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Abstract In this paper, we report on multiphysics full-
wave techniques in the frequency (energy)-domain and
the time-domain, aimed at the investigation of the
combined electromagnetic-coherent transport problem in
carbon based on nano-structured materials and devices,
e.g., graphene nanoribbons.

The frequency-domain approach is introduced in order to
describe a Poisson/Schrodinger system in a quasi static
framework. An example of the self-consistent solution of
laterally coupled graphene nanoribbons is shown.

The time-domain approach deals with the solution of the
combined Maxwell/Schrodinger system of equations. The
propagation of a charge wavepacket is reported, showing
the effect of the self-generated electromagnetic field that
affects the dynamics of the charge wavepacket.

Keywords Dirac Equation, Graphene Nanoribbon,
Quantum Electrodynamics, Transmission Line Matrix
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1. Introduction

The theoretical, scientific and technological relevance of
carbon-based materials (carbon nanotubes, graphene)
have been highlighted in a variety of works, both
experimental and theoretical [1-11]. They are fated to
become competitive and compatible with the established
silicon technology for applications to electronics. The
analysis of charge transport in carbon nano-structures can
be carried out by discrete models, such as tight binding
(TB), and continuous models, such as effective mass and
k'p approximations, which stem from the approximation
of TB around particular points of the dispersion curves.
These techniques are suited for the analysis of
CNT/graphene/GNR in a variety of problems such as
bending [17-18], lattice defects and discontinuities [14],
and edge terminations [19-20]. However the Ilatter
methods require high computational resources, and can
hardly include the effect of i) the self-generated
electromagnetic field, ii) impinging external EM fields.
Recently, we have introduced full-wave techniques (fig.
1) both in the frequency (energy)-domain [21-26], and the
time-domain [28-36] for the investigation of new devices
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based on carbon materials, namely carbon nanotube
(CNT), multiwall (MW) CNT, graphene and graphene
nanoribbon (GNR).

For both the approaches, the quantum transport is
described by the Schrodinger equation or its Dirac-like
counterpart, for small energies. The electromagnetic field
provides sources terms for the quantum transport
equations that, in turn, provide charges and currents for
the electromagnetic field.

In this contribution, we report some new examples of
self-consistent quasi-static calculations, where charges’
transport is affected by the self-generated potential, in
addition to the electrostatic potential applied by external
electrodes, in a typical FET configuration [25,26].
Regarding the time-domain technique, we show the
dynamics of a charge wavepacket from source to drain
electrodes in a GNR realistic transistor environment.

frequency domain analysis full-wave time—domain
of quantum transport model of the combined
q P Maxwell/quantum transport

Ll in CNT/GNR devices

i 4

MATLAB TLM-FDTD-based
packages packages

Figure 1. Frequency- and time-domain techniques.

2.1 Frequency-domain: Poisson-coherent transport

We perform the analysis of self-consistent charge
transport by using a scattering matrix technique [24],
which is physically equivalent to the Green’s function
approach, usually referred to as non-equilibrium Green'’s
function (NEGF) method. In synthesis, each GNR port,
seen as the termination of a semi-infinite waveguide, is
described by means of a electronic
eigenfunctions, that, in turns, are solution of the GNR
unit-cell under periodic condition. The analysis is fully
self-consistent since the solution of the transport
equation, and the solution of the Poisson equation for the
electrostatic potential generated by the GNR charge
density, are obtained by using an iterative approach. In
the  scattering-matrix =~ approach, a  multimode
transmission matrix model of quantum transport allows
easy simulation of very large structures, despite the
possibly high number of electronic channels involved.

In order to characterize a GNR, periodic along the z-
direction, the Hamiltonian of the unit cell is appropriately
rearranged by selecting three consecutive unit cells

basis  of

Hy, +Hw+H'y, =Ey (1)

where {1, {r, 1, are the wavefunctions of three
consecutive unit cells and matrix H'(H") denotes the
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hopping elements of the Hamiltonian from a unit cell to
the previous one from the left (right), and E is the
injection energy.

In [24], we showed that fundamental physical constraints
and consistence relations in quantum transport, such as
reciprocity  and
respectively  to

charge conservation, correspond
and power
conservation in a microwave field. We emphasized that
the proposed approach allows handling multiport
graphene systems, where carriers can get into (and out of)
many different physical ports, each characterized by their
own chirality and possibly by a large number of virtual
ports, i.e., electronic channels or sub-bands. Interesting
results involve new concept-devices, such as GNR nano-
transistors and multipath/multilayer GNR circuits, where
charges are ballistically scattered among different ports
under external electrostatic control. We developed a in-
house
transistors, with a user friendly interface. The software,
written in Matlab, has been, in particular, focused on the
simulation of GNR short-channel transistors, as shown in
fig. 1. In modelling the graphene-metal contact, we
introduce a sort of metal doping of GNR, coherently with
experimental observation; in fact, graphene over metal
seems to preserve its unique electronic structure, and the
metal just shifts the graphene Fermi level with respect to
the conical point, by a fraction of eV [27]. Possibly, the
metal contact opens just a small (tens to hundreds eV)
bandgap.

familiar  reciprocity

solver for simulating CNT short-channel

2.2 Time-domain: Maxwell-coherent transport

In the time-domain, a full-wave approach has been
introduced: the Maxwell equations, discretized by the
transmission line matrix (TLM) method, are self-
consistently coupled to the Schrodinger/Dirac equations,
discretized by a proper finite-difference time-domain or a
TLM scheme [28-29].

The goal is to develop a method that accounts for
deterministic electromagnetic field dynamics, together
with the quantum coherent transport in the nanoscale
environment. In [29-30], we introduced exact boundary
conditions that rigorously model absorption and injection
of charge at the terminal planes, in a realistic field effect
transistor environment.

Several examples of the electromagnetics/transport
dynamics are shown in [28-29]. It is highlighted that the
self-generated electromagnetic field may affect the
dynamics (group velocity, kinetic energy, etc.) of the
quantum transport. This is particularly important in the
analysis of time transients and in describing the
behaviour of high energy carrier bands, as well as the
onset of non-linear phenomena due to external impinging
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electromagnetic fields. For graphene/GNR, in the
presence of an EM field, the Dirac equation reads:

0 ie ~
ih| —+— =6-(p—q¢A
I (91‘ t@)'rll+ G (p q )CI//— (2)

0 e R
i <420y =6 (p-qA
i (6t+h(pjv/ o-(P—qA)cy,

The solution of the Dirac/graphene equation (2) is the
four component spinor complex wavefunction (x,t):

v =[] =v.v] G

where A and ¢ are vector and scalar potentials, directly
related to the EM field through the appropriate gauge,
e.g., the “Lorentz” gauge, and g is the electron charge; Vp
is the static potential profile. In eq. (2), ¢ are the Pauli
matrices, p is the canonical (linear) momentum, k is the
kinematic momentum, that, includes the EM field
contribution:
p=—inv k=p—gA(r,?) )
The computational scheme develops as follows: i) the EM
field is discretized by the Transmission Line Matrix
method using the Symmetrical Condensed Node (SCN)
approach. ii) Quantum phenomena are introduced in a
subregion of the 3D-domain, e.g., a 1D-2D dimensional
CNT region, described by the Schrodinger equation,
and/or a 2D graphene/nanoribbon region, described by
the Dirac equation. iii) At each time step, the
Schrédinger/Dirac equation is solved by accounting for
the quantum device boundary conditions,
conditions (e.g., injected charge), and additional source
terms constituted by the EM field, sampled in the domain
of the quantum device(s). iv) From the wavefunction
(charge) solution of the Schrodinger/Dirac equation, we
derive the quantum mechanical (QM) current over the
device domain. This current is a distribution of local
sources for the EM field that is injected into the TLM
located only on the grid points of the
Schrédinger/Dirac equation domain. v) At the next time
step t+1, the TLM method provides a new updated
distribution of field values that are, again, sampled over
the device domain, and so on, iteratively. In fig. 2, the
scheme of the method is depicted in the case of graphene.

initial

nodes,

The reason for choosing TLM for the discretization of
Maxwell equations has to be highlighted. Space-
discretizing methods, like finite-difference time-do-main
(FDTD) and transmission line matrix (TLM) [38], are well-
known techniques that allow the EM full-wave modelling
of 3D structures with nearly arbitrary geometry for a
wide range of applications from EM compatibility to
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optics. FDTD is a more general technique, suited for
discretizing different kinds of equations, e.g., parabolic,
hyperbolic, etc. With respect to FDTD, TLM is directly
related to the discretization of, mainly, hyperbolic
equations (Maxell, Dirac), but it has the advantages that
each portion of the segmented space has an equivalent
local electric circuit [38]. Moreover, TLM can easily
incorporate external sources as equivalent voltage/current
local generators.

In TLM, that is considered as the implementation of the
Huygens principle, propagation and the scattering of the
wave amplitudes are expressed by operator equations
[38]. The latter property is well illustrated in the
Symmetrical Condensed Node (SCN) formulation [38].

E]
VxE(r,t)z—EB(r,t) .](l‘, t)
]
7xHir,t)= —D(r,t)+J(r.t) ::I quantum-
?‘ mechanical
V-D(r,t) = plr,t) Maxwell current
7 B(r,t)=0 equations
—I =ty !
o~
EM field
!
source terms

ﬂ I=f,
w(r.2)

(predign1eq)g 0 ] a
[VH[ o {ertgipreflglt @ :D wave
Diracigraphene equations function

Figure 2. Concept of the full-wave time-domain technique. The
electromagnetic field provides sources for the quantum device
that, in turn, provides (quantum-mechanical) current sources for
the electromagnetic field.

In [31-32], we explored the correlation between Dirac and
Maxwell equations, in the time domain; transmission-line
equations, valid for both EM and quantum current are
derived. This is a step forward toward an effective
integration of the Dirac theory in the numerical
simulation of EM field problems.

In [33], we presented, for the first time, a TLM condensed
node scheme for solving the Dirac equation in 2D
graphene. This scheme satisfies the standard charge
conservation requirement and allows adopting boundary
conditions for graphene circuits.

The correlation between the graphene/Dirac equation and
its self-consistent symmetrical condensed node -
transmission line matrix formulation is highlighted. This
concept, in turn, is related to the generalized Huygens
principle for the Dirac equations.

The above technique has been already used for the
investigation of realistic and intriguing applications in
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novel areas, bridging nanoscience and engineering
applications. We could define this research area as
“radio-frequency nanoelectronic engineering”, [39-40].

In [34], we analyse the idea of realizing a harmonic radio-
frequency identification (RFID), based on “tag on paper”
with embedded graphene as a frequency multiplier.

In [35-36], we introduce a model for the metal-carbon
contact. The metal-carbon transition is one of the most
challenging and not completely understood problems
that limits production and reproducibility of
nanodevices, arising due to the difficulty of engineering
the contact resistance between metal and nano-structures.

3. Results
3.1 Frequency-domain: Schrodinger-Poisson

In order to show the potentialities of our approaches, in
the following we show the comparison between the
potential distributions in a region occupied by two
laterally coupled GNR. The coupling takes place by
means of the Coulomb interaction. The schematic view
of the device under study is shown in fig. 3: two
semiconducting GNRs connect the source and drain of a
FET-like device.

A potential difference of 0.1 V is applied between drain
and source; the source is assumed at 0 V, equipotential
with the lateral gate (G). The nanoribbons are about 2.2
nm wide and the area of the square “window” delimited
by the electrodes is 20x20 nm?2.

Graphene nanoribbons

drain

R

G source

Figure 3. A two-channel GNR-FET; d is the distance between the
two GNR channels.

In the following, we report the numerical result
obtained after numerical convergence, expressing the
self-consistent potential in the plane of the nanoribbons.
We somehow exaggerated the effect of the metal doping
by assuming a 2.9 eV shift of the Dirac point, in order to
place the Fermi level about 0.7eV above the band gap,
and to have appreciable charge injection from the metal
to nanoribbon “bridges”. In practice, a smaller doping
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can still imply a strong effect when wider GNR, i.e,
smaller band gaps, are considered.

It is noted that the self-consistent potential of fig. 4b is
strongly different from the potential of fig 4a; as largely
expected, changing the distance between the GNR does
not simply imply a potential “composition” following a
superposition of effects - the iterative process develops
very differently in the two cases and the final results are
not easily predictable.
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Figure 4. Self-consistent potential for different distances of the
two coupled GNR channels: a) d=2.4 nm b) d=0.15 nm.

3.2 Time-domain: Dirac-Maxwell

We analyse the space-time evolution of a Gaussian charge
wavepacket |y|% with a broad energy band (up to 1 eV),
propagating on a “metallic” GNR (150x5 nm), as shown
in fig. 5. We consider the GNR in a realistic FET
environment, with two metallic source-drain electrode
contacts. In order to model the injection-absorption of
charge, we apply absorbing boundary conditions as in
[29]. In fig. 6 (a), we show the charge wavepacket
evolution after t=0, t=20, t=50, =100 fs, respectively. The
correspondent transversal and longitudinal
components are reported in Fig. 6 (b), for t=20, t=50 fs.

current
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Figure 5. Propagation of a charge wavepacket in the presence of
a static potential barrier, with E=0.45 eV.

W
t=100 fs

Fig (69)
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[

Figure 6. Time-evolution of the wavepacket (a). Transversal and
longitudinal currents (b). Two launched pulses (c) from the
source and drain terminals.
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Figure 7. Spatial distribution of a charge wavepacket at t=0, t=2,
t=4 fs. (a): only the Dirac equation is solved. (b): the coupled
Dirac-Maxwell system is computed.

In the same figure, (c), we show the propagation of two
pulses launched through the source and drain electrodes,
for t=0, t=20, t=50, t=100 fs.

We then consider the presence of a potential barrier of
0.45 eV with respect to bounding materials (e.g., metal
contacts). In fig. 7, we plot the spatial, longitudinal
distributions of the charge wavepacket in three different
time-steps, t=2, 4, 8 fs, respectively.

The core point is that in one case (fig.7, a), we solve only
the Dirac equation and do not consider

the self-induced EM field, whereas in the other case (fig.7,
b), we consider the coupled Dirac-Maxwell system.

We observe that, depending on the initial energy of the
charge wavepacket, the self-induced electromagnetic field
affects the propagation characteristics.
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This is evident by following the dynamics of the
(squared) wavefunction with and without the “self-
generated” electromagnetic field. For example, the
distribution of the peaks (points of maxima) is different in
the former and in the latter cases. Physically, the
the EM field
contribution to the kinetic energy (3) of the Dirac
equation. The quantum-mechanical current, in turn,

kinematic momentum, k, provides

provides current sources for the electromagnetic field.

This effect, as a result of this phenomenon, would be even
more evident, and also enhanced in the presence of an
additional external impinging EM field.

4. Conclusions

We reported on multiphysics full-wave techniques in the
frequency (energy)-domain and the time-domain, aimed
at the investigation of the combined electromagnetic-
coherent transport problem in graphene nanoribbons.

In the frequency-domain, we describe a Poisson/Schrodinger
system in a quasi static framework.

In the time-domain, we deal with the solution of the
combined Maxwell/Schrédinger coupled equations.

In the frequency-domain, we analyse the field coupling of
graphene nanoribbons in an FET d configuration

In the time-domain, we present the charge wavepacket
propagation, showing the effect of the self-generated
electromagnetic field, that affects the dynamics of the
charge wavepacket.
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