in the present study were placed in the premolar area of the upper jaw, and the protocol of delayed implant loading was followed for each implant in both study groups.

Although the mean ISQ value of immediately placed implants was lower than the mean ISQ value of implants placed at the healed sites, all ISQ values raised to a clinically successful value throughout the osseointegration process, before implant loading. It seems that there are no significant differences between the stability of implants placed immediately compared to those placed at the healed sites. As there were no implant failures in the follow up period, results of this study support the concept of immediate implant placement following tooth extraction under favorable conditions with delayed implant loading. Future studies including more patients and longer follow up are needed to assess the long-term success of immediately placed implants.
References

Sažetak

USPOREDBA STABILNOSTI DENTALNIH IMPLANTATA UGRAĐENIH IMEDIJATNOM I ODGOĐENOM TEHNIKOM U GORNJOJ ČELJUSTI ANALIZOM REZONANTNE FREKVENCije – KLINIČKA STUDIJA

M. Granić, D. Katanec, V. Vučićević Boras, M. Sušić, I. Bago Jurič i D. Gabrić

Ključne riječi: Dentalni implantati; Stabilnost implantata; Analiza rezonantne frekvencije (RFA)