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A neural-network based approach for modelling propagation inside complex indoor environments is presented.
Selection of the neural network model, initialization, and training and performance evaluation are studied in details.
Furthermore, in order to determine optimal access point arrangement the neural network propagation model is
merged with the particle swarm optimization method. In the case of simple indoor environments the developed
propagation model is equally accurate as the deterministic methods, while in the case of complex environments the
proposed method shows superior properties. Finally, the calculated results were tested in direct comparison with
the measurements for both simple and complex indoor environments.

Key words: Indoor propagation, Complex indoor environment, Signal strength prediction, Neural network mod-
elling, Ray tracing, Motley-Keenan method, Optimal position

Predvi�anje snage signala neuronskim mrežama za nepravilne zatvorene prostore. Predvi�anje snage sig-
nala neuronskim mrežama za nepravilne zatvorene prostore. U članku je prikazano modeliranje širenja signala u
složenim zatvorenim prostorima temeljeno na neuronskim mrežama. Detaljno su razmotreni postupci odabira mod-
ela mreže, inicijalizacija i učenje mreže, kao i proces testiranja neuronskog modela. Optimalna pozicija pristupne
točke odre�ena je neuronskim modelom i optimizacijskim postupkom na osnovi roja čestica. Kod zatvorenih pros-
tora jednostavne konstrukcije i jednostavnog geometrijskog oblika metoda neuronskom mrežom daje jednako točne
rezultate, kao i poznate determinstičke metode, ali u slučaju složenijih prostora predložena metoda pokazuje znatno
bolje rezultate. Izračunate vrijednosti snage signala su uspore�ene s mjerenjima za jednostavne i složene prostore.

Ključne riječi: Širenje u zatvorenom prostoru, složeni prostor, predvi�anje snage signala, modeliranje neuron-
skom mrežom, slije�enje zrake, Motley-Keenan-ova metoda, optimalna pozicija

1 INTRODUCTION

Rapid development of radio communication systems in
a few past decades demands its careful planning and de-
sign. The increase popularity of indoor communication
systems gives a significant rise in application of various
mobile devices. These devices can be located anywhere,
while base stations should provide good link to the back-
bone of the communication system. The first step in the
process of WLAN (Wireless Local Area Network) design
is to determine access point locations and frequency plan,
what is mainly dependent on environmental characteris-
tics.

The main environmental impact on electromagnetic
wave propagation results in path loss. An accurate esti-
mation of the path loss is therefore extremely important
for proper determination of access point locations. A full-
wave analysis method for the field strength prediction is
extremely complex and very difficult task. The complexity

and diversity of propagation mechanisms in indoor envi-
ronments arises from many different factors like diffrac-
tion, scattering, transmission, refraction, reflection etc. In
the most cases there is no line of sight between receiver
and transmitter, so the received signal is the sum

of the components that have been propagated by the
mentioned mechanisms. Consequently the received signal
varies in time and with respect to the receiver and transmit-
ter locations. There are large fluctuations in the received
signal for the case of mobile receiver. Very small displace-
ment (even a fraction of the wavelength) of the receiver (or
transmitter) can cause signal level to change by few tens of
decibels.

Up to date, several groups of methods for field strength
prediction have been proposed. The empirical methods [1]
have been preferred for wireless communication, equally
for outdoor and indoor environments. These methods are
based on fitting the statistical data (in the sense of av-
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erages). In outdoor environments empirical models give
reasonably good predictions, but in indoor environments,
where the receiver can be shadowed with larger number
of different obstacles, empirical results have not such ac-
curacy. The better accuracy is achieved when the envi-
ronment under consideration is similar to the environment
where the measurements are carried out, but it is not al-
ways the case.

The deterministic models based on the principles of
electromagnetic wave propagation can be applied to differ-
ent indoor environments with equal accuracy. Well known
ray tracing method may be the choice. It results in com-
putations based on realistic geometrical and electrical pa-
rameters. Commonly, electrical parameters of the obsta-
cles are unknown, so sophisticated measurement methods
need to be applied and performed in real environment (in
situ) [2]-[4]. The electrical parameters estimated in such
a way are more or less approximated values. Therefore,
deterministic models can be applied in regular geometrical
environments with straight walls made of known materials.

The computation becomes extremely complex when
the indoor environment has irregular shape with a lot of
diverse obstacles in it. In such cases both empirical and
deterministic methods are became inapplicable and there
is a need for another analysis approaches which will be
less complex and at least equally accurate as deterministic
methods. Several authors applied neural network model in
the field strength prediction. In [5]-[7] dominant paths are
introduced for eliminating the time-variant effects, which
leads to additional simplification and less accuracy. The
main deficiency of this method is in the requirement for
accurate data base of the building geometry, as the domi-
nant path needs to be determined for each prediction point.
The achieved mean error is not better than 8 dB [6]. The
multilayer perception and the radial basis function network
models are compared in [10], showing that the first ap-
proach is more accurate in propagation loss prediction. In
[11] two propagation models are presented, first based on
the ray tracing technique and second based on the assump-
tion that all received power can be represented as weighted
sum of coherent power blocks. The obtained results are not
worse than empirical ones.

In the proposed approach geometrical and construc-
tional simple and complex environments are distinguished.
In the case of the simple environments deterministic and
even empirical methods can be applied with satisfactory
accuracy. On the other hand, there is no proper analyt-
ical method to compute the field strength distribution in
the complex environment. The complex environments re-
quire a method that is not dependent on detailed knowl-
edge about building constructional characteristics, and that
is achieved by applying the neural network model trained
by simple field-strength measurements.

Fig. 1. Proposed approach to the propagation problem in
indoor environments

2 SIMPLE AND COMPLEX ENVIRONMENTS

Indoor environment has much stronger influence on
field strength dynamics then it is in outdoor environments,
where the field strength nearly uniformly decreases with
distance. Contrary to outdoor environment indoor environ-
ment is usually full of objects that are in proximity of each
other. According to the geometrical and constructional
characteristics each environment is unique, and general-
ization is hardly possible. We have divided indoor environ-
ments into two main groups: simple and complex environ-
ments (Fig.1). The simple environment allows the appli-
cation of empirical and deterministic methods as Motley-
Keenan or ray tracing method [8]-[9] and there is no need
for measurements if the electromagnetic parameters of the
materials are known. Unfortunately these simple methods
can not be applied to the complex environments so neural
network model is developed for this case.

The proposed models are verified by measurements.
The measurement setup consisted of WLAN access point
operating at 2.427 GHz and laptop computer provided with
appropriate wireless card. The transmitting power of the
access point was 100mW. The gain of antennas was 8 dBi.
Three measurements were made for each receiving point,
and the average value is recorded in computer. The height
of the transmitting antenna was 2.4 m above floor, while
the receiving antenna was 1.5 m above floor.

2.1 Simple Environment

As a reference case of the geometrical and construc-
tional simple environment we have considered the second
floor of the B building of the University of Dubrovnik (Fig.
2). The length of the corridor is 34m and the dimensions of
each side offices are 4.5x5m. The floor is covered by stone
blocks. The ceiling is made by concrete and it is 3m above
the floor. We measured field distribution from three access
points denoted by AP1, AP2 and AP3, which coordinates
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Fig. 2. The second floor plan of the B university building with the grid of measurement points and locations of access
points

are given in the Table 1 (the origin of the coordinate system
is located at the point A). The receiving points were uni-
formly distributed along the corridor and inside the offices
denoted by numbers. There were 96 receiving points from
which 68 were located in the corridor, and the distance be-
tween neighbouring points was 1 m.

Table 1. The coordinates of the access points in the simple
environment

Access points x y z
AP1 0.0 5.15 2.4
AP2 17.0 7.85 2.4
AP3 33.0 7.85 2.4

The measured field strength in the presented simple in-
door environment is illustrated in the Fig. 3, for access
point AP1 as transmitter. The first 68 receiving points were
located in the corridor with existence of the line of sight
(LOS). The receiving points from 69 to 96 were located in
the rooms and there is no LOS, so the signal level is smaller
and dynamics of the signal strength variation was larger.

2.2 Complex environment

Indoor environments with significant architectural
complexity and irregular shape, constructed from a number

Fig. 3. Signal strength for AP1 and receiving points ac-
cording to the Fig. 2.

of different and composite materials, need to be classified
as complex ones. The lobby of the Dubrovnik’s Univer-
sity building is an example of such environments. Besides
the geometrical irregularity, this environment is filled with
various objects like pots with plants, tables, benches and
variety of panels. The complexity of this environment is
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Fig. 4. Contour diagram of the signal strength coverage
for simple indoor environment (transmitter AP1)

shown in the Fig. 5.

Fig. 5. Real complex environment the lobby of Dubrovnik’s
University building

Fig. 6 gives the ground plan of this complex environ-
ment, where the area under consideration is bordered by
the points from A to I. The total area is 323 m2 and height
is 3 m. The origin of the coordinate system is located in
the left lower corner (point A). The locations of the access
points, denoted by AP1, AP2 and AP3, are given in the Ta-
ble 2. The construction materials are very similar as in the
simple indoor environment described above.

The signal strength was measured at 233 receiving
points for each of three access points. The receiving points
were located in the same way as in the simple environment
case. The Fig. 6 shows the field strength for all receiving
points uniquely distributed along the area of interest. In

Table 2. The coordinates of the access points in the com-
plex environment

Access point x y z
AP1 0,0 12,0 2,75
AP2 0,0 4,0 2,75
AP3 15,0 16,0 2,75

this case the field strength changes are so fast that it is diffi-
cult to distinguish LOS receiving points from NLOS ones.
The signal strength at each receiving point is influenced by
large number of different factors that deterministic analysis
approach makes extremely difficult.

The fast fluctuations are additionally described by a
contour diagram in the Fig. 8, for the same access point
as in the Fig. 7. Here is easier to realize the locations of
the various objects and its influence on the signal propaga-
tion inside the environment. The white area is the part of
the environment that was not taken in considerations.

Fig. 7. Signal strength for receiving points inside complex
indoor environments (Fig. 5) for access point AP2

3 DETERMINISTIC PROPAGATION MODELS
FOR SIMPLE ENVIRONMENT

The simple environment allows us to apply some of
the well known deterministic methods. These methods we
will compare with less conventional model based on the
application of neural networks. As neural network model
described hereafter requires measured receiving signal for
training purposes, we have used reduced number of receiv-
ing points (28) for testing propagation models (i.e. these
measurement points were not used for training the neural
network). In the Fig. 9 these receiving points are indicated
for the case of simple environment.
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Fig. 6. Ground plan of the Dubrovnik’s University lobby

Fig. 9. The sample of the simple environment with denoted receiving points considered in simulation
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Fig. 8. Contour diagram for signal strength coverage for
complex indoor environment (AP2)

3.1 Motley-Keenan Model
The Motley-Keenan method requires knowledge of the

field attenuation caused by the walls. According to this
method [8] the signal strength can be generally expressed
as

Pr = Pt+Gr+Gt−Lfs−
N∑

i=1

kwiLwi−
M∑

j=1

kfjLfj , (1)

where the kL products represent values of the attenuation
in the walls and the floors (N is the number of walls with
different electromagnetic characteristics, while M is the
same for the floors) . The factor k represents the number
of the walls (floors) with the same electromagnetic param-
eters. The operand Lfs is the value in the free space atten-
uation (line of sight). The typical wall (floor) attenuation
factors are given in the Table 3.

Table 3. Empirical values of power loss for different ob-
stacles

Type of the
wall(floor)

Width of the
obstacle (cm) Power loss (dB)

Concrete 20 13
Brick + mortar 20 8

Wood 6 1
Metallic frames 4,5 47

The accuracy obtained by Motley-Keenan model is pre-
sented in Fig. 10 and Table 4. There are differences in ac-
curacy between considered access points, which are caused
by different environmental impact that can’t be embraced
by simple empirical equation (1) and assumed material’s
parameters (Table 3).

Table 4. Error values obtained by Motley-Keenan model

Access
point

Average
absolute

error (dB)

Standard
deviation

(dB)

MSE
(dB)

AP1 3.6927 2.641 4.7352
AP2 5.0261 3.5186 6.1353
AP3 3.5416 2.0273 4.0808

3.2 Ray-tracing Model
The ray tracing method [9] requires knowledge of con-

ductivity, permittivity and permeability of the constructing
materials. As the building under consideration is relatively
new one, these values were mostly known, with the ex-
ception of side walls. Therefore, we needed to measure
permittivity values, so appropriate measurement method
([12], [13]) has been established.

We used multi-ray model where rays with single and
double reflections are used. The numerical check demon-
strated that the contribution of higher order reflections to
the total field strength were negligible. The description of
the reflection geometry is presented in the Fig. 11.

Fig. 10. Signal strength AP1 obtained by Motley-Keenan
model

According to Fig. 11 the total signal strength at receiv-
ing point for direct ray, N rays with one reflection, and M
rays with two reflections can be expressed as

Pr = PtGtGr

(
λ

4π

)2

∣∣∣∣∣∣
1

d0
+

N∑

i=1

Γi
di
e−j∆φi +

M∑

j=1

Γ1jΓ2j

dj
e−j∆φj

∣∣∣∣∣∣

2

,

(2)

where Pt is the signal strength at the output of the
transmitter, Gt and Gr are transmitter and receiver an-
tenna gains respectively, Γi is the reflection coefficient,d0
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Fig. 11. Ray tracing methodology

is the length of the direct ray, di and dj are the lengths of
rays with one and two reflections respectively. The phase
differences between direct and the reflected rays can be
expressed as ∆φi = (2π/λ) ∆li, ∆φj = (2π/λ) ∆lj ,
where ∆li and ∆lj are differences in path lengths between
direct and the single i and the double j reflected rays.

The presented model is applied to the simple indoor
environment presented in the Fig. 9. We assumed the ver-
tical polarization so the perpendicular reflection coefficient
is used for the reflections from vertical walls and parallel
reflection coefficient is used for the reflections from ceiling
and floor.

The obtained results are compared to measurement val-
ues and they are expressed in terms of absolute and MSE
data as it is presented in Fig. 3 and Table 5. These results
are, obviously, better than those obtained by the Motley-
Keenan method, since more propagation mechanisms are
included in the calculation. The divergence from the mea-
surement values is greater for the receiving points located
in the area with no line of sight, which is understandable.

Table 5. Error values obtained by ray-tracing model

Access
point

Average
absolute

error (dB)

Standard
deviation

(dB)

MSE
(dB)

AP1 3.1867 1.7741 3.6472
AP2 4.4220 3.0541 5.3741
AP3 2.6667 1.8703 3.2572

4 NEURAL NETWORK MODELLING

The capability of learning by examples, adaptability
and ability to generalize are main properties of artificial

Fig. 12. Comparison between measurement and ray trac-
ing results

neural networks [14]. These properties make neural net-
works applicable to electromagnetic field prediction in in-
door environments where known empirical and determin-
istic models can’t obtain enough accurate results or can’t
be applied because of the complexity of an environment.

Neural networks are constructed from number of indi-
vidual neurons interconnected by the links called synapses.
The first step in neural networks application is to determine
network architecture (topology). We have selected Mul-
tilayer Perceptron (MLP) due to its robustness in various
types of problems [15]. The number of input and output
values determines number of neurons in input and output
layers, while the number of neurons in hidden layer as well
as number of hidden layers is not so easy to determine. For
some authors the neural network with one hidden layer can
be considered as universal neural network model for input-
output mapping [14]. In our case, the final neural network
configuration was determined after testing different net-
work models. Finally, the network architecture presented
in the Fig. 13 was selected. It consists of four layers: in-
put layer (no neurons), two hidden layers and output layer
with just one neuron. The inputs are the coordinates of the
access points (transmitters) and receiving points. The out-
put is signal strength at appropriate receiving point (Pr).
Input values are directly connected via synaptic weights to
the neurons of the first hidden layer (16 neurons). The sec-
ond hidden layer with 64 neurons has inputs from the first
hidden layer and all its neurons are connected to the neu-
ron in the output layer. The output of the neural network is
described by the following equation

Pr=φo

K∑

k=1

wok


φh2




M∑

j=1

wkjvj

(
φh1

(
N∑

i=1

wjiui

))


 (3)

where the following notations are used:
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• K,M ,N - number of neurons in second hidden layer,
first hidden layer, and output layer respectively,

• wok - synaptic weights from neuron k in the hidden
layer to the single output neuron,

• vj - j-th element of the vector that inputs to the sec-
ond hidden layer,

• wkj - connection weights between neurons in the two
hidden layers,

• ui - i-th element of the vector that inputs to the second
hidden layer, that consists of the appropriate coordi-
nates (x, y, z),

• vji - connection weights between inputs and the first
hidden layer,

• ϕh1, ϕh2 and ϕo - activation functions in the first,
second and output layers respectively.

Fig. 13. Neural network architecture

The activation function of the output layer is linear
function, while the activation function of the hidden lay-
ers is sigmoid type, according to the equation

φ (a, v) =
1 − e−av

1 + e−av
, (4)

where a represents a slope of the activation function. The
duration of the network training is determined by the acti-
vation function, so by changing the parameter a speed of
the training process can be tuned. It is impossible to de-
termine the appropriate slope of the activation function for
every neuron in neural model, so their estimation is made
in adaptive way during the process of training.

4.1 Neural network training and testing
The network was trained by the known values of the

signal strength at known locations, which were obtained by
the measurements. The selection of the receiving points for
the network training was made in random way considering
its uniform distribution across entire environment. In the
case of simple environment 68 such locations were chosen
(from totally 96 points), and in the case of the complex en-
vironment 200 receiving points (from totally 233 points)
were used in training procedure. The training process was
made for the access points AP1 and AP3 in both cases (Fig-
ures 2 and 6).

The learning process applied to the network adaptively
adjusts the free parameters (weights and biases) of the net-
work model based on the mean squared error that is com-
monly expressed as

E =
1

2

N∑

i=1

(yi − di)
2
, (5)

where yi is the output value calculated by the network
and di is the expected output [14]. When the error be-
tween network output and expected output is minimized,
the learning process is terminated. After extensive exper-
imental work on the various different training algorithms
the Levenberg-Marquardt algorithm with Bayesian regu-
larization was chosen [16]. This algorithm showed good
generalization with relative fast training process (not more
than 1000 epochs). Table 6 shows the sums of the squared
errors for three different training algorithms.

4.1.1 Simple environment case

The rest of the 28 receiving points for the simple in-
door environment (Fig. 9) that were not used in the train-
ing process were used for the testing the neural network.
The coordinates of these receiving points together with co-
ordinates of access points were applied to the input of the
network and the network gave the signal strength predic-
tion at each of these points.

Table 6. Sums of squared errors for different training pro-
cesses

Type of
environment Training algorithm

Scaled
conjugate
gradient

Levenbeg
- Marquardt

Levenberg
-Marquardt

with Bayesian
regularization

simple 0.22501 0.09042 0.08519
complex 0.27906 0.16932 0.15393

The testing results are presented in the Figs. 14.a and
14.b for the access points AP1 and AP3 respectively. First
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14 receiving points were in the line of the site, while the
others were located in the side rooms. Neural network
model showed good covering with the data obtained by
the measurements. Larger variation in the signal strength
(comparing to the measured ones) was obtained for receiv-
ing points located out of the line of site, what is the influ-
ence of the building construction characteristics and dif-
ferent furniture inside the rooms. By comparing the results
obtained by all considered methods we can conclude that
the worst results were obtained by Motley-Keenan empir-
ical method, what can be expected, because the main pa-
rameters were assumed in this particular case? Further-
more, there is no significant difference between neural net-
work results and those obtained by ray tracing method.

(a) AP1 access point

(b) AP3 access point

Fig. 14. The results comparison for two access points

Table 7. Results of the testing process for AP1 and AP3

Access
point

Average
absolute

error (dB)

Standard
deviation

(dB)

MSE
(dB)

AP1 2.2857 1.4336 2.6981
AP3 2.8810 2.6047 3.2610

4.1.2 Complex environment case

The Fig. 15 shows locations of 33 receiving points used
only in testing process for complex indoor environment.
As in the case of the simple environment the access points

AP1 and AP3 were tested separately. As it has already
been explained above in this article, this indoor environ-
ment is highly irregular according to its constructional and
geometrical characteristics, so it is extremely difficult to
apply such methods as Motley-Keenan or ray tracing. The
comparison of the results obtained by conventional meth-
ods and neural network method approve usefulness of lat-
ter one. Therefore, the neural network model was only
choice.

The results are graphically presented in the Figs. 16.a
and 16.b for AP1 and AP3 access points respectively. The
differences between the results obtained by measurement
and neural network model were in satisfactory limits. In
the case of the access point AP1 (Fig. 16.a) the worst re-
sults are obtained for the receiving point 2 and 5, where the
receiver has been in proximity of the transmitter, but signal
propagation was effected by the factors that couldn’t be de-
tected by the training of the neural network. It is significant
to emphasise very good covering for the receiving points
14 and 16 where there was no line of sight (Fig. 15). The
signal strengths for the receiving points from 25 to 33 were
higher than measured ones because multipath propagation
was not completely resolved by neural model. The some-
thing worse results were obtained for the access point AP3
(Fig.16.b). The main reason was in the distribution of the
receiving points for neural network testing (Fig. 15). The
most of the receiving points were located in the proximity
of the access point and show good covering with measured
results, but the minority of the receiving points were scat-
tered across the environment (Fig. 15), where agreement
with measured values was not so good.

The numerically expressed results in terms of absolute
mean error, standard deviation and mean squared error are
presented in the Table 8. The minimal mean squared error
is obtained in the case of access point AP1 as transmitter
(2.8826 dB). The contour diagrams of the signal strengths
obtained by measurements and by neural model are pre-
sented in the Figs. 17 and 18 for the AP1 and AP3 access
points. Comparing these two pairs of figures it can be seen
how much of details in signal propagation couldn’t be re-
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Fig. 15. The ground plan of the complex indoor environment (The receiving points used in testing and simulation are
denoted by numbers).

solved by neural network model. In the spite of these dif-
ferences good qualitative matching between these contour
diagrams is obtained.

Table 8. Results of the testing process for AP1 and AP3

Access
point

Average
absolute

error (dB)

Standard
deviation

(dB)

MSE
(dB)

AP1 2.2918 1.7485 2.8826
AP3 3.1091 2.2892 3.8610

4.2 Network Modelling

The neural network model was tested for the access
point AP2 as it is sketched in the Fig. 16. The values of the
received signal strengths from this access point didn’t par-
ticipate in the training process (neither in the testing pro-
cess). Therefore, this case presents a real-life test case of
the accuracy of the proposed propagation model.

Comparison of signal strength values obtained by neu-
ral model and measurements for the complex environment
is presented in Table 9 and Fig. 19. According to the ob-
tained results it is clear that the neural network model rep-

resents an accurate method for calculating field strength in
complex environments.

Table 9. Results of the testing process for AP2

Access
point

Average
absolute

error (dB)

Standard
deviation

(dB)

MSE
(dB)

AP2 2.6067 1.3952 2.9566

We have studied what is the minimal number of the
measured receiving points, needed for training the net-
work, for accurate generalization of the neural network.
After careful investigation of the training process with dif-
ferent numbers of the measured values we found that the
number of the training values can be considerably reduced
and still achieving accurate results. Dependence of the
MSE and the number of the training values for three access
points of the interest (AP1, AP2 and AP3) is presented in
the Fig. 20. It can be seen that 110 receiving points (mea-
surement data) are enough to obtain the MSE of 3.7 dB in
the case of AP1 and AP3, and 6.5 dB in the case of AP2.
For smaller number of training values the MSE for AP2
(not used in training process) was significantly higher.

Comparison of the measured data and results obtained
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(a) AP1 access point

(b) AP3 access point

Fig. 16. Comparison of the results obtained by neural net-
work model and measurements in complex environment

by the neural model trained with 200 and 110 input val-
ues is presented in the Fig.21. The good covering of the
two curves obtained by neural network model is obvious.
Number of needed measurement points depends of the en-
vironment configuration; some less complex environment
requires smaller number of the neural network input val-
ues, while, in present case study, the environment was
highly irregular, so less than 80 measurement values lead
to unacceptable results.

One of the important questions when designing wire-
less network is the needed number and position of access
points. The neural network model can be used for opti-
mization of the position of access points. For that purpose
the presented neural-network based algorithm was merged
with optimization routine. We have tested several opti-
mization routines [17]-[18], and concluded that the particle
swarm optimization (PSO) represents a fast and accurate

(a) AP1 access point

(b) AP3 access point

Fig. 17. Contour diagram for signal strength coverage ob-
tained by measurement

optimization method that is immune to presence of local
minima (characteristic for this type of optimization prob-
lems). The optimization process was tested in complex
environment. The results for optimally-positioned access
point are presented in Fig. 22. We obtained comparable
numerical results in terms of the MSEs, as it can be seen
in the Table 10. Our results are comparable with results
obtained by genetic and simulated annealing algorithms
described in [19]. Therefore, the proposed combination
presents good analysis tool for WLAN planning.

Table 10. Results obtained by the optimization process

Access
point

Average
absolute

error (dB)

Standard
deviation

(dB)

MSE
(dB)

Optimized position 2.5223 1.5869 2.9800
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(a) AP1 access point

(b) AP3 access point

Fig. 18. Contour diagram for signal strength coverage ob-
tained by neural model

5 CONCLUSION

Field strength prediction in indoor environments was
studied without introducing complex and long lasting com-
putations. The proposed analysis method, based on the
neural network as propagation model, presents a sim-
ple and fast way to obtain signal strength distribution
in the considered indoor environment. The results ob-
tained by conventional deterministic methods are compara-
ble in accuracy to those obtained by neural network model
in the case of simple indoor environments. However,
for highly-irregular (complex) environments the neural-
network based model is advantageous both in simplicity
and in needed CPU time. The main advantage of the pro-
posed neural network model is that there is no need for a
large database with detailed construction and electromag-
netic parameters of the considered building. The algorithm
itself is quite fast with the training process lasting only sev-

Fig. 19. Comparison between results obtained by neural
network model and measurements for AP2 in complex en-
vironment

Fig. 20. MSE versus the number of the training values

eral minutes; however one has to keep in mind that prior
to the calculations it is necessary to perform actual mea-
surements at the selected receiving points for the training
purpose.

The developed algorithm was also merged with a suit-
able optimization routine to determine the optimum posi-
tions for the access points in order to achieve best signal
coverage.
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Fig. 21. Comparison of measurements and results obtained
by the neural model with 200 and 110 trained input values
for AP2 in complex environment

Fig. 22. Comparison of measurements and results obtained
by neural network model for optimally positioned access
point
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