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The importance of hydroelastic analysis of large and fl exible container ships of today is 
pointed out. A methodology for investigation of this challenging phenomenon is drawn up and 
a mathematical model is worked out. It includes defi nition of ship geometry, mass distribution, 
structure stiffness, and combines ship hydrostatics, hydrodynamics, ship motion and vibrations. 
Based on the presented theory, a computer program is developed and applied for hydroelastic 
analysis of a fl exible segmented barge for which model test results of motion and distortion in 
waves have been available. A correlation analysis of numerical simulation and measured response 
shows quite good agreement of the transfer functions for heave, pitch, roll, vertical and horizontal 
bending and torsion. Such checked tool can be further used for reliable hydroelastic analysis of 
ship-like structures.
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Metodologija istraživanja hidroelastičnosti brodova

Izvorni znanstveni rad

Naglašena je važnost provođenja hidroelastične analize velikih suvremenih kontejnerskih bro-
dova, koji su vrlo elastični u pogledu uvijanja. Opisana je metodologija istraživanja ovog izazovnog 
problema. Razrađen je matematički model, koji uključuje defi niranje geometrije broda, raspodjele 
masa, krutosti konstrukcije, i objedinjuje hidrostatiku, hidrodinamiku, njihanje i vibracije broda. Na 
osnovi prikazane teorije razvijena je odgovarajuća programska podrška, koja je primijenjena za 
hidroelastičnu analizu vrlo elastične segmentne barže, za koju postoje rezultati modelskih ispiti-
vanja njihanja i deformiranja na valovima. Usporedbena analiza numeričke simulacije i izmjerenog 
odziva pokazala je relativno dobro slaganje prijenosnih funkcija poniranja, posrtanja, ljuljanja, te 
vertikalnog i horizontalnog savijanja i uvijanja broda. Ovako provjereno sredstvo može se nadalje 
pouzdano upotrijebiti za hidroelastičnu analizu brodskih konstrukcija.
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1  Introduction

Sea transport is rapidly increasing and larger fast merchant 
ships are built. Large ships are relatively more fl exible and their 
structural natural frequencies can fall into the range of the en-
counter frequencies in an ordinary sea spectrum. Therefore, the 
wave induced hydroelastic response of large ships becomes an 
important issue especially for improving the classifi cation rules 
and ensuring ship safety.

For ships with closed cross-section and ordinary hatch ope-
nings such as tankers, bulk carriers, general cargo vessels etc., 
the lowest natural frequencies are usually associated with the 
vertical bending. On the other hand, for ships with open cross-
section, such as container ships, the lowest elastic natural modes 
are those of coupled horizontal and torsional vibrations. This 
coupling is highly pronounced due to the fact that the torsional 
(shear) centre is below the keel. 

The classical approach to determine ship motions and wave 
loads is based on the assumption that the ship hull acts as a rigid 

body [1]. The obtained wave load is then imposed to the elastic 
3D FEM model of ship structure in order to analyse global lon-
gitudinal and transverse strength, as well as local strength with 
stress concentrations related to fatigue analysis [2].

The above approach is not reliable enough for ultra large ships 
due to mutual infl uence of the wave load and structure response. 
Therefore, a reliable solution requires analysis of wave load and 
ship vibration as a coupled hydroelastic problem [3]. This is 
especially important for impulsive loads such as ship slamming 
that causes whipping.

The methodology of hydroelastic analysis is shown in 
Figure 1 according [4]. It includes defi nition of the structural 
model, ship and cargo mass distributions, and geometrical mo-
del of ship surface. First, dry natural vibrations are calculated. 
Then modal hydrostatic stiffness, modal added mass, damping 
and wave load are determined. Finally, wet natural vibrations 
are obtained as well as the transfer functions (RAO-response 
amplitude operator) for determining ship structural response 
to wave excitation.
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2 Structural model

The hydroelastic problem can be solved at different levels of 
complexity and accuracy. The best, but highly time-consuming 
way is to consider 3D FEM structural model and 3D hydrody-
namic model based on the radiation-diffraction theory [5]. Such 
an approach is recommended only for the fi nal strength analysis. 
However, in the preliminary strength analysis it is more rational 
and convenient to couple 1D FEM model of ship hull [6] with 
3D hydrodynamic model.

In both cases of the FEM approach the governing matrix 
equation of dry natural vibrations yields [7] 

  
(1)

where

[K]  - stiffness matrix
[M]  - mass matrix
Ω Ω - dry natural frequency
{δ} - dry natural mode

As solution of the eigenvalue problem (1) Ω
i
 and {δ}

i
 are 

obtained for each the i-th dry mode, where i = 1,2...N, N is total 
number of degrees of freedom. Now natural modes matrix can 
be constituted

  
(2)

and the modal stiffness and mass can be determined [8] 
  

(3)

Since the dry natural vectors are mutually orthogonal, ma-
trices [k] and [m] are diagonal. Terms k

i
 and Ω2

i
m

i
 represent 

deformation and kinetic energy of the i-th mode respectively.

Note that generally the fi rst six natural frequencies Ω
i
 are 

zero with corresponding eigenvectors representing the rigid 
body modes. As a result, the fi rst six diagonal elements of [k] 
are also zero, while the fi rst three elements in [m] are equal to 
structure mass, the same in all directions x, y, z, and the next 
three elements represent the mass moment of inertia around the 
coordinate axes.

3 Geometrical model of wetted surface

3.1 Strip mesh

Figure 2 Panel of wetted surface
Slika 2 Panel oplakane površine

For determining pressure forces acting on the wetted surface 
it is necessary to specify panels and their position in space. Wet 
surface is given by offsets of waterline ordinates at body plan 
stations, b

ik
. If the strip method is used for pressure calculation, 

then the panels bounded with two close stations, i and i + 1, 
and waterplanes, k and k + 1, can be used, Figure 2. Arcs of the 
panel yield

  
(4)

where

b
x
 = b

i+1,k 
- b

i,k
 ,  b

z
 = b

i,k+1 
- b

i,k
l - station distance
d - waterplane distance

The panel normal vector is

  
(5)

with components
  

(6)

Figure 1 Methodology of hydroelastic analysis
Slika 1 Metodologija hidroelastične analize
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where
  

(7)

is the panel area.

3.2 Rational mesh

If 3D radiation-diffraction theory is used for hydrodynamic 
pressure determination, the wetted surface mesh can be created 
in such a way that panels of more regular shape and refi ned 
subdivision in the area of the free surface are achieved [9]. Such 
a rational mesh is shown in Figure 3, where the panel rows fol-
low the ship body diagonals similarly to the structural elements 
of ship outer shell. In this way, effi ciency and accuracy of the 
hydrodynamic calculation is increased.

Figure 3 Rational mesh of wetted surface
Slika 3 Racionalna mreža oplakane površine

Concerning the normal vector, let us consider a triangular 
panel, which is defi ned by three position vectors from the origin 
of the coordinate system x, y, z

  
(8)

The panel arcs are
  

(9)

and the panel normal vector yields

  
(10)

where S is double value of the triangular panel area.

4 Dry modes of wetted surface

As mentioned in Section 2, structural dry modes can be de-
termined by 1D or 3D FEM analysis. If 1D analysis is used, the 
beam modes are spread to the ship wetted surface as follows.

Vertical vibration

  
(11)

Horizontal vibration
  

(12)

Torsional vibration
  

(13)

where w is hull defl ection, ψ is twist angle, Y and Z are coordi-
nates of the point on ship surface, and z

N
 and z

S
 are coordinates 

of neutral line and shear centre respectively.
If strong coupling between horizontal and torsional vibra-

tion occurs, as in the case of container ships, the coupled mode 
yields

  
(14)

where u u x Y Z= ( , , )  is the cross-section warping function 
reduced to the wetted surface [10], [11].

5  Hydrodynamic model

Harmonic hydroelastic problem is considered in frequency 
domain and therefore we operate with amplitudes of forces and 
displacement. In order to perform coupling of the structural and 
hydrodynamic models, it is necessary to express the external 
pressure forces in a convenient manner [12]. First, the total 
hydrodynamic force Fh has to be split into two parts: the fi rst part 
FR depending on the structural deformations, and the second one 
FDI representing the pure excitation

  
(15)

Furthermore, the modal superposition method can be used. 
Vector of the wetted surface deformations H

 
(x, y, z) can be pre-

sented as a series of dry natural modes h
i 
(x, y, z)

  
(16)

where ξ
i
 are unknown coeffi cients. Vectors h

i 
(x, y, z) related to 

wetted surface are obtained from the structural dry modes as 
explained in the previous section.

The potential theory assumptions are adopted for the hydro-
dynamic part of the problem. Within this theory the total velocity 
potential ϕ, in the case of no forward speed, is defi ned with the 
Laplace differential equation and the given boundary values

  
(17)

where ν  is the wave number, ν ω= 2 g , ω is wave frequency, 
n is the wetted surface normal vector, and i is the imaginary 
unit [13].

Furthermore, the linear wave theory enables the following 
decomposition of the total potential [5] 
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(18)

where
  

(19)

ϕ
I
  - incident wave potential

ϕ
D
  - diffraction potential

ϕ
Rj

  - radiation potential
A   - wave amplitude

Now, the body boundary conditions (17) can be deduced for 
each potential

  
(20)

It is necessary to point out that the diffraction and radiation 
potentials should also satisfy the radiation condition at infi nity.

Once the potentials are determined, the modal hydrodyna-
mic forces are calculated by pressure work integration over the 
wetted surface. The total linearised pressure can be found from 
Bernoulli’s equation

  
(21)

First, the term associated with the potential ϕ is considered 
and subdivided into excitation and radiation parts (18)

  
(22)

  
(23)

Thus, (22) represents the modal pressure excitation. Now one 
can decompose (23) into the modal inertia force and damping 
force associated with acceleration and velocity respectively

  
(24)

  
(25)

where A
ij
 and B

ij
 are elements of added mass and damping ma-

trices respectively.
Determination of added mass and damping for rigid body 

modes is a well-known procedure in ship hydrodynamics [1]. 
Now the same procedure is extended to the calculation of these 
quantities for elastic modes.

The hydrostatic part of the total pressure, – ρgz in (21), is 
considered within the hydrostatic model.

6 Hydrostatic model

6.1 Elastic modes

General

In dynamic analysis a structure vibration is considered with 
respect to the static equilibrium position. Therefore, only dyna-

mic forces, i.e. inertia, damping, restoring and excitation ones 
are taken into account. Time independent forces are included 
in still water strength analysis as a separated static problem. 
Dynamic analysis is performed by the modal superposition 
method. Modal forces represent work of actual forces on modal 
displacements. Modal restoring forces consist of time dependent 
modal pressure forces and gravity forces. They include effect of 
large displacements.

Pressure forces

Concerning the hydrostatic part of the total pressure in (21), 
ρgz, it is necessary to determine the change of the modal hydro-
static force as the difference between its instantaneous value 
and the initial value for the vibration mode h

i
 of the body wetted 

surface Z = Z (x, y) [14]

  
(26)

Each of the above quantities can be presented in the form 
(...) (...) ...
~ = + ( )δ , where δ denotes the variation. By neglec-

ting small terms of higher order, one can write for the modal 
hydrostatic force (26)

  
(27)

Variation of the particular quantity can be determined by ap-
plying the notion of directional derivative H—, where H is given 
with (16) and — is Hamilton differential operator

  
(28)

As a result

  
(29)

Determining the variation of the body surface normal 
vector, δn, according to (29) is a rather diffi cult task. Therefore, 
a relatively simpler procedure, taken from [14], is shown in 
Appendix A.

By using Eqs. (28), (29) and (A12), the modal hydrostatic 
force (27) can be presented in the following form:

  
(30)

where
  

(31)

is the i,j-th element of the hydrostatic stiffness matrix, composed 
of static pressure, surface mode and normal vector contributions, 
respectively

  
(32)
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 (33)

 

 (34)

Note that the wetted surface coordinate Z is measured from the 
waterplane. Based on the constitution of the above coeffi cients, it 
is evident that the hydrostatic stiffness matrix is not diagonal.

In the literature various defi nitions of hydrostatic stiffness 
matrix can be found. Somewhat simple formulae are derived 
in [15] using a slightly different approach. Those formulae lead 
to the same result as the more classical method in which some 
integral transformations are applied in order to simplify the fi nal 
expressions [16], as elaborated in [15]. Quite different expres-
sions are presented in [17].

The advantage of the present method is that the derived 
formulae are general and applicable for a complex body as 
well as for its parts. This is important for determining the local 
hydrostatic action as internal loads, transfer of load to a FEM 
structural model, etc.

If 1D structural model is used together with the strip mesh, 
the integration over the body wetted surface in determining the 
hydrostatic stiffness (32), (33) and (34) can be split into two 
steps

  
(35)

where f(x) is modal function, g(x, s) is function of modal coeffi -
cients and s is circumference coordinate of body station.

Gravity forces

The above expressions represent only the action of the hydro-
static pressure, and the gravity part has to be added in order to 
complete the total restoring coeffi cients. Similarly to the pressure 
part, Eqs. (26) and (27), a change of the generalised modal gravity 
force associated with a particular mode yields [14]

  
(36)

where V is body volume and dm is differential mass. 

By employing (29) and further (28) one can write

  
(37)

where
  

(38)

Restoring stiffness

Finally, the complete restoring coeffi cients read
  

(39)

It is important to point out that the above expressions for the 
hydrostatic and gravity coeffi cients are general and therefore valid 
not only for the elastic modes but also for the rigid body modes 
as well as for their coupling.

6.2 Rigid body modes

In this special case, the modal restoring stiffness can be de-
termined in direct, simpler and physically more understandable 
manner. It can also be used for checking the previously developed 
general method.

A free ship exhibits rigid body motion with six degrees of 
freedom around its centre of gravity. The fi rst three rigid body mo-
des are unit translations in direction of the coordinate axes, while 
the other three are unit rotations around these axes. The modal 
restoring stiffness is equal to the restoring force or moment per 
unit displacement respectively. According to the ship hydrostatics 
only three degrees of freedom have restoring force [1]

Heave:
  

(40)

Roll:
  

(41)

Pitch:
  

(42)

where

A
WL

   - waterplane area
I

WLX
   - transverse moment of inertia of waterplane area

I
WLY

   - longitudinal moment of inertia of waterplane area
V       -  volume of displacement
z

B
, z

G 
- coordinate of centre of buoyancy and centre of gravity 

respectively (from base line).

When rigid body modes are in question, it is also necessary 
to determine modal ship mass. For the translations, modal 
masses are equal to the total ship mass, while for the rotations, 
modal masses represent ship mass moments of inertia around 
coordinate axes.
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7 Hydroelastic model

After the structural, hydrostatic and hydrodynamic models 
have been determined, the hydroelastic model can be constituted. 
For that purpose, let us impose modal hydrodynamic forces (23), 
(24) and (25) and hydrostatic and gravity forces (30), (36) to the 
modal structural model, Section 2.

  
(43)

Furthermore, all terms dependent on unknown modal am-
plitudes, ξ

i
, can be separated on the left hand side. Thus, the 

governing matrix differential equation for ship motions and 
vibrations is deduced

  
(44)

where all quantities are related to the dry modes

[k] - structural stiffness
[d] - structural damping
[m] - structural mass
[C] - restoring stiffness
[B(ω)] - hydrodynamic damping
[A(ω)] - added mass
{ξ} - modal amplitudes
{F} - wave excitation
ω - encounter frequency

Structural damping can be given as a percentage of the critical 
value based on experience. As it is well-known, added mass and 
hydrodynamic damping depends on the frequency. The solution 
of (44) gives the modal amplitudes ξ

i
 and displacement of any 

point of the structure obtained by retracking to (16).
The wet natural modes can also be determined by solving the 

eigenvalue problem extracted from (44)
  

(45)

Now damping is neglected since its infl uence on the eigenpair 
is very small. The solution of (45) gives natural frequencies 
of ship motion and vibration in water and the corresponding 
so-called wet natural modes. Since added mass is a frequency 
dependent function, it is evident that an iteration procedure has 
to be employed to solve (45). Therefore, the wet modes are not 
orthogonal. Also, there are no more zero natural frequencies 
and pure rigid body modes due to their coupling with the elastic 
modes [12].

8 Hydroelasticity of a fl exible barge

8.1 Barge characteristics

The experimental model of a fl exible barge, consisting of 
12 pontoons, is considered [4], [12]. The front pontoon No. 12 
differs somewhat from the others. The pontoons are connected by 
a steel rod somewhat above the deck level, as shown in Figure 4. 
So, the deformation centre is above the gravity centre. This is 
the opposite situation to the one in the case of container ships, 
but anyway strong coupling between horizontal and torsional 
vibrations is achieved.

Figure 4 Barge cross-section
Slika 4 Poprečni presjek barže

The main characteristics of the prismatic barge are the fol-
lowing [4], [12]:

Young’s modulus of rod: E = 2.1 · 1011 N/m2

Shear modulus of rod: G = 0.808 · 1011 N/m2

Moment of inertia of rod 
cross-section: I I

a
y z= = =

4

12
8.33 · 10-10 m4

Polar moment of inertia 
of rod cross-section: I

a
t = =

4

6
16.67 · 10-10 m4

Bending stiffness of rod: EI = 175 Nm2

Torsional stiffness of rod: GI
t
 = 135 Nm2

Length of barge 
(pontoons + clearances): L = 2.445 m
Total mass 
(pontoons + equipment): M = 171.77 kg
Distributed mass: m = M/L = 70.253 kg/m
Radius of gyration in roll: i

x
 = 0.225 m

Polar moment of inertia 
of distributed mass: J mit x

0 2= = 3.556 kgm
Distance of gravity centre 
from torsional centre: c = – 0.144 m
Polar mass moment of inertia 
about torsional centre: J J mzt t= +0 2 = 5.013 kgm

Radius of inertia: r
J

m
t= = 0.267 m

8.2 Dry vibrations

Dry vertical natural vibration and coupled horizontal and 
torsional vibrations are performed by a general computer program 
developed for this purpose [18]. The program is based on the 
theory presented in [6]. As a result of dry vibration calculation 
the modal stiffness and modal mass in (44) are obtained. The fi rst 
two natural modes are shown in Figures 5 and 6.

Natural vibrations for a prismatic pontoon can be also deter-
mined analytically as elaborated in [19].

Vertical vibration, -l ≤ x ≤ l,  l = L / 2
Symmetric modes
  

(46)

β
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Anti-symmetric modes

  
(47)

β
1
l = 0,  β

3
l = 3.925, β

5
l = 7.068

where
  

(48)

Analytical solution of coupled horizontal and torsional 
vibrations can be obtained by direct integration of governing 
differential equations or by the energy approach. However, in 
both cases the solution is rather complicated [19].

8.3 Hydrostatic and hydrodynamic parameters

Restoring stiffness matrix in (44) is determined by the deve-
loped program [18] based on the theory considered in Section 6. 
However, for better understanding of the physical meaning, the 
calculation procedure is illustrated in Appendix B for the case 
of vertical vibration of the prismatic barge.

Added mass, hydrodynamic damping and wave excitation 
in (44), depending on dry modes and wave frequency, are de-
termined by program Hydrostar [20]. Structural damping of the 
pontoon joints to the rod, and of the rod itself is quite low in 
the considered case. The mesh of the wetted surface used in the 
calculation is shown in Figure 7.

Figure 7 Geometrical model of barge wetted surface
Slika 7 Geometrijski model oplakane površine barže

All necessary vibration parameters are determined for a set of 
dry modes consisting of 6 rigid body modes, the fi rst 5 vertical 
elastic modes and 5 coupled horizontal and torsional modes. The 
chosen number of elastic modes is suffi cient to describe accurately 
enough the barge response in waves.

8.4 Barge response

The model tests of the considered barge were conducted in 
the BGO-First Basin, Toulon, France. Detailed description of 

Figure 5 The fi rst dominant fl exural mode of coupled barge vibra-
tions, ω2 = 5.727 rad/s

Slika 5 Prvi pretežno fl eksijski oblik spregnutih vibracija barže, 
ω2 = 5.727 rad/s

Figure 6 The fi rst dominant torsional mode of coupled barge 
vibrations, ω3 = 7.884 rad/s

Slika 6 Prvi pretežno torzijski oblik spregnutih vibracija barže, 
ω3 = 7.884 rad/s
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Figure 8 Barge in waves
Slika 8 Barža na valovima
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the barge, equipment, measuring procedure and the obtained 
results is given in [4, 12]. The barge is constructed to be quite 
fl exible in order to expose high level of hydroelastic phenome-
na. The success of this intention can be seen in Figure 8, where 
the barge distortion follows more or less the wave surface. The 
model tests were performed in irregular waves generated by 
JONSWAP spectra.

Numerical calculation of the barge response to waves is 
performed for a set of heading angles. For verifi cation of the de-
scribed methodology and numerical simulation only the transfer 
functions for χ = 60° are shown and compared to the measured 
ones. This particular heading angle was chosen since it includes 
complete coupling of the rigid and fl exible modes of the vertical 
and horizontal and torsional vibrations, which are highly exited 
in the case of quartering seas.

Figure 9 Average heave transfer function
Slika 9 Prosječna prijenosna funkcija poniranja

Figure 10 Average pitch transfer function
Slika 10 Prosječna prijenosna funkcija posrtanja

Figure 11 Average roll transfer function
Slika 11 Prosječna prijenosna funkcija ljuljanja

Figures 9, 10 and 11 show RAOs (Response Amplitude 
Operator-transfer function) in the wave period domain, T, for the 
average value of heave, pitch and roll respectively, measured at 
the every second pontoon. In Figures 12, 13 and 14, vertical and 
horizontal bending and barge torsion are shown. These quantities 
are defi ned as difference of the rotation angles at the last and 
fi rst pontoon.

Figure 12 Vertical bending transfer function
Slika 12 Prijenosna funkcija vertikalnog savijanja

Figure 13 Horizontal bending transfer function
Slika 13 Prijenosna funkcija horizontalnog savijanja

Figure 14 Torsional transfer function
Slika 14 Prijenosna funkcija uvijanja

RAOs are related to the wave height spectrum. Thus, the 
heave RAO, as translation motion, converges to unity for higher 
T values. Contrary, RAOs for all others motions, which are ro-
tational, converge to zero [1].

The relatively large scattering of the measured transfer fun-
ctions is mostly caused by irregular waves. The obtained nume-
rical results agree quite well with the average of the measured 
ones. Higher discrepancies between the calculated and measured 
values occur in area of the response peaks, i.e. at resonances 
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where damping plays the main role. Figures 9-14 show the fi nal 
calculation results determined by adjusting damping to achieve 
minimal discrepancies.

The modal damping is adjusted in such a way that the value of 
diagonal elements in damping matrix is increased for ca 5%, de-
pending on the type of vibration, i.e. rigid body, vertical vibration 
and coupled horizontal and torsional vibration. This adaptation 
can be physically explained. Namely, in the hydroelastic analysis 
the segmented barge is considered as a monohull. The infl uence 
of this assumption on restoring forces and water inertia forces is 
negligible. However, additional resistance to the pontoon motion 
is induced between their heads, Figure 15. In the case of an elastic 
vibration mode the pontoons play as a shell family on the string 
with the jet propulsion. The induced resistance depends on the 
relative angular velocity of the pontoon adjacent heads.

Figure 15 Pump effect of pontoon oscillations
 a – vertical vibration
 b – horizontal vibration
Slika 15 Pumpni učinak osciliranja pontona
 a – vertikalne vibracije
 b – horizontalne vibracije 

9 Conclusion

The investigation methodology of hydroelasticity of ship 
structures is presented. A mathematical model which combines 
ship geometry, mass distribution, 1D hull model, dry natural vi-
brations, hydrostatic model and hydrodynamic model is worked 
out. The numerical procedure and developed computer program 
are validated for the case of a very fl exible barge for which 
coupling between rigid and elastic modes is highly pronounced 
as well as coupling between horizontal and torsional vibrations. 
Quite good agreement between simulated and measured barge 

response for this very sensitive non-linear experimental model 
with large amplitudes of rigid and elastic modes of the same order 
is achieved. Thus, one may conclude that the presented methodo-
logy and mathematical model are reliable enough to be applied for 
hydroelastic analysis of ship structures for which the amplitude 
ratio of the elastic and rigid modes is somewhat lower.

Application of the developed tool is especially important for 
hydroelastic analysis of large container ships which are very fl exi-
ble from torsional point of view, and therefore exposed to the high 
level of coupling between horizontal and torsional vibrations.

The further development is directed to the investigation of 
the hydroelastic response to impulsive load, i.e. slamming and 
whipping, sloshing, underwater explosions etc. in time domain. 
The fi nal target is to analyse the infl uence of ship elasticity on wave 
load in order to check validity and applicability of the present clas-
sifi cation rules for large container ships. In the meantime, direct 
strength calculation as a hydroelastic task should be applied.
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Appendix A

Variation of body surface normal vector

Parametric body surface

A body surface can be represented in the x, y, z - space in 
implicit, explicit, parametric or vectorial form [21], [22]. In the 
considered problem the vectorial representation by position vector 
is preferable (widely used in the shell theory [23], [24])

  
(A1)

where u and v are parameters that form coordinate mesh on the 
surface. Therefore, these parameters are called curved or Gauss 
coordinates.

It is well-known in the differential geometry that the arcs of 
differential surface are, Figure A1

  
(A2)

For differential surface one fi nds
  

(A3)

where components of the normal vector are the following

  
(A4)

If the body surface is deformed by the mode h, the deformed 
surface is represented by the resulting position vector

  
(A5)

The corresponding arcs read

  
(A6)

and the deformed differential surface

  
(A7)

The fi rst product in (A7) is dS, while the last product is a 
small quantity of higher order and can be therefore neglected. 
Thus, one fi nds for variation of differential surface

  
(A8)

The above vector products take form

  
(A9)

Since
  

(A10)

r i j k= + +x u v y u v z u v( , ) ( , ) ( , )

Figure A1 Defi nition of normal vector variation δn due to modal 
deformation h of the parametrically defi ned body sur-
face

Slika A1 Defi niranje varijacije normale δn parametarski zadane 
površine tijela uslijed modalne deformacije h
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one can for instance write

  
(A11)

etc. for the other derivatives of h
x
, h

y
, h

z
 per u and v. Furthermore, 

by substituting those derivatives of type (A11) into (A9) and 
summing up all terms, one fi nds according to (A8) variation of 
the normal vector

  
(A12)

as it is elaborated in [14]. Since
  

(A13)

the same form of expression (A12) is also valid for the variation 
of the unit vector, δn, with components n

x
, n

y
 and n

z
.

Explicit body surface

Body surface can also be represented in one of the following 
vectorial forms

  
(A14)

where the second form is conventional in naval architecture, 
Section 3.1. Arcs of differential surface in the fi rst case yield

  
(A15)

Differential surface reads

  
(A16)

where d
 
S

x
 = dy dz, i.e. orthogonal projection of d

 
S onto y, z 

plane, Nx is the corresponding normal vector while n is the unit 
normal vector.

In the second and third surface representation (A14) in a 
similar way one fi nds

  
(A17)

  

(A18)

The corresponding quantities for the third case of body surface 
defi nition are shown in Figure A2.

Figure A2 Defi nition of normal vector variation (δ n)z due to modal 
deformation h for the explicitly defi ned body surface 
Z = Z(x, y)

Slika A2 Defi niranje varijacije normale (δ n)z eksplicitno zadane 
površine tijela Z = Z(x, y) uslijed modalne deformacije h

The deformed body surface by mode h is represented by 
vector

  
(A19)

In the fi rst surface defi nition (A14) one can write for arcs of 
differential element of deformed surface

  
(A20)

Differential element is defi ned as follows

  
(A21)

Similarly to the parametric representation of body surface, 
the fi rst product in (A21) represents differential element of the 
undeformed surface (A16), the last product is a small negligible 
quantity of higher order, while the second and third products 
are related to the variation of differential element due to modal 
deformation. Thus,
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Similar expressions can be derived for the other two defi ni-
tions of body surface (A14)

  
(A23)

 

 (A24)

By substituting (A14) into (A22), (A23) and (A24) respecti-
vely and taking into account relation

  
(A25)

and (A10), one fi nds the following three expressions for the 
normal vector variation depending on the body surface defi nition 
(A14)

  
(A26)

  
(A27)

  
(A28)

The derived expressions are different in spite of the fact that 
they should represent the same quantity. Almost a half of their 
terms are common. Due to practical reason, a unifi ed expression 
should be formulated. If we want to keep all essential terms of 
formulae (A26), (A27) and (A28) in such a formulation without 
their repeating, then let us refer to the mathematical logic and 
apply the set theory [21], [22]. In that case the unifi ed expression 
for variation of normal vector is represented with the union of 
sets (A26), (A27) and (A28)

  
(A29)

which is illustrated by Venn diagram in Figure A3. It is intere-
sting to point out that the following relation also exists in the 
considered case

  
(A30)

Appendix B

Barge restoring stiffness for vertical vibration

As specifi ed in Section 8.3, the barge hydroelastic analysis 
is performed by taking into account 6 rigid body modes, 5 dry 
vertical modes, and 5 dry coupled horizontal and torsional modes. 
These modes in three sets are denoted with index i = 1, 2...6; 
7, 8...11; 12, 13...16.

Only static pressure acting on the barge bottom and the barge 
front and aft heads is relevant for the barge hydrostatic stiffness 
in the case of vertical vibration. The pressure forces on the bar-
ge sides and the adjacent pontoon heads are in equilibrium and 
therefore cancelled. For the bottom panels the normal vector is 
n = k, while for the aft and fore head panels n = ± i respectively. 
The origin of the coordinate system is located at the waterplane 
below the centre of gravity, Figure B1.

According to (11) the bottom elastic mode yields
  

h i kiK i N iz T w= + +ϕ ( ) , i = 7, 8... (B1)
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Figure A3 A Venn diagram for variation of unit normal vector in 
explicitly represented body surface

Slika A3 Vennov dijagram varijacije jedinične normale eksplic-
itno zadane površine tijela
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Figure B1 Coordinates of actual points for restoring stiffness 
determination

Slika B1 Koordinate bitnih točaka za određivanje povratne 
krutosti

( )δ n ix y z
x

x
x

z
y

h

y

h

z
n

h

y
n

h

z
n=

∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ − ∂
∂

+
∂
∂

−−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+

+ − ∂
∂

−
∂
∂

+
∂
∂

⎛

h

y
n

h

z
n

h

z
n

h

y
n

z
z

x
x

y
y

y
z

j

⎝⎝⎜
⎞
⎠⎟

k



14558(2007)2, 133-145

METHODOLOGY OF SHIP HYDROELASTICITY INVESTIGATION I. SENJANOVIĆ, Š. MALENICA, S. TOMAŠEVIĆ, S. RUDAN

while at the level of the centre of gravity one fi nds
 

h i kiG i N G iz z w= − +ϕ ( ) , i = 7, 8... (B2)

where w
i
 is the barge defl ection and ϕ

i
 rotation of cross-sec-

tion.
By employing expressions (32), (33) and (34) for hydro-

static stiffness, and (38) for gravity contribution, the following 
formulae for the elements of the restoring matrix are derived, 
where i, j = 7, 8...

Pressure:

  
(B3)

Modes and normal vector: 
  

(B4)

Gravity, m = ρ BT:

  
(B5)

where l = L/2, and L, B, T are the barge length, breadth and 
draught, respectively.

For the barge heads one fi nds according to (11), (32), (33) 
and (34)

  
(B6)

  
(B7)

  

(B8)

where

 

 (B9)

The constitution of the hydrostatic and gravity coeffi cients 
indicates that the restoring force depends not only on the barge 
defl ection w and cross-section rotation ϕ = dw/dx, but also on 
the curvature κ = d2w/dx2 that is of low effect.

The above formulae, derived for elastic modes, are general 
and therefore applicable for rigid body modes, as well as for their 

coupling with elastic modes. The corresponding indexes for rigid 
body modes are i, j = 3, 5, while for the coupling modes i = 3, 5 
and j = 7, 8..., and vice versa i.e. i = 7, 8... and j = 3, 5.

In addition, it is interesting to determine the restoring coef-
fi cients for rigid body modes. Thus, one fi nds for heave, where 
w

3
 = 1, ϕ

3
 = 0:

Bottom:  

(B10)
 

Heads:  

(B11)

It is obvious that the total restoring coeffi cient C
33

 = ρ g LB is 
equal to that determined by the ship hydrostatics, Eq. (40), since 
LB is waterplane area, A

WL
.

The pitch mode yields: w
5
 = x, ϕ

5
 = 1, where -l ≤ x ≤ l. The 

corresponding coeffi cients are the following:

Bottom:

  
(B12)

Heads:

 

 (B13)

Since BL3/12=I
WLY

 is longitudinal moment of inertia of water-
plane area and LBT = V is volume of displacement, the restoring 
coeffi cient yields

  
(B14)

It is identical to the hydrostatic expression (42), since the 
coordinate of the centre of buoyancy reads z

B
 = – T/2. The coor-

dinate of neutral line, z
N
, is cancelled in C

55
 and that is physically 

correct for rigid body modes.
Concerning coeffi cients of mixed modes, w

3
 and w

5
, their 

values are zero since the modes are orthogonal. As a result, the 
restoring coeffi cients yield C

35
 = C

53
 = 0.
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