INTECH

open science | open minds

Nanomaterials and Nanotechnology

ARTICLE

Current Generation in Double-Matrix
Structure: A Theoretical Simulation

Regular Paper

Bogdan Lukiyanets', Dariya Matulka'” and Ivan Grygorchak'

1 Lviv Polytechnic National University, Ukraine
* Corresponding author E-mail: dariya2009@gmail.com

Received 28 March 2013; Accepted 2 May 2013

© 2013 Lukiyanets et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Peculiarities of kinetic characteristics in a
supramolecular system, in particular, in a double-matrix
structure observed at change of the guest content in a
matrix-host are investigated. Results obtained within the
framework of a time-independent one-dimensional
Schrodinger equation with three barrier potential
qualitatively explain experimental data. They indicate the
importance of size quantization of a system, correlation
between energy and geometric characteristics of both
guest and host in this case.
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1. Introduction

Recently, there are intensive both theoretical and
experimental research in the field of new technology —
nanotechnology. In contrast to traditional technologies
the nanotechnology operates with materials and systems
whose size at least in one crystallographic direction is
from one to a hundred nanometers. These materials
possess a number of unique physical properties, which
are quite perspective from the viewpoint of their practical
applications in electronics.
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One up-to-date technical problems is the creation of new
efficient autonomous generate/conversion devices and
energy storage. Today transition to nanoscale objects as
energy or charge storages allows to solve this problem.
Really, application of the nanodispersed FeSz in an energy
storage device with a lithium anode increases the specific
capacity almost by 20% in comparison with a coarse-
grained homologue [1], and the nanosized - Fe:0s
possesses the high recirculated capacity 200 mA hour/g
and good cycling in a range 1,5-4,0 V regarding Li*/Li in
comparison with the macrostructured a - Fe20s, vy -Fe20s
and a - FesOs [2]. The concept of "electrochemical
grafting” [3, 4] explains the effect by the features density
of nanoobjects. From our point of view the nanostructural
cathode material with a hierarchical architecture may be
an efficient energy storage. The supramolecular and
double-matrix structures belong to a broad class of
nanoobjects. The supramolecular structure is structure in
which two or more smaller components (guests) are
introduced into larger one (host) without the formation of
ordinary chemical compounds. It is possible in the case of
a weak host - guest interaction. Clathrates [5], in
particular relate to such structures, namely their "host-
guest" interaction is based on the principle of a molecular
recognition "lock - key" [6-7]. The nanostructural
organization - the clathrate (or supramolecular) ensures
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not only vital new interfacial charge transfer, but also the
efficient Faraday storage of energy.

The current-forming phenomenon there was investigated
in the molecular lattice mesoporous regular structure on
the SiO2 - MCM-41-basis [8] in the hierarchical double-
matrix ~ structure = MCM-41<TiO2>> and in the
supramolecular assembly of hierarchical architecture
MCM-41<hydroquinone>>.

The essence of a current-generation reaction in the
nanoscale silica (similar in the structure TiO2) is the
reaction

Si0Oz2 + xLi* + xe~= LixSiO2

The kinetics of an intercalation current generation was
investigated by the impedance spectroscopy in the
frequency range of 10-*+10° Hz. To establish the behavior
of kinetic parameters in the current generation of
synthesized double-matrix structures the Nyquist
diagrams were applied, i.e., dependence of the imaginary
part of total impedance on its real part was analyzed.

Obtained results are well simulated by the equivalent
electrical circuit shown in Figure 1.

Rs R1 R2 R3 w1

c1 C2 c3

Figure 1. The generalized equivalent electrical circuit on the
impedance spectroscopy basis

Here Rs is the series equivalent resistance, which
contains a resistance of electrolyte; the series electric
circuits RillCil, Rz211C2 and the Randles - Ershler
circuit Csl| (R3-Wi) are connected with the charge
transfer through the matrix material, nematic liquid
crystal, and matrix/nematic (molecular
interlayer), respectively. Checking the adequacy of the
model package of experimental data showed good
results: the Kramers-Kronig coefficient did not exceed
3-10°5.

interface

The computer-parametric identification of the diagram
is shown in Figure 2. As can be seen, the parameters Rz,
Rs, C2, Cs clearly show the unusual, oscillatory character
which explicitly or implicitly (via the thermodynamic
Wagner factor [9]) depend on the electron transport.
There is reason to believe that such nonmonotonic
dependence is caused, in particular, by the
rearrangement of electronic states in the supramolecular
assemblies due to the intercalant introduction. Rs, which
is connected with an ion transfer from the electrolyte to
the guest's positions of cathode material, does not
oscillate since it is less sensitive to the peculiarities of
electron structure.

Nanomater. nanotechnol., 2013, Vol. 3, Art. 8:2013

It was obtained that dependence of the lithium
dissolution entropy on the guest content x in the MCM-
41<hydroquinone <Lix>> is nonmonotonic also.
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Figure 2. Change of the electric circuit parameters (Rz, R3, C2, Cs)
in the MCM-41<hydroquinone <Lix>> depend on the guest
content x

The purpose of this paper is to show the quantum
mechanical nature of the nonmonotonic character of
current generation in the studied objects.

2. Theoretical model

Any solid body is a potential well or a system of potential
wells for an electron. Therefore, its spectrum has a
discrete character. In the wide potential well these
discrete energy levels are so densely arranged that the
spectrum can be regarded as continuous. As soon as a
body size reduces the distance between the discrete
energy levels so increases that the discreteness clearly
manifests itself in different physical phenomena (e.g., in
an optical spectra). This phenomenon of size quantization
is especially important in the low-sized bodies, in
particularly, in the nanoparticles or supramolecular
systems.
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Information about the behavior of an electron in
nanoobjects gives solution of the time-independent
Schrodinger equation, namely:

Ht//(x):Ez//(x) (1)

2
Here H= —;—Vz +U(x) is a Hamilton operator, U(x) is
m

a potential energy of a particle with mass m (E is its total
energy; h is the Planck constant).

The well-known quantum-mechanical problem "a particle
in infinite well"

0 Xe (—00;0], [d,oo)

0 xe[0,d] @

U(x):{

may serve as an illustration of nanoobject (d is width of
the well). In this case the quantized levels of a particle are
[10, 12]:

_ W r?

E =
2md?

n

n’, ®)

and the corresponding wave functions are:

78 (x):\/gsin{”dnxJ , 4)

where n=1,2,3,...

From (3) it follows that the discreteness is greater for
narrower wells.

Consider the electron tunneling in double-matrix or
supramolecular structures. We use an one-dimensional
time-independent Schrodinger equation (1) with the
potential simulating such structures, namely:

0, xe (—oo;xJ range 1
U,, xe [xlxz] range 2
U, xe [x2x3] range 3
U(x): U, xe[x3x4] range 4 &)
U, xe [x4x5] range 5
U,, xe [xsxé] range 6

0, xe [x6 oo) range 7
This potential is represented in Figure 3.

Here, the ranges 1-2, 5-6 describe the barrier created by
the host shell and the range 3-4 with the size d2 is a quest
introduced into the host (x2- x1 =¢; xa-x2=d1; xa- x3 = d2;
x5- x4 = di; x6- x5 =c). Changing the dimensions d, and
values of the potential U_ it is possible to simulate the
amount x of introduced guest.
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Figure 3. Potential of double-matrix structure (here x is a
geometrical characteristic)

In the wells with finite thickness and height of barriers an
electron is not fully localized in the wells, and there is a
finite probability of its penetration outside of the wells.
As a result, the energy levels have a finite width, and
corresponding state is not purely stationary but
quasistationary, E, =ReE_+ilmE_=E ; +iE_,, with the

lifetime at the level E| = :%(E

n
n2

a1/Eqp are the real

and imaginary parts of E_ , respectively).

Consider two problems:

a) Electron energy states within the double-matrix
structure - so-called virtual state. (By analogy with
the problem of "a particle in infinite well " one can
predict the electron energy states as a set of levels),
and

b) an electron tunneling into the structure.

The solution of the 1-st problem is especially important
for understanding of the 2-nd problem solution. We
would remind you [12] that in the case of two-barrier
structure it is probable so-called resonant tunneling. Its
essence is increasing (up to 1) of the tunneling probability
of an electron through both barriers if its energy coincides
with any virtual levels. This situation is a result of the
interference of incident and reflected waves in the
interbarrier area. The phenomenon of interference should
be expected in the double-matrix system. On its basis we
can predict the effects of tunneling into the double-matrix
structure, which is dominant in the current generation in
the nanostructural electric power storages.

Let us analyze the consequences of difference between
the potential (4) and the two-barrier potential for
tunneling in case of the double-matrix structure.

2.1 Virtual states

The solutions of time-independent Schrodinger equation
in any range of the rectangular potential are of the form:
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v, (x) =A exp(klx) +B, exp(—klx) ,(1=1,2,..7), (6)

where the 1-st term describes an incident wave, and the 2-
nd - a reflected one and A, B are their amplitudes;

K, :i1/2m;‘(511—U(x1))
in the l-th range.

, m; is an electron effective mass

For the electron placed into the double-matrix structure
A, and B, are equal to zero. It means the absence of the
incident wave in the 1-st range, and reflected in the 7-th
range.

Let us consider the wave function (6) and its derivative
¥ (x) =kA exp(klx) -k,B, exp(—klx) (7)

Taking into account the continuity condition of wave
functions in any point, matching such functions in the
point x; (I=1, 2, 3,..,6) we obtain:

A exp(klxl) +B, exp(—klxl) =

®)

Aprexp (k) + By (ki x)
and from the continuity condition of their derivatives in
this point we obtain:

kA, exp(klxl) -kB, exp(—klxl) =

9

kAL exp(kmxl ) —kp4Biy exp(—kmxl)
Equations (8), (9) are a set of twelve homogeneous linear
equations in respect to thirteen unknowns Ay,B A,

(herel=1,2, 3,..,6).

According to the theory of a system of homogeneous
linear equations its nontrivial solutions are realized at the
equality to zero of the determinant formed from the
coefficients at the unknown quantities. The obtained
eigenvalues B,,A, B, A,

yield eigenvectors and,

consequently, the wave functions.

Recently, the alternative method for finding the energies
and wave functions were widely used [13-14]. In [13] it

was observed a formal coincidence of the analytical
expressions of equations
mechanical problem with the rectangular potentials and
the  transmission line  problem in
electrodynamics. The equation can be represented as a
recurrence relation in the matrix form:

exp(-k; (Xm —X )) A,
[B j (10)
exp(-k; (X1+1 X )) :

describing the quantum-

classical

1+a
) [t
BIH !

exp(k, (X1+1 - XI))

—-q

1+q

.
m; ki

where o) = .
My, ki

To solve the time-independent Schrédinger equation we
have used the computer program [15]. It contains a
package of the computer algebra Maple for the problems
with the rectangular potentials on the Newton's method
basis of solving of the transcendental equations.

We have analyzed the solutions of time-independent
Schrédinger equation:

a) depending on the potential U_at the fixed potential
U, (U, = 0) and its width d;
b) dependonU, .

We confine ourselves by the ground and the first three
excited electron levels in the energy range (0 - 1.0) eV.

Consider the levels of introduced particle with the widths
d, =1, 8, 15 and 22 nm and its potential U_=0.1, 0.3, 0.5
and 0.7 eV at the constant geometrical dimensions of shell
(host). As an example, Table 1 shows the values of
ground and first three excited states with U, =0, U, =1
for d, =1 nm and d2 = 8 nm on the guest height U_.
Figure 4a,b shows graphical dependence of such states
and squares of their wave functions on the guest height
U, for the widths d, =1nm and d, =8 nm. Figure4 ¢, d
(Figure 4 e, f) shows the squares of wave function for
various d, U.= 01
(U.=0.7). (For visualization in Figure 4 the normalization
conditions are ignored).

and for the same potentials

d2=1nm d2=8 nm
U_ =01 U_ =03 U_ =05 U_ =07 U_ =01 U_ =03 U_ =05 U_ =07
E, 0.0104 0.0154 0.0176 0.0189 0.0254 0.2629 0.4881 0.7393
E, 0.0217 0.0218 0.0219 0.0219 0.0266 0.2694 0.4994 0.7841
E, 0.0558 0.0655 0.0719 0.0760 0.0929 0.3644 0.5836 0.8374
E, 0.0870 0.0872 0.0875 0.0877 0.1046 0.4458 0.7047 0.9692

Table 1. Dependence of the ground and first three excited states on the guest height U for the widths d, =1nmand d, =8 nm
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Figure 4. The ground state E; position depend on U_ for d, =1 nm (a) and d, =8 nm (b); c (d) are the squares of wave function at
d, =1 nm (for the 3-rd excited state at d, =8 nm)and U_=0.1; e (f) are the squares of wave function for d, =1 nm (d, =8 nm) and

U_=0.7.Inall cases U, =0, U, =1. (All energy characteristic are in eV).
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Let us compare effect of the guest presence in a well with
the conclusions of the quantum-mechanical problem "a
particle in infinite well". If in the problem "a particle in
infinite well " the square of the wave function of ground
state has a single maximum in the center of well, in our
case this characteristic has a hollow in the same point.
Thus, the square of the ground state of wave function is a
curve with two symmetrical (as a result of the symmetry
of chosen potentials) located maxima. The square of the
wave function of first excited state qualitatively agrees
with an analogous one in the problem "a particle in
infinite well" .The only difference is a position of
maximum in the first and second cases. Particularly
evident changes at the consideration of the same problem
take place at the higher values of the potential U_,
namely at U_= 0.7 (see Figure 4e). Specific changes occur
also with the d, width increasing of the barrier U . At
the same time the comparing of the results with the
results of the problem "particle in an infinitely well" is
less obvious (see Figure 4f).

The increasing of the barrier thickness d, simultaneously
is accompanied by the narrowing of wells on both sides
U., reducing overlap of the wave functions between
them. Therefore, these wells can be regarded as
independent. The narrowing of wells itself causes a shift
of the levels to the higher values. Such conclusion is
confirmed by similar calculations El(UC) for the cases
d, =15 and 22 nm. At constant value of the guest
potential U_ (U, = 1) the monotonic increase of all
levels is observed with he increasing of the bottom of the
potential U, (U, =1, d, =1 nm).

Table 2 shows the values of levels depending on the
height of the well U, at d, =8 nm, and Figure 5 is a
graphical representation of ground state level as a
function of the height U, of the well. The absence of
values is the fact that some electron states are above the
range of our calculations, E<1 eV. The increasing U,
leads to the increase of tunneling probability. In extreme
case, when the position U, is minimal (U, = 0) the
tunneling grows. Obviously, the tunneling will be higher
at lower U_-U, . In other words, a system of the wells
can be regarded as the sum of the independent wells at
U, =0 and single well of the host value at U, = U, .

Such circumstances may explain it would seem the
strange change El(Ua). As the depth of wells decreases
(with the increasing U, ) the levels in these wells are
shifted. At some value of depth upper levels will go
beyond observed range of calculation. However, further
reduction of depth is accompanied by the increase of
tunneling. Thus, the reducing of the depth of wells may
be considered as the effective width of guest well that
equals from about 2d, at U, =0 to 2d, +d, at U, >U_.

Nanomater. nanotechnol., 2013, Vol. 3, Art. 8:2013

Consequently, the levels (according to the E = %) will
eff

drop to the bottom of host. It explains the increase of the

levels with the increasing U, .

U,-01 | U,-03 U, =05 U, =07
) 0.9300 0.8938 0.7939
N — 0.9034
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4

Table 2. Dependence of energy levels on the potential U,
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Figure 5. The ground state position as a function of the height
well U, .

Figure 6 shows the energy states and corresponding
squares of the wave functions on the background of the
double-matrix potential relief at U =1, U,=0.1, U, =1,
d,=1nm

Square of the wave functions

0.8

0.6

0.4

Energy, eV

X, nm
Figure 6. Square of wave functionat U, =0.1(U, =1, U_=1,
d, =1 nm).
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U,.=0.1
E1| 9.8188-10-13

U_=03
2.3565-10-2

U,=05
6.1830-10*

U, =07
2.7544-107

Table 3. The imaginary part of ground state as a function of U_

Table 3 shows the imaginary part of ground state as a
function of U_ at a thickness of d =1 nm.

2.2 Tunnelling

In the problem of the left to right motion of an electron

its tunneling from the range 1 to the ranges 3 and 5 are
2 2

described by the relations a3:A3

1

_|2s
and a; =

7

1
respectively.

The division of equations (8) and (9) in A,, transforms

them into a system of the linear inhomogeneous

equations relative to
A A A B B

ay=—2,a;=-"2,.,a,=—"2,b =—L,.,b,=—%  with
Ay Ay Ay Ay Ay

free, non-zero terms —exp(klxl), klexp(klxl)obtained

at the matching of wave functions and their derivatives at
the point x; . Then one can use the methods solving of

such equations (e.g., Cramer’s rule method [16]). As a
Al

result, we obtained the dependence a, :A and

1

2

A
a;=|—2 on the energy of incident electron. This

1
dependence is nonmonotonic. Its minima are reached at
the coincidence of electron energy levels with the virtual
ones, i.e. when the interference phenomena is particularly
evident. Non-triviality of the manifestations of these

phenomena are that for some values of the electron
2 A 2
is greater than a, =|—2
Ay

energy As
ag=|—2
A

1

The tendency of the dependences shown in Figure 7 is
obvious: the tunneling increases when the electron
energy tends to the value of barrier heights.

The nonmonotonic dependence of tunneling probability
is obtained by the varying of incident electron energy
relative to the fixed virtual states. A similar behavior of
tunneling is possible with the shift of the virtual states
relative the fixed incident electron energy. Such a shift is
possible because the changes geometric and/or energy
parameters of double-matrix structure. But such shift can
be achieved, in particular, by change of the guest content
in the structure.
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Figure 7. Dependence of tunneling probability on energy

3. Conclusions

The main result of the paper is the non-monotonic
variation of electron tunneling into the host. Since the
tunneling generation
phenomenon of double-matrix structure, the result can be
regarded as an explanation for the experimentally
observed nonmonotonic behavior of current generation
characteristics (see Figure 2).

determines the current

We especially note:

e the importance of the size quantization in this effect;

o the effect to a greater extent is determined by the
ratio between the electron virtual states and the
bombarding electrons energy than by only their
individual parameters.
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