Antagonistic Effect of *Pseudomonas* sp. CMI-1 on Foodborne Pathogenic *Listeria monocytogenes*

Ágnes Belák* and Anna Maráz

Department of Microbiology and Biotechnology, Faculty of Food Science, Corvinus University of Budapest, Somlói út 14–16, HU-1118 Budapest, Hungary

Received: May 20, 2014
Accepted: January 26, 2015

Summary

Bacterial isolates derived from food or raw food materials of animal origin were screened for potential antagonistic activity against foodborne pathogenic *Listeria monocytogenes*. Using the agar spot method, ten out of the 94 tested bacteria showed antilisterial activity. All of the antagonistic isolates identified by sequence analysis as strains of the genus *Pseudomonas* were able to inhibit the growth of all the examined *Listeria* species including the ruminal pathogenic *L. ivanovii* and the opportunistic human pathogenic *L. innocua*. *Pseudomonas* sp. CMI-1 had the highest inhibitory effect on the growth of different *Listeria* strains. Co-culturing studies revealed that the inhibition of *L. monocytogenes* could not be achieved efficiently. Although the population of the *Pseudomonas* sp. CMI-1 strain increased by up to 10 orders of magnitude during 2 days of culturing period at 20 °C in the presence of *L. monocytogenes*, the cell count of the pathogen also increased by approx. 6 orders of magnitude. At the same time, appropriate inhibition of cell-free supernatants generated from 6-day-old cultures of *Pseudomonas* sp. CMI-1 was observed. The inhibitory compound of this antagonistic strain is presumably a chromopeptide siderophore, whose activity and production can be affected by iron supplementation, and which had an absorption maximum typical of siderophores of fluorescent *Pseudomonas* species. Production of the antilisterial substance was influenced by the oxygen concentration, as in static cultures the concentration of the siderophore was higher than in shake flask cultures.

Key words: antagonistic bacteria, *Listeria monocytogenes*, siderophore, fluorescent *Pseudomonas* sp.

Introduction

Foodborne pathogenic bacteria can cause serious illnesses via their growth or toxin production, thus leading to significant health problems of consumers. *Listeria monocytogenes* is frequently transferred by consumption of contaminated food and beverages, and is an important causative agent of foodborne diseases; therefore, inhibition or elimination of this pathogenic bacterium is an essential task for food producers. *L. monocytogenes* can be found in raw and processed foods that are contaminated during and/or after processing.

Although the *Listeria* genus comprises fifteen species, *L. monocytogenes* is the causative agent of human listeriosis almost exclusively. The number of foodborne cases caused by *L. monocytogenes* in 2012 in the European Union was 1642 including 13 in Hungary (1).

Various microorganisms are able to inhibit pathogenic microorganisms by overgrowing them or producing antibiotic metabolites (2). The native microbiota of food have the ability to inhibit the contaminating foodborne pathogens, hence these microorganisms can prevent the growth of pathogenic bacteria by different control mechanisms (predation, competitive exclusion, production of antimicrobial metabolites or quorum sensing) (3,4). Therefore, the application of specific bacteria isolated from foods or raw materials for the inhibition of pathogens can...
be promising in the food industry from a safety perspective. These microorganisms have the advantage of being part of the food natural microbiota, thus they can easily colonise the food and inhibit the pathogens when present in appropriate numbers (3). Inhibition of several foodborne pathogens can also be achieved by the application of bacteriophages (5), and in the last few years virulent bacteriophages have been effectively used for the inhibition of L. monocytogenes (6,7).

The spoilage process of milk, fresh meat and other protein-rich raw materials represents a characteristic interaction of different microorganisms when competition of saprophytic and pathogenic bacteria for the available nutrients results in the succession of populations comprising different species. Different antagonistic bacteria have already been isolated from natural or spoiling microbiota of foods or raw materials (3,8,9). Among the inhibitory bacteria several have been identified as species of Pseudomonas, and they exhibited pathogen inhibitory features (9–11).

The objective of this research is to determine the inhibitory potential of bacteria isolated from food and raw materials of animal origin against foodborne pathogenic L. monocytogenes. After performing the screening tests we focused mainly on a Pseudomonas isolate, as this bacterium showed significant inhibitory activity against not only L. monocytogenes, but other non-monocytogenes Listeria species.

Materials and Methods

Bacterial strains

Bacteria tested for inhibitory effect had been previously isolated from different processed foods or raw food materials of animal origin: among 94 isolates, 61 originated from chilled poultry meat, 9 from chilled fish, 14 from milk and 10 from liquid egg. They were maintained on peptone glucose yeast extract (PGY) agar slants (containing in g/L: peptone 5, glucose 1, yeast extract 2.5 and bacteriological agar 15) at 5 °C. Different strains of L. monocytogenes, L. innocua and L. ivanovii were identified (Table 1) and used for testing the antagonistic effect of the bacterial isolates.

Screening of bacteria for antilisterial activity

Ninety-four bacterial isolates were screened for the ability to inhibit L. monocytogenes CCM 4699 using a spot method as described below. L. monocytogenes was cultured on tryptone soya (TS) agar plate at 37 °C for 18 h, and a cellular suspension was prepared in sterile distilled water. The absorbance of the suspension was adjusted to 0.5 at 600 nm, which corresponds to approx. 10^6 CFU/mL. A tenfold serial dilution was made and 1 mL of the dilutions in the range of 10^{-1}–10^{-6} was massively inoculated onto TS and PGY agar plates. After drying the plates, 10 μL of cell suspensions (containing approx. 10^8 cells of the overnight cultures) were dropped onto the agar surface. The plates were incubated at 5, 10, 20, 25, 30 and 37 °C for 6 days. Growth inhibition was detected by formation of clearing zones around macrocolonies of the tested isolates. For determination of the optimal antagonistic/pathogenic cell ratio, the selected inhibitory strains were applied in the range of 10^{-1}–10^{7} cells/mL during coculturing on TS and PGY agar plates.

All the bacterial isolates exhibiting inhibitory effect on L. monocytogenes CCM 4699 were further tested against five other L. monocytogenes and two non-monocytogenes Listeria strains (Table 1) by the spot method.

Determination of the antagonistic effect of the selected bacterial isolates in culture broth

Co-culturing studies using TS and PGY broths were carried out in static and shake flask cultures. Overnight cells of L. monocytogenes CCM 4699 and the selected bacterial strains were suspended in sterile distilled water and the absorbance was adjusted to 0.5 at 600 nm. After preparing tenfold serial dilutions, the culture media were inoculated with the cells of pathogenic and antagonistic bacteria in volume ratios of 1:1, 1:10, 1:100 and 1:1000, respectively. The flasks were incubated for 2 days at 20 °C under shaking (either at 140 or 180 rpm) and static conditions. Samples were taken after 24 and 48 h of incubation, and cell counts were determined by the spread plate method using PGY and Listeria selective COMPASS® agar (Biokar Diagnostics, Beauvais, France) plates.

| Table 1. List of Listeria strains used for the analysis of the antagonistic effect of bacterial isolates |
|---|---|---|
| Code | Species | Characteristics |
| CCM 4699 (C1) | Listeria monocytogenes | Reference strain, serovar 4d |
| H3 | Listeria monocytogenes | Meat isolate |
| L4 | Listeria monocytogenes | Cheese isolate |
| L23 | Listeria monocytogenes | Cheese isolate |
| T2 | Listeria monocytogenes | Unknown origin |
| P1 | Listeria monocytogenes | Unknown origin |
| CCM 4030 (C6) | Listeria innocua | Type strain, serovar 6a |
| CCM 5884 (C7) | Listeria ivanovii | Type strain, serovar 5 |

CCM=Czech Collection of Microorganisms (Brno, Czech Republic)
pore size membrane filters. For the agar diffusion technique, the *L. monocytogenes* CCM 4699 was inoculated on the surface of TS and PGY agar plates at a final count of about 10^6 CFU/mL and allowed to dry at room temperature. Wells (7 mm) were cut in the inoculated agar using a sterile metal cork borer, and filled with 100 μL of the supernatant. The plates were left at 5–10 °C for 2 h to allow diffusion of the compounds from the tested supernatants into the agar media, and then incubated for 24–48 h at 20 °C. Absence or presence of any inhibitory zone was recorded.

Effect of the inhibitory substances on 10^6 of *L. monocytogenes* CCM 4699 cells was tested by measuring the growth in microplate cultures using a Multiskan Ascent (Thermo Electron Corporation, Thermo Fisher Scientific, Waltham, MA, USA) instrument. Wells of the plates were filled with 300 μL of liquid consisting of 75 μL of fourfold strength culture broth, 75 μL of *L. monocytogenes* cell suspension and cell-free supernatants of the test strain in four different (150, 100, 50 and 25 μL) volumes. Final volumes were adjusted to 300 μL by adding distilled water. The amounts of the cell-free supernatants corresponded to 1/2, 1/3, 1/6 and 1/12 dilutions. Inoculated microplates were incubated at 20 °C and the absorbance values at 595 nm were recorded automatically every 30 min during 24 days of incubation and siderophore production was determined by measuring the absorbance at 405 nm as described in Materials and Methods.

Protease and heat treatments of the cell-free supernatants

Inhibitory effect of the cell-free supernatants prepared from 1-, 3- and 6-day-old cultures of the tested bacteria incubated at 20 °C was determined after: (i) protease treatment by one of the following (in μg/mL): proteinase K (Sigma-Aldrich, St. Louis, MO, USA) 200, protease from *Streptomyces griseus* (Sigma) 200, trypsin from bovine pancreas (Sigma) 100 and α-chymotrypsin from bovine pancreas (Sigma) 100, at 37 °C for 90 min, and (ii) heat treatment at 95 °C for 5 and 30 min, or at 121 °C for 15 min. The growth of *L. monocytogenes* in the presence of the cell-free supernatants was determined by Multiskan Ascent (Thermo Electron Corporation) instrument as described above.

Detection of siderophore production

Bacterial strains were cultivated in PGY and TS broths and their growth was monitored by photometric determination of cell density at 600 nm. Cell-free supernatants were prepared from the cultures after 1, 3 and 6 days of incubation and siderophore production was determined by measuring the absorbance at 405 nm as described by Manninen and Mattila-Sandholm (12).

Identification and characterisation of the antagonistic bacteria

Antagonistic isolates were identified at species level by direct sequencing of the amplified *rpoB* gene or the 16S rDNA PCR products, generated by the LAPS-LAPS27 and the 27f–1492r primer pairs, respectively (13,14), and alignment of the generated sequences with those deposited in the GenBank was done by the application of the ClustalW program (UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland).

The bacterial isolate with the highest inhibitory effect was further characterised by inoculating it onto PGY agar plates and incubating at 5, 10, 15, 20, 25, 30, 37 and 45 °C for 3 days to determine its optimal growth temperature. The isolate was also inoculated onto Cetrimid agar (Merck, Darmstadt, Germany), Pseudomonas Agar F (corresponds to King B) and Pseudomonas Agar P (King A) (Merck, Darmstadt, Germany), and after incubating at 20 and 25 °C, the growth and pigmentation were recorded, while its fluorescence was detected under UV light at 365 nm.

Results and Discussion

Screening for the antagonistic effect of bacterial isolates against different *Listeria* species

Altogether 94 bacterial isolates derived from different processed foods or raw materials of animal origin (chilled poultry meat or fish, milk and liquid egg) were tested for the inhibitory effect against *L. monocytogenes* CCM 4699 strain. For screening the inhibitory effect of the isolates, co-culturing investigations on PGY and TS agar plates were performed as described in Materials and Methods. Using different counts of *L. monocytogenes* CCM 4699, it was observed that the biggest clearing zones (highest inhibition) were formed when the number of the pathogen was 10^6 CFU/mL. Ten out of the 94 isolates were able to suppress the growth of *L. monocytogenes* CCM 4699, which originated from chilled stored poultry meat (four isolates), milk (three isolates), chilled fish (two isolates) and liquid egg (1 isolate) (Table 2) (15). The most efficient growth inhibition was detected at 20 °C, while the isolates belonged to either the psychrotrophic or mesophilic group of microorganisms according to their optimal growth temperatures.

Testing the antagonistic interactions of the ten inhibitory isolates with eight *Listeria* strains belonging to *L. monocytogenes* and non-*monocytogenes* *Listeria* species (Table 1) indicated significant differences concerning either the sensitivity or the inhibitory effects of the investigated strains, as shown in Fig. 1. *Pseudomonas* CMI-1 isolate showed the best inhibitory effect as it inhibited all the tested *Listeria* strains. Sensitivity of the *L. innocua* CCM 4030 strain was very similar to the majority of the investigated *L. monocytogenes* strains. On the other hand, *L. ivanovii* ssp. *ivanovii* CCM 5884 was the most sensitive, as all of the tested antagonistic strains were able to inhibit it, while *L. monocytogenes* P1 proved to be the most resistant. *L. ivanovii* is a ruminal pathogenic bacterium, although it has recently been found that it is a newly emerging opportunistic human pathogenic bacterium (16), therefore it can be considered as a feed- and food-contaminating target of biocontrol bacteria.

Identification and characterisation of the most efficient antagonistic isolates

The ten selected antagonistic bacteria with the best inhibitory effect were identified by sequencing either the
P. fredericksbergensis or P. antarctica (15). It is worth mentioning that one L. monocytogenes strain (P1) was resistant against all of the four P. aeruginosa isolates, however, because of the opportunistic human pathogenic nature of this species, these isolates were excluded from further studies. *Pseudomonas* CMI-1 strain, which had the best inhibitory effect on the growth of *Listeria* strains, could not be identified with high certainty at species level. As similarity value between the aligned rpoB DNA sequence of this isolate and *P. fredericksbergensis* or *P. antarctica* strains deposited in the DataBank was only 96 %, more detailed genotypic and phenotypic characterisation is required for the exact identification of the isolate. This is supported by the fact that, based on our investigations, this strain is different from both of the most closely sequence-related species in several characteristics. For example, the CMI-1 isolate produces fluorescent pigment(s) on King B agar property typical of neither *P. antarctica* (17) nor *P. fredericksbergensis* (18).

Table 2. Identification of the antagonistic bacteria isolated from different raw food materials of animal origin

<table>
<thead>
<tr>
<th>Code</th>
<th>Origin</th>
<th>Growth temperature/°C</th>
<th>Identified species</th>
<th>Similarity/%</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-131</td>
<td>chilled-stored chicken meat</td>
<td>5–30</td>
<td>P. fluorescens</td>
<td>99 (rpoB)</td>
<td>15</td>
</tr>
<tr>
<td>TM-161</td>
<td>chilled-stored chicken meat</td>
<td>5–30</td>
<td>P. fluorescens</td>
<td>99 (rpoB)</td>
<td>15</td>
</tr>
<tr>
<td>TS-17</td>
<td>chilled-stored chicken skin</td>
<td>5–30</td>
<td>P. fluorescens</td>
<td>99 (rpoB)</td>
<td>15</td>
</tr>
<tr>
<td>TC-4</td>
<td>chilled-stored chicken</td>
<td>5–30</td>
<td>P. fluorescens</td>
<td>99 (rpoB)</td>
<td>15</td>
</tr>
<tr>
<td>TE-8</td>
<td>liquid egg</td>
<td>5–30</td>
<td>P. fluorescens</td>
<td>100 (16S rRNA)</td>
<td>This study</td>
</tr>
<tr>
<td>TMI-7</td>
<td>milk</td>
<td>5–37</td>
<td>P. aeruginosa</td>
<td>100 (16S rRNA)</td>
<td>This study</td>
</tr>
<tr>
<td>TMI-9</td>
<td>milk</td>
<td>5–37</td>
<td>P. aeruginosa</td>
<td>100 (16S rRNA)</td>
<td>This study</td>
</tr>
<tr>
<td>TF-14</td>
<td>chilled-stored fish</td>
<td>15–30</td>
<td>P. aeruginosa</td>
<td>99 (16S rRNA)</td>
<td>This study</td>
</tr>
<tr>
<td>TF-25</td>
<td>chilled-stored fish</td>
<td>20–37</td>
<td>P. aeruginosa</td>
<td>100 (16S rRNA)</td>
<td>This study</td>
</tr>
<tr>
<td>CMI-1</td>
<td>milk</td>
<td>5–30</td>
<td>P. fredericksbergensis or P. antarctica</td>
<td>96 (rpoB)</td>
<td>This study</td>
</tr>
</tbody>
</table>

Fig. 1. Inhibition of different *L. monocytogenes*, *L. innocua* and *L. ivanovii* strains (Table 1) by the screened antagonistic bacterial isolates (Table 2)

Inhibition of *L. monocytogenes* by *Pseudomonas* sp. CMI-1 in co-culture experiments

The optimum cell count of *Pseudomonas* sp. CMI-1 for the inhibition of *L. monocytogenes* L4 and CCM 4699 strains was determined by co-culturing the CMI-1 and the *Listeria* strains on TS and PGY agar plates. As illustrated in Fig. 2, maximum inhibition against *L. monocytogenes* was achieved when cell count of the CMI-1 strain was three orders of magnitude higher than that of the *Listeria* strains. The minimum inhibition could be detected when the difference was only one order of magnitude or less. However, minimum inhibitory cell count depended on the *Listeria* strain tested.

Interaction of the *Pseudomonas* sp. CMI-1 and *L. monocytogenes* CCM 4699 strains was also studied in liquid cultures by co-culturing these strains in PGY and TS broths in different ratios as described in the section Materials and Methods. Results shown in Fig. 3 indicate that increasing the ratio of CMI-1 slightly inhibits the growth of *L. monocytogenes* after two days of incubation. Decrease in the count of the pathogen was achieved when the cell count of *Pseudomonas* sp. was ten to one hundred times higher than that of *L. monocytogenes*. In these cases, *Listeria* cell number decreased by 1 or 2 orders of magnitude, while when number of the interacting bacteria was al-
most the same, the growth rate of the pathogen was not affected. Significant differences between interactions of *L. monocytogenes* with *Pseudomonas* sp. CMI-1 using PGY and TS media for culturing were not observed. It can be concluded that co-culturing of *Pseudomonas* sp. CMI-1 and *L. monocytogenes* CCM 4699 in liquid broth did not result in significant growth inhibition of the pathogen. Despite the fact that the cell number of *L. monocytogenes* decreased in the presence of the *Pseudomonas* CMI-1 strain, it was not able to outcompete *L. monocytogenes*.

Effect of cell-free supernatant on the growth of *L. monocytogenes*

When the effect of the cell-free supernatant of *Pseudomonas* CMI-1 strain was tested on *L. monocytogenes* CCM 4699 by the agar well diffusion test, no formation of an inhibition zone was detected. Therefore, a more sensitive growth inhibition test was used that monitored the growth of the pathogen in the presence of cell-free supernatant in microplate culturing experiments, where cells of the pathogen coped directly with the potential extracellular inhibitory compound(s) of the antagonist, decrease in the growth of *L. monocytogenes* was detected, depending on the volume of the supernatant generated after 24 h of incubation. Applying the highest volume (1:2 dilution) of the supernatant, growth of *L. monocytogenes* was inhibited by approx. 40 % (Fig. 4). Moreover, differences in the inhibition were also observed if supernatants obtained from 1-, 3- and 6-day-old antagonistic cultures were applied in different ratios; 6-day-old supernatants had the strongest inhibition when applied in the highest ratio (data are not shown).

Characterisation of metabolites responsible for the antagonistic effect of *Pseudomonas* sp. CMI-1

As cell-free supernatants of *Pseudomonas* sp. CMI-1 cultivated for 6 days resulted in total growth inhibition of *L. monocytogenes* CCM 4699, we investigated whether the responsible extracellular metabolites could be digested by proteases of different origin or if they could be inactivated by shorter or longer heat treatments at different temperatures (5 or 30 min at 95 °C, and 15 min at 121 °C). Fig. 5 shows that digestion of the supernatants by four different...
ent proteases (protease from Streptomyces griseus, proteinase K, trypsin and α-chymotrypsin) did not decrease the inhibitory activity, indicating that a protein is not responsible for growth inhibition or resistance against the applied protease treatments. In the case of short (5 min) heat treatment at 95 °C, no change was observed in the inhibition; however, treatment of the supernatants at this temperature for 30 min and at increased temperature (121 °C) for 15 min resulted in considerable but not complete elimination of the inhibitory activity (Fig. 6). A possible explanation could be that the antilisterial compound is relatively heat stable or more than one compound is responsible for the inhibition.

It has been frequently reported that siderophore production plays an important role in the antagonistic effect of Pseudomonas species (19), therefore, we checked for the presence of siderophore(s) in the supernatants by detecting the absorbance in the range of 400–410 nm. A peak could always be detected at 405–410 nm in the antilisterial presence of siderophore(s) in the supernatants by detection of iron chelators was also influenced by the concentration of iron (25) and the presence of different organic carbon sources in the culture medium (26). Production of pyoverdine and/or pyochelin increased significantly under iron limitation, while the highest concentration of siderophores was observed in an iron-free standard succinate medium containing succinate as the sole carbon source (25,26).

In our study, we compared the growth of cells and siderophore production in TS and PGY culture media. As it is shown in Fig. 7, TS broth supported the growth of cells better than PGY broth both in aerated and static cultures; however, the specific siderophore production, calculated as the ratio of siderophore content and cell density, was higher in PGY. This could be explained by the fact that TS broth is a more complex medium than PGY; therefore, more nutrients are available for the cells during their growth. In PGY broth the amount of accessible nutrients is lower, which can contribute to the production of stress-related substances. Moreover, the digested soya bean component contains low levels of iron, and in its presence the production of important virulence factors, such as siderophores, is partially inhibited.

When cells in PGY static culture were stressed by two rate-limiting factors (i.e. oxygen and iron availability), they responded by considerably increased siderophore production. This supports the observations of Rachid and Ahmed (26) who found that siderophore biosynthesis of Pseudomonas isolates was affected by different environmental parameters, and iron limitation was the most significant.

Conclusions

Raw food materials of animal origin can harbour bacteria that are able to inhibit the growth of foodborne pathogenic bacteria, like Listeria monocytogenes. The Pseudomonas sp. CMI-1 strain originating from milk was selected as the most promising antagonistic bacterium, which was able to inhibit all the tested pathogenic strains of the genus Listeria. Antagonistic effect of this strain was demonstrated in contact inhibition tests against L. monocytogenes; however, because direct application of the an-
tagonistic cells for biocontrol purposes in food might lead to a spoilage-like effect, the extracellular nature of the growth inhibitory metabolites has been investigated too. Cell-free supernatants generated under different growth conditions also inhibited L. monocytogenes, and siderophores were detected as a group of potentially inhibitory compounds. However, heat- and protease-resistant compounds might also be responsible for growth decline of foodborne pathogenic L. monocytogenes. The identified and well characterised inhibitory compound(s) can be applied in food production to combat L. monocytogenes and in the agrochemical segment for the inhibition of pathogenic bacteria like L. monocytogenes. This bacterium is an ubiquitous microorganism which can be found not only in food and raw materials but also in/on plants. Earlier studies have demonstrated that pathogens may colonise the internal tissues of plants, and consumption of such contaminated vegetables can cause health hazard.

Acknowledgement

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/1-11-2012-0001 ‘National Excellence Program’.

References

