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Abstract Graphane is obtained by perfectly hydrogenating
graphene. There exists an intermediate material,
partially hydrogenated graphene (which we call
hydrographene), interpolating from pure graphene to pure
graphane. Employing a graph theoretical approach
to the site-percolation model, we present an intuitive
and physical picture revealing a percolation transition
from graphene to graphane. It is demonstrated that
hydrographene shows a bulk ferromagnetism based on
the Lieb theory. We also propose a weighted percolation
model in order to take into account the tendency of
hydrogenation to cluster.
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1. Introduction

Graphene[1, 2] is one of the most interesting material
in condensed matter physics. In particular, graphene
nanoribbons[3] and graphene nanodisks[4] show
remarkable electronic and magnetic properties due to their
edge states, and they would be promising candidates for
future nanoelectronic devices. Recently graphane has been
attracting much attention[5–8]. It is a graphene derivative
obtained by perfectly hydrogenating graphene (Fig.1).
On one hand, graphene is a semimetal with each carbon
forming an sp2 orbital. On the other hand, graphane is an
insulator with each carbon forming an sp3 orbital.
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Figure 1. (Color online) (a) Illustration of graphene. There
are carbons on a honeycomb lattice. They are grouped in two
inequivalent sites A and B. (b) Illustration of graphane. Hydrogens
are attached upwardly to A sites, and downwardly to B sites. A
honeycomb lattice is distorted.

Carbon atoms in the graphene lattice can bind hydrogens
and the reaction with hydrogen is reversible. Accordingly,
there exists an intermediate material, partially hydrogenated
graphene, which interpolates from pure graphene to pure
graphane[7]. Let us call it hydrographene. We expect it to
have various intriguing electromagnetic properties.

The hydrogenation of graphene is a complex process that
depends on many factors, including the wide isomorphism
of cyclohexane. The transient stage of the graphene
hydrogenation has been studied at the quantum-chemical
level[9–13]. In this paper, however, we propose to explore
hydrographene from an unconventional viewpoint, that
is, by simulating it on the basis of the percolation
model. Percolation theory describes the behavior
of connected clusters in a random graph[14]. A
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comparative examination of the percolation results and the
stepwise chemical processes would eventually enrich our
understanding of the graphene hydrogenation.

Here, a graph is a network of non-hydrogenated carbons
on a honeycomb lattice corresponding to a hydrographene,
as illustrated in Fig.2(a). We next improve this simple
percolation model by taking into account the tendency
of hydrogenation to cluster. The resultant percolation
network seems to capture the basic nature of the
experimental observation of hydrographene, as found in
Fig.2(b). We then show that a percolation transition occurs
from graphene to graphane at certain hydrogenation
density qc. This is a phase transition since the percolation
transition is mapped to a ferromagnet-paramagnet phase
transition in a Potts model with qc corresponding to critical
temperature Tc. We also argue that hydrographene is a
bulk ferromagnet based on the Lieb theory[16]. The Lieb
theory states that the magnetization of the ground states
is determined solely by the graph theoretical properties of
carbon networks. There are two types of hydrogenation,
single-sided (SS) percolation and double-sided (DS)
percolation. It is found that SS hydrogenation is
more efficient to form large magnetic moment than DS
hydrogenation. Though our approach is simple and based
on the classical percolation model, it must be a good
start point to grasp a gross feature of hydrographene at
arbitrary hydrogenation density q.

2. Model

Graphene is a bipartite system made of carbons at two
inequivalent sites (A and B sites) on a honeycomb lattice, as
illustrated in Fig.1(a). It is well described by the Hubbard
Hamiltonian,

H = t ∑
〈i,j〉

c†
σ,icσ,j + U ∑

i
c†
↑,ic↑,ic

†
↓,ic↓,i, (1)

where cσ,j (c†
σ,i) is the annihilation (creation) operator of

π-electron with spin σ =↑↓ at site i, t is the transfer
energy, and ∑〈i,j〉 denotes the sum over all pairs of
nearest-neighboring sites.

Carbon atoms can bind hydrogens. The reaction with
hydrogen is reversible, so that the original metallic state
and the lattice spacing can be restored by annealing[6].
However, the way of attachment is opposite between the
A and B sites in graphane [Fig.1(b)]. As a matter of
convenience, hydrogens are bounded upwardly to A sites
and downwardly to B sites.

A hydrographene is manufactured by absorbing a finite
density of hydrogens to graphene[7]. Carbons with
absorbed hydrogen form an sp3 bond, where no π-electron
exists. Hence there is one-to-one correspondence between
a hydrographene and a graph made of the honeycomb
lattice by removing hydrogenated sites, as illustrated in
Fig.2(a). There exists the Hamiltonian that has one-to-one
correspondence to the adjacency matrix of a graph. It is
given by the Hubbard Hamiltonian (1) where the lattice
points are restricted to the graph in problem: Namely, i
runs over all points of the graph and 〈i, j〉 runs over all
bonds of the graph. Since the Coulomb interaction in
graphene is weak compared to the transfer energy, t � U,

we consider the small interaction limit (U → 0). Namely
we analyze the noninteracting model to investigate the
zero-energy states,

H = t ∑
〈i,j〉

c†
σ,icσ,j. (2)

Although the degeneracy may be resolved for U �= 0, the
splitting is proportional to U and is small with respective
to the band width. This Hamiltonian is block diagonal for
σ. Consequently it is enough to investigate the spinless
fermion model,

H = t ∑
〈i,j〉

c†
i cj. (3)

The number of the zero-energy states in the model (2) is
simply obtained by doubling that in the spinless model
(3). As we shall argue later, however, the existence of the
Coulomb interaction (U �= 0) is important in investigating
the magnetization of hydrographene however small it may
be.

We can investigate two types of percolation problems in
hydrographene. In one case, hydrogenation occurs on
both A and B sites, which is DS percolation. In the other
case, hydrogenation occurs only on A sites, which is SS
percolation. SS hydrogenation can be manufactured by
resting graphene on a Silica surface[6].

We analyze a site-percolation problem with the use
of the Hamiltonian (3). We first employ the simple
percolation model, where hydrogenation is assumed to
occur randomly. We then make an improvement of
this model. Because adjacent bonds are distorted when
one site is hydrogenated, the probability that the next
hydrogenation point is contiguous to one of hydrogenated
points must become larger owing to a certain energy gain
ε, as enhances the tendency of hydrogenation to cluster.
We take the effect into account by proposing a weighted
percolation model, where a coordination of hydrogenated
sites is selected randomly but with the weight given by the
Boltzmann factor e−βεNB . Here, NB counts the total number
of the bonds. The clustering is controlled by changing the
phenomenological parameter ε. There would arise only
one cluster in the limit ε → ∞.

(a) percolation model (b) experimental data

50 A

Figure 2. (Color online) (a) A typical example of weighted DS
percolation network in a honeycomb lattice. Red (blue) circles
represent A (B) sites. Solid (open) circles are for dehydrogenated
(hydrogenated) sites. (b) Experimental data of hydrographene
taken from Balog et al.[7].

We carry out numerical calculations by setting βε = 1
in this paper. We give a typical carbon network of
30% hydrogenation based on the weighted DS percolation
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model in Fig.2(a). The percolation network seems to
capture the basic nature of the experimental observation of
hydrographene due to Balog et al.[7], as found in Fig.2(b).

The number of lattice sites with no defects is Nc.
We assume Nc is even for simplicity. We define
the hydrogenation density by q = M/Nc for DS
hydrogenation and q = 2M/Nc for SS hydrogenation,
where M is the number of hydrogenated carbons. We
choose the positions of hydrogenated carbons by the
Monte Carlo method. Physical quantities are determined
by taking the statistical average.

3. Isolated carbons

We refer to carbons with no adjacent carbons as isolated
carbons, to those with one adjacent carbon as edge carbons,
to those with two adjacent carbons as corner carbons, and
to those with three adjacent carbons as bulk carbons. We
apply a combinatorial theory and estimate the numbers of
these different types of carbons by using the fact that each
site is occupied with probability q. We also use the quantity
p = 1 − q in what follows.

In the case of DS percolation, we calculate the numbers
of isolated carbons (C0), edge carbons (C1), corner carbons
(C2) and bulk carbons (C3) as

C0 = pq3Nc, C1 = 3p2q2Nc, C3 = p4Nc. (4)

They satisfy the relation

C0 + C1 + C2 + C3 = pNc. (5)

The total bond number is

1
2
(C1 + 2C2 + 3C3) =

3
2

p2Nc. (6)

In the case of SS percolation, they are

C0 =
1
2

q3Nc, C1 =
3
2

pq2Nc, C3 =
1
2

(
p3 + p

)
Nc. (7)

They satisfy the relation

C0 + C1 + C2 + C3 =
1
2
(p + 1) Nc. (8)

The total bond number is

1
2
(C1 + 2C2 + 3C3) = 3pNc. (9)
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Figure 3. (Color online) The numbers of isolated carbons C0,
edge carbons C1, corner carbons C2 and bulk carbons C3 in unit of
Nc. Solid (dotted) curves are for the simple (weighted) percolation
model. The horizontal axis is the hydrogenation density q. It is seen
that C0 decreases while C3 increases by the weighted percolation
effect.

We show the numbers of various types of carbons
estimated in this way in Fig.3. In order to verify that
the combinatorial theory yields correct results, we have
carried out numerical calculations, and found that the
results agree completely in the percolation model. There
appear some difference in the weighted percolation model.
Typically, the number of isolated carbons (C0) decreases
while that of bulk carbons (C3) increases. As a result,
hydrogenation tends to make a cluster.

4. Zero-energy states

We investigate the number of the zero-energy state N0. It is
given by diagonalizing the Hamiltonian. It is equivalently
given by the difference between the dimension and the
rank of the Hamiltonian,

N0 = dim H − rankH, (10)

since the number of the zero-energy states is equal to
the difference between the dimension of a matrix and the
number of the linear dependent element of the matrix. As
far as we need only the number of the zero-energy states, it
is much easier to calculate (10) than to carry out the direct
diagonalization of the Hamiltonian.

The analysis is quite different between DS and SS
percolations. We first discuss the DS case. We show the
numerical results of the number N0 in Fig.4(a) both for the
simple and weighted percolation models, where we have
adopted the periodic boundary condition to the unit cell
with sizes 100.

Physical interpretations of the zero modes read as follows.
In the low density hydrogenation limit (q ≈ 0), all sites are
connected, i. e. the cluster number is only one. We can
apply the Lieb theorem, which states that the number of
the zero-energy states is determined by the difference of
the A-site and B-site. It is exactly obtained as

NL
0 =

M

∑
s=0

|M − 2s|
(

Nc/2
s

)(
Nc/2
M − s

)(
Nc
M

)−1
(11)

in terms of binomial coefficients. The distribution is
symmetric at M = Nc/2. We have shown NL

0 by the choice
of Nc = 100 in Fig.4(a). By taking Nc → ∞, we obtain

NL
0 =

√
2Nc pq/π. (12)
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Figure 4. (Color online) The number of the zero-energy states
determined from eq.(10). Black dots (red open squares) are for the
simple (weighted) percolation model. There exists a considerable
decrease of the zero-energy states in the weighted percolation
model. The unit cell size is 100. The average is taken 1000 times.
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On the other hand, in the high density hydrogenation
limit (q ≈ 1), we can apply the dilute gas model. Every
sites are isolated or unconnected with each other and give
zero-energy states. Then the number of zero is simply
given by

ND
0 = Nc(1 − q). (13)

We have shown ND
0 by the choice of Nc = 100 in Fig.4(a).

A simple interpolating formula reads as

N0 � C0 +
1
6

C1 +
C2 + C3

C0 + C1 + C2 + C3
NL

0 , (14)

where C0, C1, C2 and C3 are the numbers of isolated
carbons, edge carbons, corner carbons and bulk carbons,
respectively. The first and second terms represent
the contributions from the isolated and edge carbons,
respectively. The third term follows from the Lieb theorem
with an appropriate correction. It explains the numerical
result reasonably well for the percolation model, as in
Fig.4(a).

On the other hand, there exists a considerable decrease
of the zero-energy states in the weighted percolation
model. This is because the number of the isolated carbons
decreases by the weighted percolation effect.

We now discuss the zero-energy states in SS percolation.
The number of the zero-energy states in each cluster is
given by

Ncluster
0 =

∣∣∣Ncluster
B − Ncluster

A

∣∣∣
in general. Here, Ncluster

B > Ncluster
A since only A sites are

hydrogenated. Hence, the total number of the zero-energy
states is given by

N0 = ∑ Ncluster
0 = NB − NA =

1
2

qNc. (15)

This is confirmed perfectly by the numerical result in
Fig.4(b). Thus, the numbers of the zero-energy states are
very different between one-sided and DS hydrogenations.

5. Percolation transition

We have calculated numerically the maximum cluster size
Nmc as a function of hydrogenation in the system with
Nc = 104 based on the simple percolation model and also
based on the weighted percolation model, whose results
we show in Fig.5. The ratio Nmc/Nc is approximately
equals to the percolation probability P(q). It is by
definition the probability for an infinitely large cluster to
appear in an infinitely large system. In the present system
it may be interpreted as a probability that the right-hand
side and the left-hand side of a hydrographene sheet is
connected by a cluster.

It is seen in Fig.5 that the maximum cluster size decreases
almost linearly as q increases, and suddenly becomes zero
at a critical density qc. This is a characteristic feature
of a phase transition. Indeed, it is a phase transition
since the percolation problem is mapped to the zero-state
Potts model on Kagomé lattice via the Kasteleyn-Fortuin
mapping[15]. The hydrogenation parameter q corresponds
to the temperature T of a ferromagnet,

q = exp (−J/kT) , (16)

(b) single-sided percolation(a) double-sided percolation
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Figure 5. (Color online) The maximum cluster size (black dots and
red open squares for the simple and weighted percolation models,
respectively) and the second maximum cluster size (blue curves)
for various hydrogenation density q in unit of Nc. The characteristic
feature of a phase transition is clearly observed in both of the
models. The unit cell size is 10000.

with J being the exchange stiffness. The percolation
probability P (q) is mapped to the magnetization as a
function of temperature T. Thus, the percolation transition
corresponds to the ferromagnet-paramagnet transition. We
anticipate various properties familiar in ferromagnet to be
translated into hydrographene via the Kasteleyn-Fortuin
mapping.

For DS percolation the critical density is determined as
qc = 0.32, which is consistent with the well-known
result[14] on percolation in the honeycomb lattice. We find
qc = 0.55 for SS percolation.

It is to be remarked that the characteristic feature of a
phase transition is clearly observed even if the weighted
percolation effect is taken into account. This is because
the maximum cluster size is rather insensible to isolated
carbons.

6. Magnetization

We proceed to analyze the magnetic property of
hydrographene. The Lieb theorem[16] plays the key role,
which states that the magnetization M of the ground state
of the Hubbard model on the connected bipartite lattice
at half-filling is determined by the difference between the
numbers NA and NB of the A and B sites in each cluster,

M =
1
2
|NA − NB| , (17)

where the spin direction is arbitrary in general. The
theorem is valid for any value of the coupling U provided
U �= 0. Namely, when U is very small, although the
number of zero-energy states is effectively given by the
twice of that of the spinless model (3), the magnetization
is given by the formula (17). It is important that the
magnetization, which is a quantum mechanical property
of the ground state, is determined solely by the graph
theoretical property of the lattice.

The magnetization of hydrographene is determined by
that of the largest cluster: See Fig.5. This can be
understood as follows. The magnetization of each cluster
is independent. In the metallic phase, there is only one
large cluster with macroscopic order, and all other clusters
are very small compared with the largest cluster. The
magnetization of a cluster is proportional to its size as in
(17). Consequently the main contribution is made by the
largest cluster. On the other hand, in the insulator phase,
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there is no such a cluster with the macroscopic size. Each
small cluster has small magnetization, where the direction
is independent. Namely, the system shows a paramagnetic
behaviour. Small clusters do not contribute to the
magnetization. They only contribute to the zero-energy
states.
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Figure 6. (Color online) The magnetization in unit of h̄/2 in
the presence (black dots and red open squares for the simple
and weighted percolation models, respectively) and absence (blue
dots) of ferromagnetic coupling for various hydrogenation density
q. The unit cell size is 10000. The average is taken 500 times.

We show the numerically calculated magnetization as a
function of q in Fig.6. It is well approximated by the
relation

M(q) = P (q) NL
0 , (18)

where NL
0 is given by eq.(12) for DS hydrogenation and

eq.(15) for SS hydrogenation. The system is ferromagnet
for q < qc, and paramagnet for q > qc.

The maximum magnetization per site is obtained M =
3× 10−3 at q = 0.21 for DS hydrogenation and M = 0.17 at
q = 0.44 for SS hydrogenation. SS hydrogenation is about
500 times more efficient than DS hydrogenation because
only A sites are hydrogenated in SS hydrogenation. The
magnetization is proportional to the number of the sites. In
other words, hydrographene shows the bulk magnetism,
which is highly contrasted with the edge magnetism
in graphene nanoribbons[3] and nanodisks[4], where
magnetization is proportional to the number of carbons
along the edge. Bulk magnetism is desirable because edge
magnetism disappears in the thermodynamic limit.

A comment is in order. It is intriguing that the
magnetization is zero for the perfect SS hydrographene
(q = 1), which is in contradiction with the previous
result[17] obtained based on a density functional theory
study. This is not surprising since the direction
of magnetization is arbitrary in each cluster in our
noninteracting model, as we have noted. The spin
directions of two adjacent clusters may be aligned due
to an exchange interaction if it is present, and it is
probable that all clusters have the same spin direction. The
maximum magnetization per site is obtained around at
q = 0.7 for DS hydrogenation: See Fig.6(a). On the other
hand, the magnetization increases linearly as a function of
the hydrogenation parameter q for SS hydrogenation: See
Fig.6(b). This reproduces the result[17] for the perfect SS
hydrographene (q = 1).

7. Discussions

In summary, we have analyzed hydrographene based on
the percolation model. We have shown the existence

of a percolation transition in hydrographene. We have
proposed a new-type of percolation, SS percolation, which
is qualitatively different from the usual percolation on
honeycomb lattice.

Carbon network is closely related to the conductance of
hydrographene. For q < qc, there is one large cluster
connecting two opposite edges in the sample, and thus
the hydrographene would be metallic. On the other hand,
the hydrographene would be insulator for q > qc because
there are many small clusters. We may conjecture that
a percolation-induced metal-insulator transition would
occur at q = qc. However, the above metal-insulator
transition threshold is based on a classical percolation
model, which is determined by only the geometrical
considerations. Quantum interferences effects due to the
randomness of carbon network may lead to localization of
the wave function. This Anderson localization results in
a lower quantum percolation threshold of metal-insulator
transition. To confirm the conjecture, it is necessary to
carry out a numerical estimation of conductance, which is
beyond the scope of this paper.

I am very much grateful to N. Nagaosa for fruitful
discussions on the subject. This work was supported
in part by Grants-in-Aid for Scientific Research from the
Ministry of Education, Science, Sports and Culture No.
22740196.
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