Electrochemical Reduction of Isatin-monohydrazone on Mercury Electrode

Semiha Çakır,a,* Ender Biçer,b and Emine Yılmaz Arslana

aDepartment of Chemistry, Faculty of Science, Gazi University, 06500 Teknikokullar - Ankara, Turkey
bDepartment of Chemistry, Faculty of Arts and Science, Ondokuz Mayıs University, 55139, Atakum-Samsun, Turkey

Abstract. Electrochemical behaviour of isatin monohydrazone (IM) on a hanging mercury drop electrode in the Britton-Robinson (B-R) buffer solution of pH = 2.00 – 9.00 has been investigated using square-wave voltammetry (SWV) and cyclic voltammetry (CV) techniques. In the pH range of 2.00 – 5.00, the voltammogram of IM exhibited a single cathodic irreversible peak. When the pH value exceeds 5.00, a new cathodic irreversible peak was also seen. According to the voltammetric data, a plausible electrode reaction mechanism of IM was proposed. The first reduction peak of IM is resulted from the reduction of =N–NH– group with consumption of 2e–/2H+ . Also, its second cathodic peak is formed by the participation of 2e–/2H+ for the reduction of –N=N– group on its tautomeric form.

Keywords: isatin monohydrazone, voltammetry, electrode mechanism, tautomerism, ionization

INTRODUCTION

The chemistry of isatin (indole-2,3-dione) and its derivatives is particularly interesting owing to their wide application for analytical and synthetic purposes. It has important biological activities such as anti-inflammatory, antibacterial, anticonvulsant and antioxidant properties.1,2 Many new compounds of isatin were synthesized and reported for antibacterial,3 antifungal,4 anti-HIV5 and anticonvulsant.6,7 The monohydrazone8 and bishydrazone compounds9 from isatin have been prepared and widely used in medicine. For example, isatin hydrazone was used as a detecting reagent for 3-ketosteroids.10 Hydrazones and their metal complexes attracted much attention because of their medicinal, physicochemical properties and applications in many important chemical processes.11–14

The electrochemical behaviors of isatin and some of its derivatives8,15–21 were examined. The knowledge of the redox properties of hydrazone compounds is important for a better understanding of their behaviors in both chemical and biological processes. Electrochemical methods are very favorable to obtain this information and successfully used to the redox behavior of various biological compounds.22–29 The hydrazones are electroactive compounds. In the literature, there are many published works on the electrochemical reduction of azo and hydrazone compounds.30–39 Isatin-3-hydrazone (IM) was detected during the electroreduction of 3-diazo-oxindole at pH > 8.5.40,41 In a recent paper, the redox behavior of isatin-3-hydrazone at a glassy carbon electrode has been studied by Olivera et al.21 Nevertheless, the comprehensive research of the electrochemical behavior of IM on the hanging mercury drop electrode (HMDE) will be also useful in the clarification of the electron transfer pathways of biological reactions of the hydrazones which possess some pharmaceutical activities.42

In the present research, the redox properties of IM on the mercury electrode in different pH media have been examined by using square-wave and cyclic voltammetry techniques. This study has reported the results together with a discussion of the electrode reaction mechanism of IM.

EXPERIMENTAL

Materials and Reagents

Isatin and hydrazine hydrate (reagent grade 98.0 %) were obtained from Sigma-Aldrich. Methanol was of analytical grade and purchased from Merck. All solutions were prepared using triple distilled and deionized water. B-R buffers were made from boric acid, acetic acid, and phosphoric acid, all 0.04 M, and titrated to the desired value with 0.2 M NaOH. B-R buffers were
prepared using analytical grade reagents (Merck or Sigma) and were used as supporting electrolyte.

Apparatus

An EG&G PARC Model 303A HMDE three electrode system (mercury working electrode, platinum counter electrode and Ag/AgCl/KCl sat. reference electrode) along with EG&G PAR 394B polarographic analyzer used for voltammetric measurements at room temperature.

Method

Before each measurement, the solutions were deaerated by a stream of pure nitrogen. A known volume of 1×10^{-3} M IM solution was added to the electrochemical cell, which was closed, deaerated, and blanketed with oxygen-free nitrogen. Then, the voltammograms were recorded. The square-wave voltammograms were obtained using the following experimental parameters: pulse height, 20 mV; scan increment, 2 mV; frequency, 50 Hz; scan rate, 100 mVs$^{-1}$; drop size medium and equilibrium time 5 s. Cyclic voltammograms were obtained for drop size medium and equilibrium time 5 s in the range of scan rate of 200 – 1000 mVs$^{-1}$. Each measurement was carried out on a fresh mercury drop.

General Procedure for Synthesis of IM

According to the procedure, reported by Murukan and Mohanan,43 IM was prepared by refluxing together equimolar solutions of isatin and hydrazine hydrate in methanol for 3 h (Scheme 1). On cooling, the monohydrazone crystallized from the reaction mixture. Recrystallization from methanol afforded beautiful yellow crystals of the monohydrazone, m.p. 226 °C. The melting point of IM is different from those of isatin (m.p. = 203 °C)44 and hydrazine hydrate (m.p. = –51 °C).45 The m.p. of IM is almost same with that (225 °C) of the synthesized by Kulkarni et al.46

RESULTS AND DISCUSSION

Effect of pH

The electrochemical behavior of IM was studied by using SWV and CV techniques in B-R buffer solutions ($\text{pH} = 2.00 – 9.00$). For the pH range of 2 – 5, the square-wave voltammogram of IM exhibited one well-defined reduction peak (peak I) in the potential range of 0.0 to −1.2 V vs. Ag/AgCl/KCl sat. (Figure 1). When the pH value exceeded 5.0, a new reduction peak (peak II) was observed (Figure 1). In addition, the reduction potential of peak II is more negative than that of peak I. The peak II appears clearly only at at pH range of 6.00 – 8.00 (Figure 1) for high IM concentrations ($\geq 1 \times 10^{-5}$ M). This peak (peak II) was not observed at glassy carbon electrode by Olivera et al.21

In the literature,47 it was reported that the multiplicity waves of various hydrazone derivatives were ascribed to equilibrium among hydrazone, azo, and ene-hydrazone forms. Therefore, these peaks on the voltammograms of IM can be sourced from the keto-hydrazo and enol-azo tautomeric forms of IM (Scheme 2).

Especially, the appearance of new peak may be attributed to the reduction of the enol-azo form. Keto-enol tautomerism is catalyzed by either acid or base. Usually the enol is the minority tautomer, but it is more reactive.48 In the keto-enol isomerism, the keto form is predominant in an acidic medium and the enol form in an alkaline medium.$^{49–51}$

Figure 1. Typical square-wave voltammograms of 1×10^{-5} M IM in B-R buffer at pH range 2 – 8. Experimental conditions: pulse height, 20 mV; scan increment, 2 mV; equilibrium time, 5 s; frequency, 50 Hz; working electrode, HMDE, drop size, medium. pH = 2 (........); pH = 3 (-----); pH = 4 (------); pH = 5 (●●●●); pH = 6 (●●●●); pH = 7 (.......); pH = 8 (-----).

Scheme 2. Keto-hydrazo and enol-azo tautomeric forms exhibited by IM

\[
\begin{align*}
\text{Keto-hydrazo} & \quad \equiv \quad \text{Enol-azo}
\end{align*}
\]

\[
\begin{align*}
\text{IM} & \quad \text{H,N=NH,N=NH}_2
\end{align*}
\]

\[
\begin{align*}
\text{isatin} & \quad \text{H,N=NH}_2
\end{align*}
\]

\[
\begin{align*}
\text{MeOH} & \quad \text{IM}
\end{align*}
\]

Scheme 1. The synthesis of IM

In the range $2 \leq \text{pH} \leq 5$, the current of peak I considerably increased with increasing pH and then reached a maximum value, which confirms that IM is more electrochemically active at pH = 5. The azo tautomeric form of IM may be present in solution but in very small quantities that does not exhibit a voltammetric signal in the pH range of 2 – 5. However, in the range $6 \leq \text{pH} \leq 9$, the current of peak II continues to increase up to pH = 8 whereas that of peak I decreases with increasing pH (Figure 2). Increase in the alkalinity of the medium leads to a shift in the equilibrium towards to the enol-azo form. So, in the range $6 \leq \text{pH} \leq 9$, the appearance of the peak II may be caused from the reduction of the azo tautomeric form of IM, present in effective amount under these conditions. Moreover, the potentials (E_p) of both reduction peaks (I and II) shifted to more negative values with increasing pH of the electrolyte (Figure 3), indicating that hydrogen ions are involved in the reduction process. The hydrogen ion concentration decreases by increasing pH. In this case, the required energy for the reduction of IM increases. Therefore, the peak potentials of IM shifted towards to more cathodic values.

For the peak I, the graph of E_p vs. pH exhibits two linear relationships in the pH range 2.00 – 9.00. These two linear parts graphically break at pH = 7.41 (Figure 3). This pH value may be attributed to a pK$_a$, corresponding to the deprotonation of enolic form of IM (Scheme 3). The determined pK$_a$ value (7.41) of IM in the present study is different from the value (~ 9) reported by Olivera et al.21 This case might arise from the difference in the experimental conditions (e.g., temperature, ionic strength and the solvent dielectric constant). Because it is well known that pK$_a$ depends on the experimental conditions.33

In addition, the potential of peak II is also dependent on pH (Figure 3). By the effect of pH, in the range $7 \leq \text{pH} \leq 9$, the magnitude of shift in the potential of first peak (I) is greater than that of the shift of new peak (II) (Figure 3). So, the new peak II overlaps with the first peak I to produce a shoulder peak at pH = 9 (Figure 4).

Examination of cyclic voltammograms obtained in the pH range 2.00 – 9.00 reveals that no anodic counter parts of the peaks I and II are seen on the reverse sweep (Figure 5). This result indicated that the electrode process of IM is irreversible under the experimental conditions examined in this study. However, cathodic peak II is only observed at pH values higher than 5 (Figure 5). As can be seen from Figure 5, the peak II is slightly observed at pH = 6. Consequently, cyclic voltammetric results of IM are nearly in agreement with those

Figure 2. Dependence of peak currents on pH for 1×10^{-5} M IM in B-R buffer. (●): peak I; (←→): peak II. Experimental conditions: Square-wave voltammetry; pulse height, 20 mV; scan increment, 2 mV; equilibrium time, 5 s; frequency, 50 Hz; working electrode, HMDE, drop size, medium.

Figure 3. Dependence of the potentials of peak I (●) and peak II (←→) on pH for 1×10^{-5} M IM.

Figure 4. Square-wave voltammograms of 1×10^{-5} M IM in B-R buffer at pH = 9. (Experimental conditions: pulse height, 20 mV; scan increment, 2 mV; equilibrium time, 5 s; frequency, 50 Hz; working electrode, HMDE, drop size, medium).

Scheme 3. The ionization of IM
obtained by square-wave voltammetry technique on the formation and characteristic values (cathodic currents, peak potentials, etc.) of the peaks I and II.

Effect of the Scan Rate

The influence of the scan rate (ν) on the peak currents (I_p) of IM was investigated by cyclic voltammetry. The peak current changes linearly with scan rate according to the equation $I_p = A\nu^x$. The x values 1.0 and 0.5 are expected for adsorption-controlled and diffusion-controlled reactions, respectively. For cathodic peaks I and II, the linear relationships between $\log I_p$ and $\log \nu$ are observed at different pH values (Figure 6). The experimental results are listed in Table 1. As can be seen in Table 1, the slope values of peaks I and II at pH = 6.0 are very close to the theoretically expected value of 0.5 for a purely diffusion-controlled current. At more acidic or basic solutions, the slope values are bigger than 0.5. This result indicates that the electrode process of IM is a diffusion-controlled mass transfer, involving a slightly contribution of adsorption.

$$W_{1/2} = 3.52\frac{RT}{anF}$$

Table 1. The cyclic voltammetric data from plots of $\log I_p$ vs. $\log \nu$ for the first reduction peak (I) and the second reduction peak (II) of 1×10^{-4} M IM at pH values of 2, 3, 5, 6, 8 and 9 (for the scan rate range: 200–1000 mVs$^{-1}$)

<table>
<thead>
<tr>
<th>pH</th>
<th>Equation for first peak (I)</th>
<th>Regression coefficient (r^2)</th>
<th>Equation for second peak (II)</th>
<th>Regression coefficient (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\log I_p = 0.654 \log \nu + 1.887$</td>
<td>0.994</td>
<td>not observed</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\log I_p = 0.609 \log \nu + 2.103$</td>
<td>0.992</td>
<td>not observed</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$\log I_p = 0.528 \log \nu + 2.398$</td>
<td>0.992</td>
<td>not observed</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$\log I_p = 0.454 \log \nu + 2.460$</td>
<td>0.992</td>
<td>$\log I_p = 0.505 \log \nu + 0.662$</td>
<td>0.986</td>
</tr>
<tr>
<td>8</td>
<td>$\log I_p = 0.551 \log \nu + 1.958$</td>
<td>0.988</td>
<td>$\log I_p = 0.613 \log \nu + 0.759$</td>
<td>0.995</td>
</tr>
<tr>
<td>9</td>
<td>$\log I_p = 0.875 \log \nu + 1.052$</td>
<td>0.999</td>
<td>$\log I_p = 0.623 \log \nu + 1.209$</td>
<td>0.994</td>
</tr>
</tbody>
</table>

Figure 5. Cyclic voltammograms of 1×10^{-4} M IM in the B-R buffer at pH range 2–9: pH=2 (A); pH=4 (B); pH=6 (C); pH=9 (D). **Experimental conditions:** scan rate: 200 mVs$^{-1}$, equilibrium time, 5 s; working electrode, HMDE, drop size, medium.

Figure 6. The plots of $\log I_p$ vs. $\log \nu$ for the first reduction peak I (a): at pH=2 (◊); pH=3 (■); pH=5 (▲); pH=6 (○); pH=8 (●); pH=9 (▲) and second reduction peak II (b): at pH=6 (●); pH=8 (●); pH=9 (▲) of 1×10^{-4} M IM.

where F is the Faraday constant (96.485 C mol$^{-1}$), R is the standard gas constant (8.314 J mol$^{-1}$ K$^{-1}$), and T is the temperature (expressed in K). The calculated αn values were given in Tables 2 and 3.

If an electrode process includes a protonation step, the currents become pH dependent. The number of protons, m_{H^+}, involved per molecule of IM in the rate-determining step (RDS) are calculated from the slopes ($= 0.059 m_{H^+}/\alpha n$) of the graph of E_p vs. pH (Figure 3) and αn values which is determined by means of the half-peak-width (Tables 2 and 3). The determined proton numbers in the RDS of the electrode reaction are also given in Tables 2 and 3. As can be seen in Table 2, at the RDS of the electrode reaction of the first reduction peak of IM, the values of m_{H^+} calculated lie in the range of 1.55–1.69, indicating that two protons are consumed. In addition, for the peak II, the values of m_{H^+} calculated lie in the range of 1.90–2.00, showing the involvement of two protons in the RDS in the pH range 6.00–9.00 (Table 3). The data presented in Table 2 are also different from the results of IM at RDS on glassy carbon electrode.

Table 2. The square-wave voltammetric data obtained for peak I

<table>
<thead>
<tr>
<th>pH</th>
<th>$W_{1/2}$ / mV</th>
<th>αn</th>
<th>α (n = 1)</th>
<th>α (n = 2)</th>
<th>$(\partial E_p/\partial \text{pH})$ / mV</th>
<th>m_{H^+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>55.22</td>
<td>1.64</td>
<td>1.64$^{(a)}$</td>
<td>0.82</td>
<td>60.7</td>
<td>1.69</td>
</tr>
<tr>
<td>4</td>
<td>56.73</td>
<td>1.59</td>
<td>1.59$^{(a)}$</td>
<td>0.80</td>
<td>60.7</td>
<td>1.64</td>
</tr>
<tr>
<td>6</td>
<td>53.57</td>
<td>1.69</td>
<td>1.69$^{(a)}$</td>
<td>0.85</td>
<td>60.7</td>
<td>1.74</td>
</tr>
<tr>
<td>8</td>
<td>60.00</td>
<td>1.51</td>
<td>1.51$^{(a)}$</td>
<td>0.76</td>
<td>60.7</td>
<td>1.55</td>
</tr>
<tr>
<td>9</td>
<td>69.56</td>
<td>1.30</td>
<td>1.30$^{(a)}$</td>
<td>0.65</td>
<td>128.6</td>
<td>2.83$^{(a)}$</td>
</tr>
</tbody>
</table>

$^{(a)}$ Highly values

Table 3. The square-wave voltammetric data obtained for peak II

<table>
<thead>
<tr>
<th>pH</th>
<th>$W_{1/2}$ / mV</th>
<th>αn</th>
<th>α (n = 1)</th>
<th>α (n = 2)</th>
<th>$(\partial E_p/\partial \text{pH})$ / mV</th>
<th>m_{H^+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>69.09</td>
<td>1.31</td>
<td>1.31$^{(a)}$</td>
<td>0.66</td>
<td>90.4</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>70.00</td>
<td>1.29</td>
<td>1.29$^{(a)}$</td>
<td>0.65</td>
<td>90.4</td>
<td>1.98</td>
</tr>
<tr>
<td>9</td>
<td>72.73</td>
<td>1.24</td>
<td>1.24$^{(a)}$</td>
<td>0.62</td>
<td>90.4</td>
<td>1.90</td>
</tr>
</tbody>
</table>

$^{(a)}$ Highly values

Electrode Reaction Mechanism

From the data given in Tables 2 and 3, it is obvious that the RDSs of peaks I and II of IM involve two electrons and two protons. So, the mechanism of the reduction process for peak I of IM in the pH range of 2–8 can be suggested as given in Scheme 4:

As can be seen in Scheme 4, the (N–NH–) single bond of IM was cleaved with the uptake of two electrons and two protons. And then the intermediate product of the electrode process was rapidly reduced to the amine by means of 2-electron process. As a result, both reduction processes occur at same potential.

On the other hand, the reduction mechanism of peak II in the pH range of 6–9 may be written as seen in Scheme 5:

It is well known that the reduction process of azo compounds in neutral and basic media takes place via 2e–/2H+. On the basis of above results, the second reduction process of IM can be sourced from the consumption of 2e– and 2H+ for the reduction of –N=N– group on the tautomeric form of IM (Scheme 5).

CONCLUSIONS

In this paper, a detailed electrochemical study of IM at HMDE was carried out over a large pH range. From the aforementioned experimental results and discussions, we can obtain the below conclusions:

1. The reduction process of IM is irreversible character.
2. The electrode reaction of IM is pH dependent.
3. The peak currents of IM are generally diffusion-controlled with slightly contribution of adsorption.
4. The first electrode reaction of IM in the pH range from 2 to 8 occurred with consumption of 2e–/2H+. Also, the second electrode process of IM includes the transfer of two electrons and two protons in the pH range of 6–9.
5. pK\textsubscript{a} value of IM has been determined to be about 7.41.

REFERENCES
