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Abstract. In this paper, we show that there does not exist a quadru-
ple of positive integers a1 < a2 < a3 < a4 such that aiaj + 1 (i 6= j) are
all members of the Tribonacci sequence (Tn)n≥0.

1. Introduction

A Diophantine m–tuple is a set a1, . . . , am of positive rational numbers,
or integers, such that aiaj + 1 is a square for all 1 ≤ i < j ≤ m. The pro-
blem of finding Diophantine m–tuples has a long history. Diophantus found
the rational quadruple {1/16, 33/16, 17/4, 105/16} and only long after Fermat
found the integer quadruple {1, 3, 8, 120}. In the integer case, it is known that
there are infinitely many Diophantine quadruples of integers. Recently, there
has been remarkable progress by Dujella ([5]), who showed that there is no
Diophantine sextuple and that there can be at most finitely many Diophantine
quintuples and all of them are, at least in theory, effectively computable.
However, in the rational case, it is not even known if m must be universally
bounded. Gibbs ([7]), found a few examples with m = 6.

Natural generalizations of this problem have been studied by replacing
the squares by higher powers of fixed, or variable exponents in [1, 2, 8–10],
or by members of nondegenerate binary recurrences (un)n≥0, by Fuchs, Luca
and Szalay in [6]. In this last setting, some research was done concerning Dio-
phantine triples (a, b, c) of distinct positive integers, such that ab + 1, ac+ 1
and bc + 1 are all three members of a particular recurrence (un)n≥0. Par-
ticularly, Luca and Szalay showed that there are no Diophantine triples with
values in the Fibonacci sequence (see [11]) and that the only Diophantine
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triple with values in the Lucas companion (Ln)n≥0 of the Fibonacci sequence
is (a, b, c) = (1, 2, 3) (see [12]).

In this paper, we look at Diophantine quadruples with value in the Tri-
bonacci sequence. The Tribonacci sequence (Tn)n≥0 starts with T0 = 0 and
T1 = T2 = 1 and each term afterwards is the sum of the preceding three terms

Tn+3 = Tn+2 + Tn+1 + Tn, for all n ≥ 0.

We prove the following theorem.

Main Theorem. There do not exist positive integers a1 < a2 < a3 < a4
such that aiaj +1 = Tni,j

, with 1 ≤ i < j ≤ 4, for some integers positive ni,j.

We conjecture that in fact there are only finitely many Tribonacci tripes
(a, b, c), that is triples of positive integers a < b < c such that ab + 1, ac +
1, bc+1 are all three Tribonacci numbers, but we do not know how to attack
this question. We leave this as an open question for the reader.

2. Properties

The characteristic polynomial of the Tribonacci sequence is

Ψ(x) = x3 − x2 − x− 1.

It has a real root

α =
1

3

(

1 + (19− 3
√
33)1/3 + (19 + 3

√
33)1/3

)

and two complex conjugated roots

(2.1) β = α−1/2eiθ and γ = α−1/2e−iθ with θ ∈ (π/2, π).

Using a result of Dresden ([4]), we have the following Binet-like formula
for Tn:

(2.2) Tn = cαα
n−1 + cββ

n−1 + cγγ
n−1,

where cz = (z − 1)/(4z − 6). Dresden also showed that the contribution of
the complex roots β and γ, which have absolute value less that 1, to the
right–hand side of (2.2) is very small. More precisely, he proved that the
inequality

(2.3)
∣∣Tn − cαα

n−1
∣∣ <

1

2
holds for all n ≥ 0.

Another well-known property of the Tribonacci numbers which is useful
to us is the following (see [3]):

(2.4) αn−2 ≤ Tn ≤ αn−1 for all n ≥ 1.
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3. First observations

Let a1 < a2 < a3 < a4 be a Tribonacci Diophantine quadruple. Then

(3.1) a1a2 + 1 = Tx, a2a3 + 1 = Ty, a3a4 + 1 = Tz, a1a4 + 1 = Tw,

for some positive integers x, y, z and w. We see easily that

(3.2) 4 ≤ x < min{y, w} ≤ max{y, w} < z.

Combining the equalities in (3.1), we conclude that

(3.3) (Tx − 1)(Tz − 1) = (Ty − 1)(Tw − 1).

From inequalities (2.4) we have αn−2.5 < Tn − 1 < αn−1, for all n ≥ 4. Thus,

αx+z−5 < (Tx − 1)(Tz − 1) < αx+z−2

and

αy+w−5 < (Ty − 1)(Tw − 1) < αy+w−2.

Hence, considering equality (3.3), we deduce that

(3.4) |(x+ z)− (y + w)| ≤ 2.

In the rest of this paper, we work on the Diophantine equation (3.3) by
distinguishing two cases:

x+ z 6= y + w and x+ z = y + w.

4. The case x+ z 6= y + w

By using formula (2.2) and inequality (2.3), we have that

(4.1) Tn = cαα
n−1 + e(n), with |e(n)| < 1/2.

Thus, by expanding equation (3.3) this can be rewritten as

c2αα
x+z−2 − c2αα

y+w−2 = cα(1− e(z))αx−1 + cα(1− e(x))αz−1

+ cα(e(w)− 1)αy−1 + cα(e(y)− 1)αw−1 + e(x)

+ e(z)− e(y)− e(w)− e(x)e(z) + e(y)e(w).

Dividing both sides of the above equation by c2αα
x+z−2 and taking absolute

values, we get
∣∣∣1− α−(x+z−y−w)

∣∣∣ <
3

2cα

(
1

αz−1
+

1

αx−1
+

αy−z

αx−1
+

αw−z

αx−1

)
+

2.5

c2αα
x+z−2

<
1

αx−1

(
3

cα

(
1 +

1

α

)
+

5

2c2αα
5

)
<

8

αx−1
,(4.2)

where we have used (3.2) and that |e(n) − 1| < 3/2. On the other hand, by
inequality (3.4) and since x+ z 6= y + w, we obtain

(4.3) min
|x+z−y−w|≤2

|1− α−(x+z−y−w)| > 0.4563.
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Thus, by (3.2), (4.2) and (4.3), we get x = 4 or 5.
Now, from equation (3.3) we have the equality

(Tx − 1)Tz − TλTδ = Tx − Tλ − Tδ,

where λ = min{y, w} ≤ δ = max{y, w}. Replacing Tz, Tλ, Tδ according to
the equation (4.1) in the above equation, we conclude that

(Tx − 1)cαα
z−1 − c2αα

λ+δ−2 = cα(e(δ)− 1)αλ−1 + cα(e(λ)− 1)αδ−1 − e(λ)

− e(δ) + e(λ)e(δ) − (Tx − 1)(e(z)− 1) + 1.

Dividing both sides of above equation by (Tx−1)cαα
z−1, and taking absolute

values, we get

∣∣1− (Tx − 1)−1cαα
λ+δ−z−1

∣∣ < 1/2

αz−λ
+

1/2

αz−δ
+

9/(4cαα
4)

αz−5
<

1.4

αz−δ
,(4.4)

where we used the fact that z − 5 ≥ z − λ ≥ z − δ (by (3.2)) and that
Tx− 1 ≥ 3. However, by inequality (3.4) and since x = 4 or 5, we obtain that
|λ+ δ − z − 1| ≤ 6. We find that

(4.5) min
x∈{4,5}

|λ+δ−z−1|≤6

|1− (Tx − 1)−1cαα
λ+δ−z−1| > 0.179.

Thus, combining (3.2), (4.4) and (4.5) we conclude that z − δ = 1, 2 or 3.
Returning to inequality (3.4), we get that 5 ≤ λ ≤ 10.

Going back one more time to equality (3.3), we rewrite it as

(Tx − 1)Tz − (Tλ − 1)Tδ = Tx − Tλ.

Replacing Tz, Tδ according to (4.1), dividing by (Tλ − 1)cαα
δ−1 and taking

absolute values, we get

(4.6)
∣∣1− (Tx − 1)(Tλ − 1)−1αz−δ

∣∣ < 5

αδ−1
.

By analyzing the minimum value of the left hand side in (4.6), we get

(4.7) min
x∈{4,5}
5≤λ≤10

z−δ∈{1,2,3}

|1− (Tx − 1)(Tλ − 1)−1αz−δ| > 0.08.

Hence, from inequalities (4.6) and (4.7) we conclude that δ ≤ 7 and, in par-
ticular, that 6 ≤ z ≤ 10.

Let us record what we have proved so far.

Lemma 4.1. Let 4 ≤ x < min{y, w} ≤ max{y, w} < z be positive integers

such that

x+ z 6= y + w and (Tx − 1)(Tz − 1) = (Ty − 1)(Tw − 1).

Then

4 ≤ x ≤ 5, 5 ≤ y, w ≤ 7 and 6 ≤ z ≤ 10.
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5. The case x+ z = y + w

Substituting β and γ given by (2.1) in equation (2.2), we conclude that

(5.1) Tn − 1 = cαα
n−1 +

c̃(n)

α
1

2
(n−1)

− 1 = cαα
n−1

(
1 +

c̃(n)/cα

α
3

2
(n−1)

−
1/cα
αn−1

)
,

where c̃(n) := cβe
iθ(n−1) + cγe

−iθ(n−1).
Combining the above equation with (3.3) and performing the respective

calculations, we get an equality with dominant terms 1/αλ−1 and 1/αx−1 in
each of the two sides. Grouping these terms in one side, we obtain

1/cα
αλ−1

−
1/cα
αx−1

=
c̃(δ)/cα

α
3

2
(δ−1)

+
c̃(λ)/cα

α
3

2
(λ−1)

−
c̃(z)/cα

α
3

2
(z−1)

−
c̃(x)/cα

α
3

2
(x−1)

+
1/cα
αz−1

−
1/cα
αδ−1

−
c̃(λ)/c2α

α
3

2
(λ−1)+δ−1

−
c̃(δ)/c2α

α
3

2
(δ−1)+λ−1

(5.2)

+
c̃(x)/c2α

α
3

2
(x−1)+z−1

+
c̃(z)/c2α

α
3

2
(z−1)+x−1

+
(c̃(λ)c̃(δ)− c̃(x)c̃(z))/c2α

α
3

2
(x+z−2)

.

Multiplying both sides of (5.2) by cαα
x−1 and taking absolute values, we

conclude that

|1− α−(λ−x)| <
|c̃(δ)|/α2

αδ−x
+

|c̃(λ)|/α

α
1

2
(x−1)

+
|c̃(z)|/α5/2

αz−x
+

|c̃(x)|

α
1

2
(x−1)

+
1

αz−x
+

1

αδ−x
+

|c̃(λ)|/(cαα
6)

αδ−x
+

|c̃(δ)|/(cαα
6)

αδ−x

+
|c̃(x)|/(cαα

5)

α
1

2
(x−1)

+
|c̃(z)|/(cαα

5)

α
1

2
(x−1)

(5.3)

+
(|c̃(λ)||c̃(λ)| + |c̃(λ)||c̃(λ)|)/(cαα

15/2)

α
1

2
(x−1)

<
2.1

αδ−x
+

0.3

α
x
2

≤
2.4

αℓ
,

where ℓ := min{x/2, δ − x}. In the above inequality, we used the facts that
|c̃(n)| ≤ |cβ |/2 < 0.1, for all n ≥ 4, as well as inequalities (3.2). Thus, noting

also that |1− α−(λ−x)| ≥ 1− 1/α > 0.45, we obtain from (5.3) that αℓ < 5.4,
which leads to ℓ < 2.8.

If ℓ = x/2, we then get that x = 4 or 5. Returning to equation (3.3) and
replacing Tλ, Tδ and Tz (from the first part of (5.1)), we get an equality with
dominant terms c2αα

λ+δ−2 and (Tx−1)cαα
z−1. Separating them into one side

and putting all the rest into the other side, we obtain

(Tx − 1)cαα
z−1 − c2αα

λ+δ−2 =
c̃(δ)cαα

λ−1

α
1

2
(δ−1)

+
c̃(λ)cαα

δ−1

α
1

2
(λ−1)

+
c̃(λ)c̃(δ)

α
1

2
(λ+δ−2)

−
c̃(z)(Tx − 1)

α
1

2
(z−1)

−
c̃(δ)

α
1

2
(δ−1)

−
c̃(λ)

α
1

2
(λ−1)

− cαα
λ−1 − cαα

δ−1 + Tx.



22 C. A. GÓMEZ AND F. LUCA

As usual, we divide both sides of the above equality by c2αα
λ+δ−2 and take

absolute values to get:

|(Tx − 1)c−1
α αz−(λ+δ)+1 − 1| <

|c̃(δ)|/cα

α
3

2
(δ−1)

+
|c̃(λ)|/cα

α
3

2
(λ−1)

+
|c̃(λ)||c̃(δ)|/c2α

α
3

2
(λ+δ−2)

+
(|c̃(z)|/c2α)(Tx − 1)

α
1

2
(z−1)+λ+δ−2

+
|c̃(δ)|/c2α

α
3

2
(δ−1)+λ−1

+
|c̃(λ)|/c2α

α
3

2
(λ−1)+δ−1

+
1/cα
αδ−1

+
1/cα
αλ−1

+
Tx/c

2
α

αλ+δ−2
(5.4)

<
1

αλ−1

(
|cβ|

cαα2
+

|cβ |
2

4c2αα
8
+

3|cβ|

c2αα
13/2

+
|cβ |

c2αα
6

+
2

cα
+

7

c2αα
4

)
<

5

αλ−1
.

In the above chain of inequalities, we used inequality (3.2) in each term of the
right side and the fact that Tx ≤ T5 = 7. Further, since z− (λ+ δ) = −x and
x = 4, or 5, we get that

min
x∈{4,5}

|(Tx − 1)c−1
α αz−(λ+δ)+1 − 1| > 0.15.

Therefore, it follows from (3.2) and (5.4) that λ = 5 or 6. Once more, we
return to equation (3.3). Replacing Tz, Tδ according to (5.1), dividing by
(Tλ − 1)cαα

δ−1, and taking absolute values, we have

(5.5)

∣∣1− (Tx − 1)(Tλ − 1)−1αz−δ
∣∣ < 1

αδ−1

(
|cβ |

2cαα2
+

|cβ|

2cαα5/2
+

2

cα

)

<
3.4

αδ−1
.

Now, we estimate the minimum value of the left hand side in (5.5), where
z − δ = λ− x, x = 4 or 5, and λ = 5 or 6, to get

(5.6) min
x∈{4,5}
λ∈{5,6}

|1− (Tx − 1)(Tλ − 1)−1αλ−x| > 0.08.

Hence, from inequalities (5.5) and (5.6) we conclude that δ ≤ 7 which implies
that 6 ≤ z ≤ 9.

But, if ℓ = δ−x then λ ≤ δ ≤ x+2. In particular, x+z = λ+δ ≤ 2x+4,
and so z ≤ x+ 4. To summarize, we proved the next result.

Lemma 5.1. Let 4 ≤ x < min{y, w} ≤ max{y, w} < z be positive integers

such that x+ z = y + w and (Tx − 1)(Tz − 1) = (Ty − 1)(Tw − 1). Then

4 ≤ x ≤ 5, 5 ≤ y, w ≤ 7 and 6 ≤ z ≤ 9,

or

x+ 1 ≤ y, w ≤ x+ 2 and x+ 2 ≤ z ≤ x+ 4.
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6. The proof of the Main Theorem

6.1. Case x + z 6= y + w. Listing the values of Tx, Ty, Tz, Tw, with
x, y, z, w in the range given by Lemma 4.1, we note that (3.3) has no solutions.
So, there is no Tribonacci Diophantine quadruple that satisfies (3.1) in this
case.

6.2. Case x+z = y+w. From the first conclusion of Lemma 5.1, we obtain
by simple verification that the only solution of (3.3) is (x, y, z, w) = (4, 5, 6, 5).
Hence, from (3.1) we get

a1a2 = 3, a2a3 = 6, a3a4 = 12, a1a4 = 6,

which does not lead to an integer solution (a1, a2, a3, a4). So, there is no
Tribonacci Diophantine quadruple that satisfies (3.1) in this case.

From the second conclusion of Lemma 5.1, we can rewrite the equation
(3.3) as

(Tx − 1)(Tx+i+j − 1) = (Tx+i − 1)(Tx+j − 1),

where 1 ≤ i ≤ j ≤ 2. Using identity (5.1) in above equation, and by making
the respective calculations and simplifications, we get

1/cα
αx+j−1

+
1/cα

αx+i−1
−

1/cα
αx+i+j−1

−
1/cα
αx−1

=
c̃(x+ i)c̃(x+ j)/c2α

α
3

2
(2x+i+j−2)

−
c̃(x)c̃(x+ i+ j)/c2α

α
3

2
(2x+i+j−2)

−
c̃(x+ i+ j)/cα

α
3

2
(x+i+j−1)

−
c̃(x)/cα

α
3

2
(x−1)

+
c̃(x)/c2α

α
3

2
(x−1)+x+i+j−1

+
c̃(x+ i+ j)/c2α

α
3

2
(x+i+j−1)+x−1

+
c̃(x+ j)/cα

α
3

2
(x+j−1)

+
c̃(x+ i)/cα

α
3

2
(x+i−1)

−
c̃(x+ i)/c2α

α
3

2
(x+i−1)+x+j−1

−
c̃(x+ j)/c2α

α
3

2
(x+j−1)+x+i−1

.

Multiplying both sides of the last equation by cαα
x, and taking absolute

values, we conclude that
∣∣∣∣

1

αj−1
+

1

αi−1
−

1

αi+j−1
− α

∣∣∣∣

<
|cβ |

2/2cα

α
1

2
(4x+3i+3j−6)

+
|cβ |

α
1

2
(x+3i+3j−3)

+
|cβ |

α
1

2
(x−3)

+
|cβ |/cα

α
3

2
(x−1)+i+j−1

+
|cβ |/cα

α
3

2
(x+i+j−1)−1

+
|cβ |

α
1

2
(x+3j−3)

+
|cβ |

α
1

2
(x+3i−3)

+
|cβ |/cα

α
3

2
(x+i−1)+j−1

+
|cβ |/cα

α
3

2
(x+j−1)+i−1

.

It is easy to check that for x ≥ 6 and 1 ≤ i ≤ j ≤ 2, the above inequality is
impossible. Thus, x = 4 or 5, and from Lemma 5.1 we obtain values for y, w
and z which were already considered, and which do not lead to positive integer
solutions to equation (3.1). This completes the proof of the main theorem.
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