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Abstract In this work, three-terminal ballistic junctions, 
made of three-branch graphene nanoribbons (GNRs), are 
considered and simulated at the nanometric scale. The 
analysis is carried out by a scattering matrix approach, in 
a discrete formulation optimized for GNR devices. The 
ballisticity and the scattering properties of the junction 
contribute to the nonlinear behaviour, as, in fact, a 
sinusoidal voltage between two GNR branches results in 
a non-sinusoidal current at the third branch. The input-
output characteristic is hardly predictable at the 
nanoscale, as it depends on several cooperating factors, 
namely the potential distribution and the geometry of the 
junction. Several numerical examples are shown to 
illustrate the above concepts. 
 
Keywords Graphene, GNR, Metal-carbon Contact, 
Graphene Y Junctions 

 
1. Introduction  
 
In the recent past, three-terminal ballistic junctions have 
been shown to feature nonlinear and asymmetric 

transport properties [1]. In particular, the central branch 
of a Y-shaped device is found to be at non-zero voltage 
when the other two branches are subjected to voltages of 
opposite sign. 
 
The Landauer-Büttiker transport theory can be applied to 
demonstrate such nonlinear response of a Y-junction. 
Usually, the following assumptions are made: i) hard 
wall confinement potential used to constrain transport in 
the Y branches, ii) neglect of the self-generated potential 
arising from the charges scattered across the junction in 
excess to the charge neutrality (self-consistency), iii) a flat 
potential in the junction area, with potential drops just at 
the terminal electrodes, iv) small applied voltages. 
 
In the case of graphene Y-junctions, the above approach 
has to be focused on the analysis of graphene nanoribbon 
(GNR), that features very particular, and chirality-
dependent, dispersion curves, directly related to the 
density of states and charge-propagation characteristics. 
In addition, a proper modelling of the GNR-metal 
contacts is required in order to account, at least, for the 
metal-graphene band offset [2,3]. 
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As a matter of fact, the use of graphene and graphene 
nanoribbons in nonlinear devices has been proposed for 
many purposes: namely to realize rectifiers, harmonic 
generation, mixers, switches, and logic function devices 
[4,5]. This is likely to be a successful choice, owing to the 
high mobility, the long mean free path, and the easy 
electrostatic tunability. 
 
In order to fully solve the problem of coherent charge 
transport across the junction, a ‘scattering matrix’ 
approach, in a discrete version introduced recently [6], 
can be fruitfully applied, as it is suitable for large (as 
compared to the inter-atomic distance) planar structures 
and consequent multimodal analysis: as a matter of fact, 
tens of propagating electronic wavefunctions are required 
even for GNR of width as small as 10 nm. The scattering 
matrix approach has already been used to investigate the 
quantum effects of many-terminal graphene devices, and 
thus will be directly particularized to the case of three-
terminal ones.  
 
The analysis of GNR nanodevices requires, in order to 
self-consistently account for the mutual coupling between 
the electrostatic potential and the charge density, the 
solution of the Poisson equation throughout the devices: 
charge diffused into the channel has to be used to update 
the Poisson equation, whose potential output is put back 
into the transport equation, namely the Schroedinger 
equation. However, due to the small voltages considered, 
and to the absence of sharp resonances of charge, the 
effect of the self-generated potential is very likely to be 
negligible; at least, it does not change qualitatively the 
described phenomena. We avoid considering this effect, 
which does not change the already complex physics of 
the nonlinear response of the junction. In the present 
context, a time-resolved calculation for ac operation is not 
strictly necessary, due to the typical small size and high 
charge velocity [7,8]. 
 
2. Theory 
 
Considering a GNR, the starting point for the scattering 
matrix approach is given by a particular formulation [6] 
of the graphene Hamiltonian, arising from the tight-
binding approach: 
 

Hlψl + H0ψ0 + Hrψr = Eψ0        (1) 
 
where ψl,ψ0 and ψr are the wavefunctions of three 
consecutive unit cells, matrix Hl(Hr) denotes the hopping 
elements of a unit cell of GNR to the previous cell on the 
left (right), E is the charge energy, and H0 contains the 
self-energies and eventually the self-generated/external 
potential. The above approach makes use of well-defined 
conditions that ensure numerical consistency: all 
electronic wavefunctions have to be properly normalized, 

and the excitation ports, i.e., the metal contacts, are to be 
properly set as transparent, i.e., perfectly absorbing, 
ports. The physical observables, i.e., charge density and 
current-voltage characteristics, are derived by energy 
integrals over the occupied electronic states. 
 
Although some works use density functional theory 
(DFT) to construct relevant input Hamiltonians, as for 
instance with four-terminal junctions [9,10], this is not 
capable of simulating very large devices. However, they 
become important for small graphene devices, where 
edge effects are not negligible. 
 
The nonlinear response of graphene Y-junctions arises 
from the dependence of the conductivity on the Fermi 
level, which, in turn, depends on the applied voltage [11]. 
In this perspective, the predicted non-linear response 
may occur also in devices larger than their ballistic size. 
This has been shown experimentally [12]. However, the 
junction nonlinearity may feature specific signatures of 
the scattering at the junction discontinuity and of 
transport ballisticity, in contrast to what happens in 
diffusive or classical devices. In order to visually show 
the origin of a non-zero voltage in the central branch, 
with push-pull voltage configuration of the other two 
branches, let us consider Figure 1. The voltage V2 of 
branch 2 is actually set to zero; in fact, having a current 
flowing with V2=0, i.e., metal contact at 0 V, is the same 
as having V2≠0 with zero current, i.e., open or non-
contacted branch. In the figure, I12 is the current from 
contact 1 to  contact 2 and I23 is the current from contact 2 to 
contact 3. The net current I2 at contact 2 is simply found by 
I2 = I23-I12.  
 
With opposite voltages applied at pot 1 and 3, the current 
I12 is not, in general, perfectly balanced by current I23, and 
this leads to a non-zero current at port 2. The reason is 
explained in the following. Although the potential path of 
charges coming from port 1 and going to port 2 is similar 
to the potential path of charges going from port 2 to port 
3, the overall potential distributions that they respectively 
see are actually different, due to the presence of the 
coupled third branch: for instance, with reference to 
Figure 1, the path from port 1 to port 2 borders with a 
low-potential third branch (3), whereas charges from 2 to 
3 are confined within a high-potential first branch (1). 
 
The potential in the junction region has been considered 
in a simplified fashion, i.e., considering it as constant over 
each of the three branches, but with different values equal 
to the respective applied voltage. This assumption does 
not substantially affect the concepts reported in this 
work. 
 
In some of the cases considered here, we are faced with a 
second important reason for the imbalance between I12 
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and I23: the assumption of a central branch wider than the 
other two branches, as seen in the figure above. This 
yields different densities of electronic states, directly 
affecting the current delivered in the three branches. The 
situation is depicted in Figure 2, where the darker yellow, 
in the central branch, means a higher density of states; the 
orange arrow, representing the current I12, originates 
from a channel with low density of states and points to a 
branch with higher density, whereas the opposite 
happens for the green arrow, representing the current I23. 
 

Figure 1. a) Band structure of the Y-junction; b) m (l) is the number of 
vertical armchair lines of the GNR branch 2 (1,3); n is the number of 
vertical armchair lines separating branches 1 and 3. The top picture 
(a) is only figurative, as GNRs may have energy band gaps. 
 
A third effect contributes to complicating the picture: 
branches 1 and 2 are eventually different from each other, 
or not symmetrically placed with respect to the central 
one. Again, this asymmetry may emphasize the nonlinear 
behaviour by increasing the discrepancy between I12 and 
I23. In this work, the asymmetry comes from the shape of 
the unit cell of the GNR branches (see Figure 1(b)), but, in 
general, other differences may exist: geometry, size, 
chirality, Fermi energy, metal contact, or doping level. 
Here, a GNR Fermi level of 0.4 eV in all the GNR 
branches is assumed. 

Figure 2. Band structure of the Y-junction: the darker yellow, in 
the central branch, means a higher density of states associated to 
a wider branch (DOS2>DOS1=DOS3) 
 
It is observed whether the above three effects cooperate 
constructively or not; they depend on several parameters, 
namely the scattering properties among the different 
branches, and their semiconducting or semimetallic 
nature. As a matter of fact, simulations suggest that, at 
the nanoscale, the output of the system, i.e., the voltage at 
the second branch, is hardly predictable unless a very 
precise control of the chirality, relative position, and size 
of the three branches is made experimentally possible.  
 
A general expression for the current flowing from port i 
to port j of the Y-junction is derived from the Landauer 
formulation: 
 

( ) 3,2,1,)()()(2
,

=−=   jidEEfEfEt
h
eI

qp
ji

pq
ijij  

 

where e is the (negative) unit charge, h is the Plank 
constant, i and j indicate port number, t is the charge 
transmission coefficient, f is the Fermi function at each 
port, the integers p and q span the mode channels of port i 
and port j, respectively. 
 
3. Numerical results 
 
All the following calculations are performed by the 
scattering matrix approach, as described above. 
 
In Figure 3(a), we report the transmittivity between port 2 
and ports 1, 2 and 3, including the contributions of all 
their electronic channels: 
 

=
qp

pq
jj tT

,
22  

 
where the Fermi probability is included in the 
coefficients. 
 
For completeness, the sum of reflection (T22) and 
transmittivities from port 2 (T21 and T23) is reported in 
Figure 3(b), in order to assess the numerical consistence 
of the calculation: at any energy, the above sum must 
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return an integer number, equal to the number of the 
(propagating) electronic channels of port 2, for the 
considered energy (energies are referred to the Dirac 
point of port 2). 
 

Figure 3. a) Charge transmittivity T2j from port 2 to port j=1,2,3 
with respect to the energy; b) sum of the transmittivities of (a) 
 
Figure 4 shows the output current I2 at port 2, when a 
sinusoidal input-voltage is applied between ports 1 and 3, 
with 0.4 V from peak to peak, i.e., V1-V3=0.2sin(angle), 
where angle is the phase in radiants. 
 
The output current is not linearly proportional to the 
input voltage, but looks more similar to the absolute 
value of the input (with negative sign), and contains a DC 
component. This suggests the application of the Y-
junction as logic port and RF detector [13].  
 

 
Figure 4. Current I2 delivered at contact 2, with a sinusoidal 
input voltage across the ports 1 and 3; left plot:  m=l=19, n=1; 
right plot: m=l=18, n=2 

Figure 5 reports the output current I2 as a function of the 
sinusoidal input voltage V1-V3 as above. The form of the 
output strongly depends on the scattering properties of 
the junction, defined, in the central plot, by l=10, n=7, and, 
in the right plot, by l=11, n=5. In both the latter plots, 
m=23 has been assumed. 
 
In the examples of Figure 6, we set m=22 and n=6 (left), 
m=21 and n=5 (right), with l=10 in both cases. 
 

 
Figure 5. Current I2 at branch 2, with a sinusoidal input voltage 
across ports 1 and 3; left plot: m=23, l=10, n=7; right plot: m=23, 
l=11, n=5 

 

 
Figure 6. Current I2 at branch 2, with a sinusoidal input voltage 
across ports 1 and 3; left plot: m=22, l=10, n=6; right plot: m=21, 
l=10, n=5 
 
As can be seen from the figures above, the output current 
I2 features high variability, and strongly depends on the 
scattering properties of the junction, which depends, in 
turn, on the parameters l, m and n. As a result, the sign of 
the current can be negative or positive and can be highly 
asymmetric in the two half periods of the input voltage 
sinusoid. 
 
4. Conclusions 
 
In this contribution, we report the nonlinear effects of 
three-terminal graphene ballistic junctions. The ballistic 
calculation, fully developed by a scattering matrix 
approach, shows that, at the nanoscale, the behaviour of 
the junction is strongly affected by even small differences 
in the junction shape. A self-consistent calculation that 
accounts for the potential self-generated by the charge 
scattered through the channel, including bound states of 
charge, is the subject of a forthcoming paper. 
 

a) 

b) 
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