SHEARING STRENGTH TESTING ON »ROBERTSON RESEARCH« AND »AMP-1«

Miroslav PETZEL

Faculty of Mining, Geology, and Petroleum Engineering, Pirotrtijeva 6, 41000 Zagreb, Croatia

Key-words: Sample shearing, Shearing machine, Rock laboratory tests

Paper describes shearing machines »Robertson Research« and shearing laboratory »AMP-1« for softer rocks. Maximal horizontal and vertical power for »AMP-1« is 400 kN for sample surface between 100 and 200 cm², and can be used for shear tests along the plane of discontinuity of very hard rocks. Average content of CaCO₃ in tested samples is 71.39%.

Introduction

Among the many types of investigations of mechanical properties of rock samples, shear strength tests play an important role, since they provide solutions to many problems in rock mechanics, soil mechanics, engineerint geology, complex structure stability calculations, and also for static and dynamic conditions.

The assessment of rock slope problems cannot be evaluated without the knowledge of shear strength parameters. The comprehension of shear strength parameters is necessary during the design of open pits, underground openings and theoretical analysis of rock stress and strain for underground mine constructions.

Historic development of material failure theory is connected to with the first experiments in this field. In the year 1500 Leonardo da Vinci tests the strength of wire, Galileo Galilei in 1638 performed tensile strength tests on various materials, Robert Hook in 1678 describes his experiments on wire, and Edmé Mariotte in 1690 performs tensile strength tests on wood.

The first laboratory was founded in 1871 at the Polytechnic institute in Munich. Its first director was Johann Bauschinger (1833—1893) who was a mechanics professor at the institute where a compression machine (1000 kN) was installed. Bauschinger constructed a mechanical extensometer for measurement of small deformations which allowed precise measurement of unit extension in the order of magnitude 1 x 10⁻⁶. An experiment on coal was first performed in 1875 in Germany (Tjmoshenko, 1965). In Berlin in 1871 A. Martens founded a material testing laboratory, and in 1907 he is the first to presuppose that changes of sample dimensions do not change its strength parameters.

Hypothesis of failure

The strength of a rock is a complex function of a number of parameters, and in a general sense is dependent on normal effective stress, porosity, cohesion, internal angle of friction, mineral and granulometric composition, previous load history, temperature, deformation, structure, type of fluid in pores, etc. These characteristics do not have to be mutually independent. The influence of each single parameter is not well defined well in a quantitative functional sense.

The mechanical properties of technical materials evaluated with testing machines in which the samples are exposed to simple strain. Most data about resistivity of metals is obtained from tensile strength tests, while materials such as stones and concrete are exposed to compression tests.

Criterion of failure

The hypothesis of the maximum normal stress, also termed the Rankin hypothesis, stresses that failure occurs when the maximum i. e. the least principal stress exceeds a certain value. For tensile materials this means that yield in an element of a strained body begins when the maximum stress equals the yield point limit of material exposed to tensile strength tests or when the least stress is equal to the yield limit obtained during compression tests. It has also been proved that homogeneous and isotropic material of poor capabilities to resist axial stress can without becoming viscous withstand large hydrostatic stress. This obviously implies that the value of normal stress alone does not define conditions at which material becomes viscous or when failure of material occurs.

The hypothesis of failure ascribed to Saint Venant is termed the hypothesis of the maximum de-
This theory presumes that tensile material becomes viscous when the maximum dilatation equals the dilatation limit realized during tensile strength tests, or when the least deformation is correspondent to the deformation at the yield limit obtained by compression tests. Experimental results on tensile materials are in much better agreement with the hypothesis of maximum shear stress. According to this hypothesis yield begins when the maximum shear strain in a material is equal to the maximum shear strain at the viscosity limit achieved by tensile strength tests. Maximum shear strain is equal to the half of the difference between maximum and least principal stress i.e. it is equal to half the normal strain obtained by uniaxial tensile strength tests. During machine design the maximum shear stress hypothesis is used. Experiments performed by J. J. Guesta confirmed this hypothesis (Timoshenko, 1966).

The criterion of plasticity for isotropic materials is given in simple form as \(f(s_1, s_2, s_3) = 0 \), where the principal stresses \(s_1, s_2, \) and \(s_3 \) have an equal influence on yield. Tests performed on anisotropic materials show that yield is independent of uniform triaxial pressure or dilatation. Due to this the yield surface in a coordinate system \((0, s_1, s_2, s_3)\) is a symmetrical body with an axis of symmetry \(s_1 = s_2 = s_3 \) (Fig. 1). The plane passing through the inception is termed deviatory plane. The intersection curve between the deviatory plane and the yield surface is called the yield curve. The curve does not pass through the inception point and is convex in shape. The axes \(S_1, S_2, \) and \(S_3 \) are projected \(s_1, s_2, \) and \(s_3 \) on the deviatory plane and present the principal values of the deviatory parts of the stress tensor. The possible curves are circular (Von Mises) or hexagon (Tresca) in shape (Fig. 2). The Tresca yield curve is a regular hexagonal cylinder (Fig. 3), whose intersection plane with the plane \(0, s_1, s_2, \) and \(s_3 \) is an elongate hexagon. A circle is the von Mises criterion, whose yield surface is a circular cylinder. The cylinder intersects the plane \(0, s_1, s_2, \) and \(s_3 \) as an ellipse.

The Mohr-Coulomb criterion defines the dependence of critical stress and the circular component of the stress tensor and is applicable to materials such as rocks and soils. The representation of the Mohr-Coulomb criterion is a hexagonal pyramid around the axis \(s_1 = s_2 = s_3 \). An approximation to the Mohr-Coulomb criterion was presented by Drucker and Prager as a modification of the Von Mises criterion of yielding (Owen and Hinton, 1980). The influence of the hydrostatic stress component on yielding by inclusion of the
additional term in the Von Mises expression (Fig. 4) to give:

\[aJ_1 + (J_2^2)^{1/2} = k' \]

(1)

\[a \] — the value of this coefficient is dependent on whether the cylinder is placed inside, or outside the points of the Mohr-Coulomb hexagon

\[k' \] — material parameter

\[J_1 \] — the first stress invariant, MPa: \(J_1 = \sigma_{ii} \)

\[J_2' \] — the second stress invariant, MPa:

\[J_2' = \frac{1}{2} \sigma_{ij} \sigma_{ji} \]

Hooke and Brown (1980) uses their experience both in the theory and practical aspects of rock behaviour in order to develop an empirical link between principal stresses defining rock failure:

\[\sigma = \sigma_2 + \sqrt{m \sigma_2 \sigma_3 + s \sigma_2^2} \]

(2)

\[\sigma_2 \] — maximal normal stress, MPa

\[\sigma_1 \] — minimal normal stress, MPa

\[\sigma_3 \] — uniaxial strength, MPa

m and s — constants that depend on the condition of the rock mass.

Griffith criterion of failure

This criterion is based on the presumption placed by Griffith (1921) that failure occurs due to stress concentration in the apex of fissures which are presumed to reach deep into the material and failure occurs when maximum stress near the tip of the most favorably orientated fissure reaches the value characteristic for the material (Jaeger, 1968).

The Griffith parabola equation is written as:

\[\tau = c + \sigma \tg \phi \]

(4)

for which the constants \(\tg \phi \) and \(c \) are calculated from the system of equations:

\[\Sigma \tau_i = \tg \phi \Sigma \sigma_i + nc \]

(5)

\[\Sigma \sigma_i \tau_i = \tg \phi \Sigma \sigma_i^2 + c \Sigma \sigma_i \]

The line (4) defined with the system of equations (5) is termed as the first degree regression curve. The whole calculation was performed by tab-
Table 1. Results of shear tests — Roberton Research

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Normal stress (MPa)</th>
<th>Shear strength (MPa)</th>
<th>στ</th>
<th>στ'</th>
<th>Surface of the cut (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7—7</td>
<td>16.28</td>
<td>20.43</td>
<td>373.46</td>
<td>334.16</td>
<td>0.009930</td>
</tr>
<tr>
<td>8—3</td>
<td>13.14</td>
<td>18.70</td>
<td>285.12</td>
<td>292.22</td>
<td>0.001123</td>
</tr>
<tr>
<td>9—4</td>
<td>12.80</td>
<td>14.80</td>
<td>189.44</td>
<td>163.84</td>
<td>0.001200</td>
</tr>
<tr>
<td>10—2</td>
<td>12.71</td>
<td>16.24</td>
<td>206.41</td>
<td>161.54</td>
<td>0.001416</td>
</tr>
<tr>
<td>10—4</td>
<td>9.08</td>
<td>12.72</td>
<td>115.50</td>
<td>82.45</td>
<td>0.001576</td>
</tr>
<tr>
<td>10—5</td>
<td>10.23</td>
<td>13.16</td>
<td>134.63</td>
<td>104.65</td>
<td>0.001368</td>
</tr>
<tr>
<td>10—6</td>
<td>11.28</td>
<td>14.29</td>
<td>161.19</td>
<td>127.24</td>
<td>0.001330</td>
</tr>
<tr>
<td>18—5</td>
<td>14.26</td>
<td>16.93</td>
<td>241.42</td>
<td>203.35</td>
<td>0.001122</td>
</tr>
</tbody>
</table>

\[n = 8 \sum (37.78 \sum 127.27 \sum 1705.17 \sum 1406.45) \]

The cohesion value was calculated from the expression:

\[c = \frac{\Sigma \tau - \Sigma \tau' \Sigma \tau}{n \Sigma \sigma^2 - (\Sigma \sigma)^2} \] \hspace{1cm} (6)

The angle of friction is obtained from:

\[\tan \phi = \frac{n \Sigma \tau \Sigma \tau' - \Sigma \tau \Sigma \tau}{n \Sigma \sigma^2 - (\Sigma \sigma)^2} \] \hspace{1cm} (7)

\[\phi = 41^\circ 51' 14'' \]

The results are given in Table 1 and on the \(\sigma-\tau\) diagram in Fig. 6. From expression (4) the linear regression equation can be written as:

\[\tau = 4.23 + 0.90\sigma \] \hspace{1cm} (8)

Shear testing apparatus AMP-1

The device consists of a frame, hydraulic cylinders, cylindrical bearings and a sample holder. The maximum working pressure of the inbuilt hydraulic system is 445 bars (Fig. 7). To detect the force value and its change rate two dial gages were mounted. The forces are calculated over the surface of the pressure cylinder. The value of vertical stress (\(\sigma\)) is measured by a membrane gage with a scale between 0—600 bars, and the horizontal stress (\(\tau\)) is measured with an electronic gage. The measurement range is from 0 to 600 bars, with an accuracy class of 0.5 and accepted deviation of ± 2 bars (Fig. 8). The displacement of the sample is measured with a mechanical comparator, with sensitivity of 1/100 mm or by a LVDT (Linear Variable Displacement Transducer) sensor.

Shear strength testing in the AMP-1 apparatus

Data for each sample is in the testing record, which contains the data on displacement surfaces, values of vertical force, horizontal force increase, the size of displacement with increasing force, and the values of normal and tangential stress. This data was used for plotting a value for each sample on the \(\sigma-\tau\) diagram (Fig. 6). The whole calculation was performed by tabulation (Table 2). The average surface of tested samples is 100.4 cm² (Petzel, 1992). The average content of CaCO₃ in the samples is 71.39% (ranging from 67.96 to 75.58%) determined by calcimetric analysis.

Fig. 6. Diagram of normal stress and shear strength

Fig. 7. Shearing machine «AMP-1»
The calculated value of cohesion equals $c = 7.05 \text{ MPa}$, and the value of the angle of friction is $\phi = 40^\circ 30' 59''$. From expression (4) the linear regression equation can be written as:

$$
\tau = 7.05 + 0.854\sigma
$$

(R9)

Result analysis and conclusion

The results obtained from AMP-1 apparatus are plotted on the σ-τ diagram (Fig. 6), and the corresponding linear equation is given as:

$$
\tau = 7.05 + 0.854\sigma \\
c = 7.5 \text{ MPa} \quad \text{cohesion} \\
\phi = 40^\circ 30' 59'' \quad \text{angle of friction}
$$

(R10)

The results can be compared with those obtained from the Robertson Research apparatus and the linear equation:

$$
\tau = 4.23 + 0.900\sigma \\
c = 4.23 \text{ MPa} \quad \text{cohesion} \\
\phi = 41^\circ 51' 14'' \quad \text{angle of friction}
$$

(R11)

From the plots on the diagram a slight difference in cohesion values can be observed, while the angle of friction is almost the same. Such results were to be expected due to the difference in sample surface size that is, in the AMP-1 apparatus they are larger, and the samples were not treated laterally. With the size of samples local decrepitu-de is avoided in each separate sample, and the test errors are reduced.

On the σ-τ diagram (Fig. 6) the area of normal stress ranges from 3.21 and 18.28 MPa, and the tangential stress ranges from 10.71 and 20.43 MPa. The results of shear strength tests performed with the Robertson Research and the AMP-1 apparatuses can be considered as satisfactory. These investigations should be continued on different materials in order to evaluate the obtained results.

Received: 2. II. 1994.

Accepted: 9. VI. 1994.

REFERENCES

