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Abstract 
In this work, voltammetric and electrolysis experiments have been carried out on a conductive 
boron doped diamond (BDD) electrode in a solution containing amoxicillin in its pharmaceutical 
formulation. The physical characterization of the BDD surface by scanning electron microscopy 
(SEM) reveals a polycrystalline structure with grain sizes ranging between 0.3 and 0.6 µm. With 
Raman spectroscopy, BDD surface is composed of diamond type carbon (Csp3) and graphitic type 
carbon (Csp2). The XPS survey of the BDD surface has revealed the presence of C 1s and O 1s. The 
deconvolution of the C1s spectrum showed that the BDD surface chemical bonds were composed 
by C-C and C-H. The ferri/ferrocyanide redox couple showed a quasi reversible behavior on BDD 
and BDD showed a quasi metallic properties with a good electrical contact between the diamond 

coating and the silicono substrate. The electrochemical characterization of the BDD electrode in 
sulfuric acid electrolyte showed a wide potential window of 2.74 V. The oxidation of amoxicillin 
showed an irreversible anodic wave on the voltammogram in the domain of water stability 
indicating a direct oxidation of amoxicillin at BDD surface. The treatment of amoxicillin in the 
synthetic wastewaters under various constant current densities 20, 50, 100, 135 mA cm-2 on BDD 
showed that amoxicillin is highly reduced under 100 mA cm-2 reaching 92 % of the chemical 
Oxygen demand (COD) removal after 5 h of electrolysis. Investigation performed in perchloric 
acid as supporting electrolyte led to 87 % of COD removal after 5 h of electrolysis. Mineralization 
of amoxicillin occurs on BDD and the COD removal was higher in sulfuric acid than in perchloric 
acid owing to the involvement of the in-situ formed persulfate and perchlorate to the 
degradation process mainly in the bulk of the solution. The instantaneous current efficiency (ICE) 
presents an exponential decay indicating that the process was limited by diffusion. The specific 
energy consumed after 5 h of the amoxicillin electrolysis was 0.096 kWh COD-1 and 0.035 kWh 
COD-1 in sulfuric acid and in perchloric acid respectively. 
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Introduction 

Antibiotics, one of the most widely used and prescribed pharmaceuticals, are applied for killing 

microbes [1-3]. Recently the wide occurrence of antibiotics in groundwater raised concerns about 

potential adverse on human health and aquatic ecosystem [4-7]. In Côte d’Ivoire, the consumption 

of antibiotic per year is huge especially for hospitalized patients. The occurrence of antibiotics in 

natural water is due to the lack of effective treatment of the wastewaters containing such 

medicines. That is the case of the teaching hospitals of Côte d’Ivoire where the wastewater 

treatment plant built in the former days precisely in the last four decades do not operate 

anymore. Thus, the hospital wastewaters are directly rejected in the environment without 

treatment. The presence of antibiotics in the aquatic environment even at very low concentration 

levels can promote the growth of antibiotic resistant bacteria or pathogens [8-10]. Antiobotics are 

found to be resistant to biological degradation processes, escaping almost intact from 

conventional wastewater treatment plants. Among antibiotics, amoxicillin, one of the most used 

drug worldwide, has been detected in surface waters and showed a resistance to biological 

treatment [11,12]. So a promishing approach to the remediation of wastewaters contaminated 

with high contents of this antibiotic is the application of innovative techniques such advanced 

oxidation processes [13-16]. Advanced oxidation processes are characterized by the production of 

extremely reactive and unselective hydroxyl radicals which is able to oxidize and mineralize almost 

all organic compounds to CO2 and water. As advanced oxidation process, ozonation has been used 

for amoxicillin oxidation and that resulted in a very low mineralization degree [17]. With Photo-

Fenton methods, stable intermediates are formed and they further undergo difficult 

mineralization [18]. Among these advanced oxidation processes to be used for drugs removal, 

electrochemical advanced oxidation processes (EAOPr) are very attractive for wastewater 

decontamination without a need of addition of toxic chemical reagents and also without 

producing dangerous wastes. Among EAOPr, anodic oxidation is the most effective technique. It 

consists in the destruction of pollutants by hydroxyl radicals generated from water oxidation at the 

surface of the anode [19,20]. In such a way, oxide anodes like tin dioxide have successfully been 

used for amoxicillin oxidation but less than 80 % mineralization is found after 24h of electrolysis 

[21]. Thus, great attention for wastewater treatment was paid on the use of boron doped diamond 

(BDD) electrodes which have been found to be effective for various organic compound oxidation 

[22,23]. In fact, the use of boron doped diamond is based on its physical and chemical properties 

such as surface inertness with low adsorption capability and surface corrosion stability. Boron 

doped diamond (BDD) thin films are usually prepared for water remediation since they produce 

very high amount of weakly physisorbed hydroxyl radicals. Due to these properties, it has been 

used for electrosynthesis, electroanalysis, and electrochemical combustion [23]. Boron doped 

diamond has been successfully used for real and synthetic industrial wastewater treatment [23-

25]. In the aim of contributing to the treatment of the hospital wastewater in Côte d’Ivoire 

especially in the teaching hospitals, the investigation of the electrochemical treatment of a 

simulated wastewater of amoxicillin in its pharmaceutical formulation has been carried out on 

boron doped diamond. In this work, voltammetric and electrolysis techniques have been 

employed in conditions where several experimental parameters have been varied 

Experimental 

Boron doped diamond (BDD) electrodes were prepared by hot-filament chemical vapor 

deposition (HF-CVD) on low resistivity (1-3 mΩ cm) p-Si wafers (siltronix, diameter 10 cm, 
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thickness 0.5 mm). The process gas was a mixture of 1 % CH4 in H2 containing trimethylboron. Film 

growth occurred at a rate of 0.24 μm h-1. The film thickness was about 1 μm. More details 

concerning the preparation of BDD electrodes are given elsewhere [26,27]. The scanning electron 

microscopy (SEM) images of the BDD electrode were taken with a JEOL LJMS-6300-F instrument. 

The Raman spectrum of the BDD electrode was obtained at room temperature with a Renishaw 

RM 1000 Raman spectrometer. X-ray photoelectron spectrum of the diamond film was recorded 

with a Kratos Axis-ultra spectrometer with a monochromatic Al Kα X-ray source operated at 15 kV 

with pass energy of 20 eV. The carbon 1s spectrum has been deconvoluted using the CasaXPS 

computer program. The voltammetric measurements were performed in a three-electrodes 

electrochemical cell using a voltalab PGP 201 (voltamaster 1 as software). The counter electrode 

(CE) was a platinum wire and the reference electrode (RE) was a saturated calomel electrode 

(SCE). To overcome the potential ohmic drop, the reference electrode was mounted in a luggin 

capillary and placed close to the working electrode by a distance of 1 mm. The apparent exposed 

area of the working electrode was 1 cm2. For the exhaustive electrolysis, a batch reactor was used. 

The synthetic amoxicillin wastewater was fed to the reactor by a peristaltic pump with a flow rate 

of 2.08 mL s-1. The exposed electrode surface area with the solution was about 16 cm2. The 

chemicals used in this work composed of H2SO4 (Fluka), HClO4 (Fluka), K3Fe(CN)6
 (Fluka), K4Fe(CN)6 

(Fluka) and amoxicillin tablets (from a pharmacy in Abidjan). All the chemicals were used as 

received without any further treatment for the experiment. All the solutions used in the current 

work were prepared with distilled water. All the electrochemical experiments were made at 

ambient temperature of 25 °C. 

Results and discussion 

Physical characterization of the Boron Doped Diamond (BDD) electrode 

Figure 1 shows the scanning electron microscopic image of the boron doped diamond 

electrode.  

 
Figure 1. Micrograph of boron doped diamond 

The image indicates that BDD presents a polycrystalline structure [28]. The morphological 

grains sizes are ranging between 0.3 and 0.6 µm. The grains are heavily twinned. At the bottom of 
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the diamond grains, a relative dark space was observed especially at grains boundary which can be 

related probably to graphitic carbon (Csp2) formed during the BDD preparation. 

Figure 2 shows the Raman spectrum of the BDD sample excited by the 514.5 nm laser. A narrow 

peak at 500 cm-1 corresponding to Silicon signal was observed. A narrow peak at 1332 cm-1 is 

characteristic of the diamond (Csp3) crystal signal and a broad band centered at 1550 cm-1 

corresponds to the non-diamond carbon impurities (Csp2). That finding indicates that the graphitic 

type carbon is present on the boron doped electrode probably in the diamond grains boundaries. 

 

 
Figure 2. Raman spectroscopy spectrum of the BDD electrode 

 
Figure 3: XPS spectrum of the as prepared BDD electrode. Inset : deconvoluted XPS C 1s of BDD 

Figure 3 shows the XPS spectrum of the BDD film. That survey presents the same trend as that 

found in literature for other BDD electrodes [29,30]. The elemental composition of the BDD 

surface has been given. The spectrum is dominated by a sharp peak located at 285 eV 
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corresponding to C 1s [29,30]. A small peak related to O 1s has been observed at 532.5 eV. The 

ratio of O/C is about 0.209 indicating that there is a very low amount of oxygen at the surface of 

the as grown BDD electrode. The surface chemical bonds have been checked through the 

deconvolution of C 1s spectra. The obtained result is inserted in Figure 3. The deconvolution of the 

parent C 1s spectrum led to two peaks. One located at 284.2 eV and the other one at 284.7 eV 

corresponding to the sharp and the broad peak presented respectively in the C 1s spectrum (inset 

of Figure 3). The main peak located at 248.2 eV could be assigned to C-C bonds and that located at 

284.7 eV could be assigned to C-H bonds [29,30].  

Cyclic voltammetry  

Figure 4 shows the voltammetric i-E curves of boron doped diamond in 100 mM (equimolar) 

ferri/ferrocyanide ([Fe(CN)6 ]3-/[Fe(CN)6]4-) in 0.1 M KOH at various potential scan rates ranging 

between 120 mV min-1 and 480 mV min-1. In this Figure, the observed anodic and a cathodic peaks 

correspond to the oxidation and reduction of the redox couple, respectively. The observed peaks 

are typical for such redox couple on various good conductors electrodes [31,32]. The increase in 

the potential scan rates leads to an increase of the peak current values. The separation between 

the potential of the anodic and cathodic current peaks, Ep, increases slightly with the increase of 

the potential scan rates investigated and amounts to 276 mV for the scan rate of 120 mV min-1 i.e. 

2 mV s-1 which is the lowest observed Ep value determined in this work. The value is higher than 

the 60 mV expected for the fast and reversible system. This could either be due to a slow electron-

transfer reaction at the BDD electrode/solution interface or possibly due to the intrinsic 

semiconducting properties of the diamond. Moreover, the absolute values of the ratios of the 

anodic current peak density over the cathodic current peak densities are about 

|jpa/jpc| = 1.046±0.021 which is an indication of the reversibility of the electrode process. From the 

curves, the current of the peaks were plotted against the square root of the potential scan rates 

and a linear trend was obtained for both the anodic and cathodic peaks. The slopes of the straigth 

lines were almost the same in both cases and were about (25.7 mA cm-2 s1/2 V-1/2, R2 = 0.9994) and 

(25.5 mA cm-2 s1/2 V-1/2, R2 = 0.998) for the anodic and the cathodic straigth lines respectively. The 

linear relationship between the response current and the square root of the potential scan rate 

indicates that the redox kinetics at the boron-doped diamond electrode is a planar diffusion-

controlled process. 

The overall obtained results indicated eventually that the redox couple behaves in a quasi-

reversible manner at the boron doped diamond and also demonstrated the formation of a good 

electric contact between the substrate in silicon and the diamond coating [31,32].  

Figure 5 gives the voltammetric curves recorded on BDD for various concentrations of the redox 

couple at 480 mV min-1. The height of the peak current increases as the concentration of the redox 

couple increases. Plotting the cathodic and the anodic peak current against the redox couple’s 

concentration, a linear evolution is obtained. For both the cathodic and anodic peak current 

investigated, straigth lines lead to the same slope 2.10-2 mA cm-2 mM-1, R2=0.99. The current 

results confirm the fact that the boron doped diamond in use behaves as a quasi-metallic material 

with the tendancy to be irreversible towards the ferri/ferrocyanide redox couple compared to 

metallic electrodes such as platinum electrode.  

That metallic behavior of the BDD can be related to the content of boron in the BDD’s lattice 

and also to the involvement in the overall processes of all the boron doped diamond surface 

components such as diamond (Csp3) and non-diamond carbon (Csp2) at the diamond grain 
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boundaries [33]. Finally, the boron doped diamond used in this work showed an acceptable 

electrical conductivity that can ensure electrochemical measurements and can be used for 

pharmaceutical product investigation.  

 

 
Figure 4 : Cyclic voltammetric curves of ferri/ferrocyanide on boron doped diamond electrode 

at various potential scan rates (120 mV min-1-480 mV min-1), C = 100 mM , T = 25°C, CE: Pt,  
RE: SCE, in the inset: evolution of current peak against square root of potential scan rates 

 
Figure 5 : Cyclic voltammetric curves of ferri/ferrocyanide on boron doped diamond electrode 
at various redox couple concentration at 480 mV min-1 , T = 25 °C, CE: Pt, RE: SCE, in the inset : 

evolution of current peak against redox couple concentration 

Figure 6 presents the voltammetric curves recorded on boron doped diamond at a low 

potential scan rate (480 mV min-1) in sulfuric acid free or containing 1 g L-1 amoxicillin. In absence 
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of amoxicillin, the obtained voltammogram showed a wide potential window of E=2.74 V 

between the onset of the potentials of the oxygen evolution reaction (OER) and the hydrogen 

evolution reaction (HER). Close to the onset of the OER, an oxidation wave is observed. According 

to literature, that wave could be related to the oxidation of surface redox species such as Csp2 

especially surface quinone functional group [34].  
 

 
Figure 6. Cyclic voltammetry curves recorded on boron doped diamond electrodes in several 

concentration of amoxicillin containing sulfuric acid electrolyte at 480 mV/min, CE: Pt, T= 25 °C, 
RE: SCE. Inset: plot of current density of amoxicillin oxidation wave versus amoxicillin 

concentration at 1.9 V 

In the presence of amoxicillin, change in the voltammogram is observed and the current starts 

to increase at about 1.2 V vs. SCE followed by an irreversible anodic wave at about 1.8 V vs. SCE. 

The observed wave is characteristic of the anodic oxidation of amoxicillin. Moreover, as the 

concentration of the amoxicillin increases, the height of the wave increases too. This results 

evidenced a direct oxidation of amoxicillin in the electrochemical window of water stability at 

BDD. The oxidation of amoxicillin at high potential close to OER could have been catalyzed by Csp2 

presents at the BDD’s grain boundaries. In the inset of Figure 6, the current recorded at 1.9 V vs. 

SCE on the wave was plotted against the concentration of the amoxicillin. One observes a linear 

relationship of the current versus concentration (I-C) curve with a slope of 1.7 mA cm-2 L g-1,  

R2 = 0.99. Successive scans have been performed at 480 mV min-1 on the BDD electrode and the 

results are presented in Figure 7. One observed well superimposed curves in the anodic potential 

domain while a decrease of the cathodic current in absolute values leading to the increase of the 

onset of the hydrogen evolution reaction potential was found. This finding could indicate the 

formation of a polymeric film at the investigated electrode’s surface which, during the backwards 

of the potential scan in the negative direction, inhibited the HER.  

Varying the potential scan rates, Figure 8 was obtained. The oxidation wave of amoxicillin 

increases with the potential scan rate. Moreover, plotting the current recorded at 1.9 V vs. SCE 

against the square root of the potential scan rates, a linear relationship was obtained indicating 

that the amoxicillin oxidation process was diffusion controlled. The obtained straight line has a 

slope of 17 mA cm-2 s1/2V-1/2, R2 = 0.9996. 
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Figure 7. Cyclic voltammetry curves recorded on boron doped diamond electrodes in several 

successive scans in 1 g L-1 of amoxicillin containing 0.1M sulfuric acide electrolyte at  
480 mV min-1, CE: Pt, T= 25°C, RE: SCE. 

 
Figure 8. Cyclic voltammetry curves recorded on boron doped diamond electrodes in 1 g L-1 of 

amoxicillin containing 0.1 M sulfuric acid electrolyte at several potential scan rates, CE: Pt,  
T= 25 °C, RE: SCE. in the inset : evolution of currents density recorded at 1.9 V against the 

square root of the potential scan rates 

Bulk electrolysis 

For the bulk electrolysis of the amoxicillin in sulfuric acid, an undivided reactor has been used 

under galvanostatic regime. The system worked under a batch operation mode. The simulated 

wastewater was fed into the electrochemical reactor at a flow rate of 2.08 mL s-1. The mass 

transfer coefficient determined using the ferri/ferrocyanide redox couple was 2.36×10-7 m s-1. The 

calculated initial current density using equation (1) [35] is about 6.0 mA cm-2.  
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Ilim = 4 F kd A COD (1) 

with F = 96500C, kd is the mass transfer coefficient, A is the electrode surface area in the contact 

with the solution, COD is the chemical oxygen demand. 

According to the work of Michaud and coworkers [35], two main regimes can be reached 

depending on the applied current compared to the initial limiting current. 

If I < Ilim, a galvanostatic process governs the overall oxidation process i.e. limited by charge 

transfer reaction. If I < Ilim, the oxidation process is mass transfer controlled i.e. limited by 

diffusion. 

In the current case, the imposed current densities ranging from 20-135 mA cm-2 are higher than 

the initial limiting current density. The obtained results are presented in Figure 9. It appears that 

the normalized COD (Equation 2) decreases with time for the investigated current densities. That 

decrease follows an exponential trend like what has been described eleswhere [35] when applied 

current density was higher than the initial limited current density. The process is under mass 

transport control. The abatment rate of the chemical oxygen demand (COD) increases from  

20 mA cm-2 to 100 mA cm-2 and then decreases from 100 mA cm-2 to 135 mA cm-2. That 

observation is highlighted in Figure 10 where the COD abatement rate determined after 4 h was 

plotted against the applied current densities. 

*

0

COD
normalized COD  COD 100 x 

COD
t   (2) 

COD0 and CODt are the chemical oxygen demands at time t = 0 and t ≠ 0 respectively. 

 

 
Figure 9. Electrolysis of 1 g L-1 amoxicillin on boron doped diamond electrodes in 0.1 M sulfuric acid 

electrolyte at several current densities. Anode: BDD, cathode: Titanium plate, T = 25 °C. Q = 2.08 mL s-1 

In fact, as the current increases, the reaction of the mineralization of amoxicillin is faster. 

However, the trend of the observed COD evolution on BDD clearly shows that the oxidation 

process is under diffusion control for which a very high current attaining 135 mA cm-2 could lower 

the degradation yield by the occurrence of side reaction which could be attributed mainly to OER. 

Thus, BDD appears to be a high efficient electrode for the oxidation of the investigated antibiotic. 
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According to various reports in that field, BDD was found to promote the mineralization of 

organics with an efficiency only limited by mass transport control.  

 
Figure 10: COD removal after 4 h of electrolyis of 1 g L-1 amoxicillin on boron doped diamond 

electrodes in 0.1 M sulfuric acid electrolyte at several current densities.  
Anode: BDD, cathode: Titanium plate, T=25°C, Q=2.08 mL s-1 

 
Figure 11. Electrolysis of 1 g L-1 amoxicillin on boron doped diamond electrodes in 0.1 M sulfuric acid 
electrolyte under a current density of 100 mA cm2, Anode: BDD, cathode: Titanium plate, T = 25 °C,  

Q = 2.08 mL s-1 COD0 = 1322 ppm, inset: a: plot of ICE versus time, b: plot of ln(COD) versus time 

Figure 11 shows the evolution of COD during the electrochemical oxidation of amoxicillin at 

constant current density of 100 mA cm-2. In the inset the plot of the instantaneous current 

efficiency (ICE, equation 3) versus the electrolysis time (t) was depicted (Figure 11a). In Figure 11b 

(inset of Figure 11) a curve resulting from the evolution of the logarithm of the chemical oxygen 

demand versus the electrolysis time was presented. It appears that the ICE is less than 100 % and 

a 

b 
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decreases exponentially with time. Such behaviour is in accordance with the model developed by 

Michaud and coworkers [35].  

COD COD
ICE 4 t t tFV

I t





 (3) 

where CODt and CODt+t are the CODs at times t and t+t (in mol(O2) dm-3) respectively, I is the 

current, A; F is the faraday constant (96500 C) and V is the volume of the electrolyte (dm3) 

Moreover the decrease in ICE indicated that under these working conditions, although 

amoxicillin mineralization occurs completely, oxygen evolution reaction, which is an undesired 

parallel reaction, takes place in a high extent that it leads to a decrease in the value of ICE during 

the oxidation of amoxocillin with time. 

In Figure 11, one observed that the decrease of COD with time follows an exponential trend. 

And the curve of the logarithm of COD with time is linear. The slope of the straigth line is  

0.5258 s-1, R2=0.998). From those results, the decay of COD during amoxicilin oxidation indicates 

that the reaction is a pseudo first order with the oxidation rate constant of 0.5258 s-1.  

 

 
Figure 12. Electrolysis of 1 g L-1 amoxicillin on boron doped diamond electrodes in two 

supporting electrolytes (0.1 M H2SO4 and 0.1 M HClO4) at 100 mA cm-2.  
Anode: BDD, cathode: Titanium plate, T= 25°C. Q = 2.08 mL s-1. 

Figure 12 presents the curves resulting from the electrolysis of amoxicillin in sulfuric acid and in 

perchloric acid solution under 100 mA cm-2. In both acid solutions, COD decreases with time. Two 

curves follow an exponential decay and linear relationship of the logarithm of COD with time was 

obtained. The decrease of COD seems to be more rapid in sulfuric acid than in perchloric acid 

owing to fact that after 5 h of electrolysis, COD removal is about 87 % and 92 % in perchloric acid 

and in sulfuric acid, respectively. In both acid solutions, a pseudo first order reaction occurs and 

the COD removal rate constant determined were 0.5258 s-1 and 0.4304 s-1 in sulfuric acid and in 

perchloric acid, respectively. The observed difference of the rate of the COD removal in both 

solutions could result from the differen types of reactive species produced in the solution during 
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the electrolysis of amoxicillin. Besides OH* production, peroxyde is produced in perchloric acid 

solution while in sulfuric acid solution persulfate is produced. Those oxidants contribute in 

extending the oxidation of the organic from the vicinity of the electrode surface to the bulk of the 

solution. The rapid decay of COD in sulfuric acid compared to perchloric acid could be linked to the 

oxidative performance of persulfate which is higher than that of peroxyde. 

During the electrolysis, the absorbance of the samples withdrawn from the simulated 

wastewater tank was recorded. The result is shown in Figure 13. One observed in Figure 13 that 

during the first 1 h, an increase of the absorbance is observed. That could be due to the 

production of intermediates which absorb at the same wavelength as amoxicillin. As the 

electrolysis is still running, a decrease of the absorbance is observed until total degradation is 

obtained after 5 h of electrolysis. In the course of the experiment, the colour of the solution was 

followed. The colour of the solution became yellow as soon as the electrolysis of amoxicillin 

started in the current experimental conditions. The intensity of the solution colour increased until 

the electrolysis time reaches 2 h. After 2h of electrolysis, a decrease in the yellow colour intensity 

was observed and that occured until the end of the electrolysis i.e. 5 h when the solution became 

colourless indicating that a complete oxidation of amoxicillin. In fact, the appearance of the yellow 

colour during the electrolysis could be an indication of the production of intermediates which 

further undergo oxidation (removal) owing to the desappearence of the observed colour. 
 

 
Figure 13. Absorption spectra of amoxicillin samples during amoxicillin electrolysis at 100 mA 

cm-2. 

The energy consumption was estimated after the electrolysis. During the degradation of 

amoxicillin, the cell potential was followed and it remains almost constant either in sulfuric acid or 

in perchloric acid. The cell potentials were about 14.6 ± 1.0 V and 5.8 ± 1.0 V in sulfuric acid and in 

perchloric acid solution respectively. The specific energy consumed during the electrolysis of 

amoxicillin was about 0.096 kWh COD-1 and 0.035 kWh COD-1 in sulfuric acid and in perchloric acid 

respectively. The COD being expressed in g L-1.  
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Figure 14. photo of the solution withdrawn from the wastewater tank during electrolysis  

(from left to rigth : t =0 h; 1h; 2h; 3h; 4h; 5h) 

At the end, BaCl2 was added to the solution that was withdrawn after 5h in case of perchloric 

acid, and positive reaction occurs indicating the release of SO4
2− in the solution. Finally, complete 

mineralization of amoxicillin occured in the current experimental conditions. The overall reaction 

could be: 

C16H19N3O5S + 40 H2O  16CO2 + 3NO3
- + SO4

2- + 99H+ + 94e- 

Conclusion 

From this work, it appears that the boron doped diamond electrode (BDD) have a 

polycrystalline structure. Its surface is composed of grains with sizes between 0.3 and 0.6 µm. 

Besides diamond (Csp3) crystal, non-diamond carbon impurities (Csp2) i.e. graphitic type carbon 

are found on the BDD surface. As grown boron doped diamond surface chemical bonds are 

composed of C-C and C-H. The electrochemical characterization of BDD with the ferri/ferrocyanide 

redox couple showed that the used boron doped diamond electrode is an electrical conducting 

electrode and a good electrical contact is formed between the silicon substrate and the diamond 

coating. In sulfuric acid used as a supporting electrolyte, the voltammetric investigation showed a 

wide potential window of 2.74 V of water stability on BDD. The electrochemical oxidation of 

amoxicillin using cyclic voltammetric techniques indicated that a direct oxidation of amoxicillin 

occured in the electrochemical window of water stability on BDD. That oxidation was catalyzed by 

the non-diamond carbon impurities such as Csp2 presents at the BDD’s grain boundaries. For the 

bulk electrolysis of the amoxicillin in sulfuric acid under galvanostatic regime in a batch system, 

amoxicillin undergoes degradation reaching the highest chemical oxygen removal (92 %) under a 

current density of 100 mA cm-2 in sulfuric acid used as supporting electrolyte. The COD decrease 

follows a pseudo first order reaction with the COD removal rate constant of 0.5258 s-1. Using 

perchloric acid as supporting electrolyte, 87 % as COD removal yield and 0.4304 s-1 as COD removal 

rate constant were obtained under 100 mA cm-2. The rapid decay of COD in sulfuric acid compared 

to perchloric acid was linked to the oxidative performance of in situ formed oxidant such as 

persulfate and peroxyde. The specific energy consumed were about 0.096 kWh COD-1 and 0.035 

kWh COD-1 in sulfuric acid and in perchloric acid respectively after 5 h of electrolysis. Complete 

mineralization of amoxicillin was achieved after 5 hours of electrolysis and a release of minerals 

such as SO4
−2 was observed. 
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