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Abstract

Clinical examination is non-invasive, but has well-recognized limitations in

detecting compensated and uncompensated low flow states and their severity.

This paper describes the principles of near infra-red spectroscopy (NIRS) and the

basis for its proposed use, in hypovolaemic, cardiogenic and septic shock, for

assessing global and regional tissue oxygenation. The vascular occlusion test is

explained. Limitations of NIRS, current controversies, and what is necessary in

the future to make this technology a part of the initial and ongoing assessment of

a patient, are discussed as well. The ultimate goal of such techniques is to prevent

miss-assessment and inadequate resuscitation of patients, two major initiators in

the development of multisystem organ failure and death.
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Introduction

Oxygen delivery (DO2) is acutely reduced in all types of shock. Consequently,

tissue hypoxia occurs. Sustained tissue hypoxia is one of the most important

factors in the pathophysiology of organ dysfunction. (1) Maintenance of DO2 is

essential to preserve organ function, and sustained low DO2 is a path to organ
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failure and death. (2,3) Monitoring of global systemic and tissue oxygenation in

critically ill patients appears indispensable for their treatment. (4) Cardiogenic,

hypovolaemic and obstructive types of shock are characterized by decreased DO2,

but a preserved oxygen extraction ratio. In septic shock, tissue oxygen extraction

capability is altered so that the critical oxygen extraction ratio is typically

decreased. (2,3)

Clinical signs of tissue perfusion adequacy (capillary refill, mottling of the skin,

mental status, heart rate, pulse pressure, systemic blood pressure and urine

output) are not sufficiently sensitive indicators of tissue perfusion. (5-7)

Normalisation of these traditional clinical indices, after initial resuscitation, does

not exclude on-going inadequate tissue perfusion. (8) The search for a more

sensitive monitoring technology continues. (9) The ideal monitoring method

should perform as a sensitive, early index of altered state of oxygen delivery and

should also provide a goal for the treatment of low flow states, even before clinical

signs are evident.

Mixed venous oxygen saturation (SvO2) was traditionally used to estimate global

tissue oxygenation (oxygen delivery/oxygen consumption (VO2) ratio). But

catheterization of the pulmonary artery is costly, has inherent risks and its

usefulness remains under debate. (10-12) Not surprisingly, the monitoring of

central venous oxygen saturation (ScvO2) was suggested as a simpler and cheaper

assessment of global DO2 to VO2 ratio, (13) and was used successfully as a

hemodynamic goal in the treatment of patients with septic shock and severe

sepsis. (14) ScvO2 of 70% was subsequently included in the international guidelines

as a hemodynamic goal for the management of severe sepsis and septic shock. (15)

Although the relationship between systemic and peripheral circulation is not

always well defined, the assessment of peripheral perfusion during peripheral

cooling-induced vasoconstriction in healthy volunteers has shown that profound

changes in peripheral circulation can occur independently of systemic

haemodynamic parameters, such as blood pressure and cardiac output. (16)

Regional perfusion changes can occur significantly earlier than traditional global

indices. (17) The rationale of peripheral perfusion monitoring is based on a

concept that peripheral tissues are the first to reflect hypoperfusion during shock

and the last to reperfuse during resuscitation. (18) Examples of technologies which

may take advantage of regional changes and which may help identify these states,

include transcutaneous partial pressure of oxygen (pO2) and carbon dioxide
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partial pressure (pCO2), subcutaneous and interstitial pH, pCO2, and pO2

measurements, gastric and sublingual tonometry, and near-infrared absorption

spectroscopy (NIRS). (9)

Principles of NIRS

The concept of NIRS has already been available during the second half of 20th

century. (19) Visible light (450—700 nm) penetrates tissue only short distances

because of strong attenuation by various tissue components. However, in the near

infra-red (NIR) spectrum (700—1100 nm) photons are capable of deeper

penetration (several centimetres or more), even through bone. Metalloproteins

(haemoglobin, myoglobin and mitochondrial cytochrome oxidase) act as

chromophores and absorb NIR radiation differently based on their concentration

and interaction with oxygen. The Beer—Lambert law provides the physical and

mathematical basis for NIRS. This law states that light passing through a solution

of a coloured compound (chromophore) is absorbed by the compound resulting in

a reduction in the intensity of the emerging light. (20) A probe with a near infrared

light source is placed on the skin where it transilluminates tissues and detects

reflected light.

The basis for the use of NIRS to monitor changes in haemoglobin (Hb) and

oxyhaemoglobin (HbO2), and to monitor states of tissue oxygenation, lies in the

tissue compartmentalisation of blood volume, which in most organ systems is

believed to be proportioned among the arteriolar, capillary, and venular

compartments in a ratio of 10:20:70% respectively. (21,22) Consequently, the

majority of the NIRS signal, reflects the venous or post-extraction compartment

of any particular tissue. This phenomenon provides valuable information on tissue

oxygen consumption or extraction in much the same way as mixed venous

haemoglobin oximetry is used from the pulmonary artery catheter. The NIR value

of haemoglobin oxygen saturation from the tissue (StO2) thus represents spatially

integrated information from arterioles, capillaries, and venules, which are

normally weighted towards the venous compartment. Larger vessels (>1mm) are

assumed to be excluded from StO2 determination. (23)

Clinical and technical considerations in NIRS
measurements
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Microcirculatory perfusion and tissue oxygen utilization are affected by sepsis and

shock. (24,25) These derangements can be studied non-invasively using NIRS, a

technique that is able to determine the oxygenation status of tissue haemoglobin.

Decreased StO2 reflects the presence of hypoperfusion and has been used

clinically to guide resuscitation during hypovolaemic shock. (26) Thus,

determination of regional StO2 might provide an early warning index of global

hypoperfusion prior to significant alterations in vital signs or critical DO2 and

help the clinician to verify that oxygen delivery to the tissue had been restored to

a desired level.

Measurements of StO2 are noninvasive, continuous, bedside and simple. NIRS

equipment is becoming light and easy to handle – all these characteristics make

this method fit for emergency and critical care use.

The anatomical advantages of the thenar eminence are: the easy bedside

approach; the thenar eminence can be easily subjected to the vascular occlusion

test; has relatively thin skin and fat tissue over the muscle; and fibrous strands in

its subcutaneous tissue limit oedema formation. All these characteristics make the

thenar eminence the best possible setting for StO2 measurements, even in

critically ill or obese patients.

In a human validation study, a significant correlation between NIRS measured

StO2 and venous oxygen saturation (r=0.92, p < 0.05) was reported, where the

venous effluent was obtained from a deep forearm vein that drained the

exercising muscle. (27) StO2 was minimally affected by skin blood flow. Changes of

limb perfusion affect StO2: skeletal muscle StO2 decreases during norepinephrine

and increases during nitroprusside infusion.

Choosing the right probe is crucial. The distance between the source of NIR light

and the receiver of reflected light defines the depth and the volume of the

transilluminated tissues under the probe. If one uses a 15 mm probe, penetration

is only 7,5 mm, thus the measurements will be importantly influenced by the skin

and subcutaneous tissue oxygenation and will not represent skeletal muscle

oxygenation. At our department we use deep penetrating probes (25 mm probes)

and probes with filtering of superficial structures. (28)

The discriminatory power and predictive ability of StO2 can be improved by

measuring the response to an ischaemic challenge. The vascular occlusion test

(VOT) is a provocative test in which StO2 is measured at a peripheral site (such as
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the thenar eminence) whilst a transient rapid vascular occlusion is performed

(above elbow cuff inflation to 260 mmHg) for either a defined time interval or until

a pre-defined StO2 value is reached. During the vascular occlusion test, several

StO2 parameters can be studied: average StO2 before arterial cuffing/occlusion;

StO2 downslope during cuffing- the deoxygenation rate (∆down StO2)/sec); StO2

upslope (∆up StO2)/sec); hyperaemia (overshoot of StO2 above baseline) (figure 1).

The deoxygenation rate is a surrogate for tissue oxygen consumption. (25) StO2

and arterial oxygen saturation measured by transcutaneous pulse oxymetry can

be used to calculate fractional tissue oxygen extraction according to the formula:

(SaO2 – rStO2)/SaO2. (29)

NIRS for evaluation of skeletal muscle tissue
oxygenation in hypovolaemic shock

During hypovolaemic shock, blood flow is diverted from less important tissues to

vital organs leading to decreased blood flow in muscles. Activation of the

sympathetic nervous system should decrease thenar muscle blood flow, with

increased oxygen extraction and decreased tissue haemoglobin content. (18,30) In

this setting, NIRS may thus act as a sensor of the vascular response to

hypovolaemia. This hypothesis was tested in trauma patients and the

perioperative period.

Already in the late 1990s, at the University of Texas Houston Medical School, a

team of surgical intensivists collaborated with bioengineers and health

information experts to improve traumatic shock resuscitation. They tested the

utility of various monitors in this process of care. One such monitor was StO2.

Throughout resuscitation, skeletal muscle StO2 appeared to be quite responsive to

changes in systemic DO2. SvO2 derived from the pulmonary artery (PA) catheter

showed only a small rise from roughly 70 to 78% during the resuscitation process,

changes in StO2 showed a strong correlation with changes in DO2, base deficit,

and lactate (r = 0.95 vs. 0.83 vs. 0.82, respectively) but only modest correlation

with SvO2 (r = 0.55). (26)

Furthermore, trauma patients who develop multiorgan dysfunction (MODS) or

die, have a lower StO2 within 1 hour of admission, and StO2 is a stronger predictor

of MODS or death than other diagnostic modalities. (31,32) A low StO2 within 1

hour of admission identifies trauma patients who will require blood transfusion
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within the next 24 hours. (33)

An area of central interest in anaesthesia is the ability of NIRS measurements in

the thenar muscle to detect blood loss. Data are conflicting. A 500-ml blood loss at

blood donation in awake volunteers did not lead to changes in StO2. (34) A possible

explanation could be that tissue haemoglobin and oxygenation at the thenar

eminence are not affected by blood loss within the capacity of the compensatory

mechanisms of hypovolaemia. However, StO2 during the perioperative period in

cardiac surgery is lower in patients who develop certain postoperative

complications. (35)

NIRS for evaluation of skeletal muscle tissue
oxygenation in cardiogenic shock

Measurement of mixed venous oxygen saturation (SvO2) from the pulmonary

artery is used for calculations of oxygen consumption and has been advocated as

an indirect index of tissue oxygenation and prognostic predictor in critically ill

patients. (36-39) We studied skeletal muscle StO2 in severe left heart failure with

or without additional severe sepsis, and compared it with SvO2. (40) The

hypothesis was that skeletal muscle StO2 could estimate SvO2 in patients with

severe left heart failure and preserved oxygen extraction capability (without

severe sepsis/septic shock).

In patients with severe left heart failure (n = 24) StO2 was lower than in healthy

volunteers (58 ± 13% and 84 ± 4%, respectively; p < 0.001). There was a good

correlation between StO2 and SvO2 (figure 2), and between SvO2 and plasma

lactate (r = 0.689, p = 0.002, r = -0.522, p = 0.009, respectively). StO2 and SvO2

tracked well with each other over time, although StO2 overestimated SvO2 with a

bias of – 2.3% and a precision 4.6%.

The result confirmed the hypothesis that skeletal muscle StO2 values in patients

with severe left heart failure could be used for fast non-invasive SvO2 estimation;

and the trend of StO2 may be substituted for the trend of SvO2. StO2

overestimated SvO2 (bias -2.5%). (40) Overestimation may be due to the NIRS

method, which does not discriminate between compartments. It provides a global

assessment of oxygenation in all vascular compartments (arterial, venous and

capillary) in the sample volume of underlying tissue.
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Our data in patients with severe heart failure/ cardiogenic shock without severe

sepsis/ septic shock are supported by previous work from Boekstegers et al. who

measured the oxygen partial pressure distribution in the biceps muscle. (41) They

found low peripheral oxygen availability in cardiogenic shock compared to sepsis.

In cardiogenic shock, skeletal muscle oxygen partial pressure correlated with

systemic oxygen delivery (r=0.59, p < 0.001) and systemic vascular resistance

(r=0.74, p < 0.001). In a recently published study in patients experiencing

cardiogenic shock, significant correlations between StO2 values and cardiac index

(CI) (Spearman r=0.81; p < .0001), systemic vascular resistance index (r=-0.45; p <

.0001), and mean arterial pressure (r=0.58; p < .0001) were found. Linear

regression analysis revealed that CI could be calculated using the following

equation: CI = StO2/24.0. (42)

NIRS for evaluation of skeletal muscle tissue
oxygenation in septic shock

In sepsis, StO2 values can be at the higher end of the normal spectrum (40,43,44)

or markedly low. (45,46) In early stage septic shock, low StO2 values (i.e., StO2 <

75%), when measured on the thenar eminence, specifically predict extremely low

ScvO2 values and higher mortality. (46,47)

Our research group confirmed De Blasi group’s findings (48) that thenar muscle

tissue deoxygenation during stagnant ischaemia at admission and after

haemodynamic stabilisation is significantly slower in septic shock patients

compared to severe sepsis, localized infection and healthy controls. (44) The rate

of StO2 decrease correlated tightly with severity of septic shock (Sequential Organ

Failure Assessment score) and weakly with norepinephrine requirement, plasma

lactate and C-reactive protein concentrations. The muscle tissue deoxygenation

rate increased with improvement of sepsis in the septic shock and severe sepsis

group. (44) These results are in accordance with those reported in a baboon septic

shock model. (49) These data were interpreted as being consistent with the

presence of a defect in the ability of the enzyme to accept electrons from oxygen

or a limitation in the availability of the reducing equivalent. Similar results were

reported in the dog gracilis muscle preparation after treating the animals with

endotoxin. (50)

This local oxygen consumption limitation may be due to two different but
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cumulative mechanisms: first – a local dependency on low flow or inadequate flow

conditions (46) or second – a low oxygen extraction due to mitochondrial

dysfunction and/or alteration of oxygen diffusion (interstitial oedema). (25,46,48)

Although the mechanism involved in sepsis resuscitation is not yet fully

understood, it is clear that the persistence of impaired peripheral perfusion is

associated with worse patient outcomes. (51)

In the previously described study of patients with severe left heart failure, with or

without additional severe sepsis/septic shock (40), we hypothesized a

disagreement between StO2 and SvO2 in the group of patients with sepsis,

because in patients with decreased oxygen extraction capability (with severe

sepsis/septic shock), blood flowing through upper limb muscles could importantly

contribute to higher venous oxygen saturation in the superior vena cava. The

results confirmed the hypothesis (figure 2). StO2 correlated neither with SvO2 nor

with serum lactate.

The high StO2 / low SvO2 seen in severe sepsis and septic shock, suggest blood

flow redistribution. StO2 probably correlates with ScvO2 which is measured in the

mixture of blood from head and both arms. (52) In healthy resting individuals

ScvO2 is slightly lower than SvO2. (53) This relationship changes in periods of

cardiovascular instability. Scheinman and co-workers performed the earliest

comparison of ScvO2 and SvO2 in both haemodynamically stable and shocked

patients . (54) In stable patients, ScvO2 was similar to SvO2. In patients with a

failing heart, ScvO2 was slightly higher than SvO2 and in shock patients the

difference between SvO2 to ScvO2 was even more expressed (47.5% ± 15.11% vs.

58.0% ± 13.05%, respectively, p < 0.001). Lee and co-workers described similar

findings. (55) Other more detailed studies in mixed groups of critically-ill patients

designed to test if the ScvO2 measurements could substitute the SvO2 showed

problematically large confidence limits (56) and poor correlation between the two

values. (57)

The hypothesis that the slower skeletal muscle StO2 deoxygenation rate (more

disturbed tissue oxygen extraction) is proportional to the ScvO2-SvO2 difference

in patients with severe heart failure with additional sepsis/septic shock, was

confirmed by our more recent study. (58) We showed that these patients had a

clinically considerable ScvO2-SvO2 discrepancy. Monitoring ScvO2 is a simpler

and cheaper assessment of global DO2 to oxygen consumption ratio, but its use as

a treatment goal in patients with severe heart failure, with additional sepsis/septic
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shock, is questionable. Higher levels of ScvO2 in patients in the latter stages of

septic shock were found in the non-survivors. (59) These findings raise concerns

about high levels of ScvO2 in patients with septic shock. Consequently, ScvO2 or

probably StO2, as a treatment goal, provides a false favourable impression of

adequate body perfusion. Future studies that implement NIRS into treatment

algorithms are ongoing.

Summary

The present review provides a foundation for understanding the potential value

and limitations of NIRS as a tool in the assessment of patients with different types

of shock. Despite continuous controversies, skeletal muscle NIRS clearly takes

monitoring from a global to a local level, from invasive to non-invasive, and closer

to the entrance to the hospital.

In low cardiac output states, with preserved oxygen extraction ratio (cardiogenic,

hypovolaemic types of shock), StO2 measurements correlate well with invasive

global indexes of oxygen delivery and consumption. In hypovolaemic shock and in

the perioperative period, StO2 is a good prognostic tool. In septic shock the

oxygen extraction capability is altered, and StO2 correlates better with ScvO2 than

with SvO2, however, correlation coefficients are relatively low. In patients with

severe sepsis and severe heart failure StO2 did not estimate SvO2, but, in the end,

data suggest that in patients in early phase of septic shock low StO2 predicts low

ScvO2 and higher mortality.

Dynamic StO2 monitoring, with vascular occlusion test, is a promising technique

with the potential of insight into microvascular and mitochondrial function. Used

in conjunction with global measures of oxygen delivery, it could provide an

integrated approach to haemodynamic resuscitation in different types and phases

of shock.

Figure 1. Vascular occlusion test: An original thenar saturation from the tissue

(StO2) recording after arterial upper arm cuffing, and cuffing release (upper arm

ischaemia reperfusion test). During the upper arm ischaemia reperfusion test,

several StO2 parameters can be studied: average StO2 before arterial

cuffing/occlusion; StO2 downslope during cuffing-the deoxygenation rate (∆down

StO2)/sec); StO2 upslope (∆up StO2)/sec); hyperaemia (overshoot of StO2 above

baseline). Reproduced from Mozina and Podbregar. (25)
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Figure 2. Correlation between skeletal muscle saturation from tissue (StO2) and

mixed venous oxygen saturation (SvO2). Group A includes patients with severe left

heart failure without severe sepsis/septic shock, and group B includes patients

with primary heart disease and additional severe sepsis/septic shock. A

statistically significant correlation was found in group A (r = 0.689, p = 0.002) but

not in group B (r = -0.091, p = 0.60). StO2, tissue oxygenation; SvO2, mixed venous

oxygen saturation. Modified from Podbregar and Mozina. (40)
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