ALTERNATIVNE NO POVRČARSTVO*

ALTERNATIVE VEGETABLE GARDENING

Ruzica Lesic

UVOD

Ekološki pokreti u svijetu i kod nas sve više ukazuju na negativne strane intenzivne poljoprivrede uz veliku upotrebu mineralnih gnojiva, sredstava za zaštitu bilja i drugih stimulatora. Sve je više nitrata i drugih nepoželjnih iona u podzemnim vodama, a kontrola nitrata u povrću već je postala rutinska mjera. Ljude sve više zabrinjavaju pesticidi i njihovo dugoročno djelovanje na zdravlje. To je rodilo različite sisteme alternativne »biološke« poljoprivrede i to naročito u povrćarstvu i voćarstvu. Pojavile su se brojne publikacije, pa čak i časopisi (Organic Gardening) prvenstveno namijenjeni propagiranju ovih ideja u proizvodnji povrća u kućnom vrtu. To je popraćeno reklamama novih proizvoda često problematične vrijednosti.

Različiti sistemi bazirani na stručnom pristupu ovoj problematiki nalažu svoje pristaše i među komercijalnim proizvođačima. Tako u 1985. godini u SR Njemačkoj već 1562 gospodarstava primjenjuje neku od tih metoda na ukupno 27.710 ha, a 88,4% te proizvodnje je u vrtlarstvu. To međutim čini samo 0,2% od ukupnih poljoprivrednih površina (Ann. 1986.). Već i pojedini proizvođači povrća u staklenicima prelaze na »biološku« proizvodnju (Carrara 1986.). Seltz (1983.) daje pregled 11 sistema i metoda alternativne proizvodnje voća i povrća njemačkih, švicarskih, francuskih, engleskih i američkih autora.

Osnovna pretpostavka svih ovih sistema je:
- održavanje plodnosti tla organskom gnojdbom (kompost, zelena gnojdb)
- minimalna obrada tla
- uzgoj kultura u plodoredu
- zaštita od bolesti i štetnika indirektnim metodama
- samo mehanička borba protiv korova.

Pojedini sistemi uključuju veća ili manja odstupanja kao što je ograničeno korištenje P i K gnojiva, te upotreba sredstava za zaštitu bilja na bazi Cu i S.

* Referat iznesen na Seminaru o proizvodnji i opskrbi turističkog područja povrćem i cvijećem, 24. i 25. studenog 1986. u Rovinju.
Neki sistemi uključuju i različita gledanja koja potječu iz Zen- Budizma i staroperzijske religije — kožničke utjecaje na biljke, te rokovne sjetve i sadnje usklađuju s mjesečevim mijenama, planetama i sazvježđima.

Ovdje ćemo prikazati samo dva sistema karakteristična za alternativnu proizvodnju povrca: Biološko-dinamičko gospodarenje i Organsko-biološku poljoprivredu.

SISTEMI ALTERNATIVNE PROIZVODNJE POVRCA

1. **Biološko-dinamičko gospodarenje**

Osnove ovoga sistema razradio je još davne 1924. godine švicarac Rudolf Steiner polazeći od pretpostavke, da je poljoprivredno gospodarstvo cjelina, a nejedini dijelovi — tlo, biljka, životinja, čovjek — međusobno se potpomažu u zatvorenom dinamičkom krugu.

Glavna su obilježja ovog sistema kako se danas propogira preko dvije institucije u Švicarskoj i Njemačkoj:
- međusobni utjecaj biljaka (širok plodored s leguminozama)
- gnojdbu kompostom biljnog i životinjskog porijekla uz dodatak različitih preparata mineralnog, biljnog i životinjskog porijekla
- zelena gnojdbu
- korištenje biljnih priprava (zaštita)
- obrada tla vodeći računa o kožničkim silama
- kalendari sjetve prema zvijezdama (i kadaje se svake godine)
- bez herbicida
- bez mineralnih gnojiva

Proizvodi iz organiziranih gospodarstava koja koriste ovaj sistem prođu se u specijaliziranom lancu trgovina pod markom: DEMETER ili HELIOS.

2. **Organsko-biološka poljoprivreda**

Osnivač ovog sistema su dr. H. Müller iz švicarske i dr. P. Rusch iz SR Njemačke. Glavna obilježja sistema mogu se sumirati u lijeđećem:
- održavanje plodnosti tla kao osnove prinosa s posebnim naglaskom na broj i sastav mikroflore tla,
- Hranidba mikroflore tla,
- Dodavanje bakterijskog preparata »Symbiflore« i brašna od starog kamenja (bazalt, porfir i dr) koje se koristi i u zaštiti biljaka,
- Obradama tla površinska s dubokim rahljenjem,
- Pokrivanje tla, površinsko kompostiranje*, zelena gnojdbu
- Gnojdbom kompostom od proizvođa gospodarstva (stajski gnoj, sla- ma, ostali biljni i životinjski otpaci)
- Redovna primjena vapna — reakcija tla, koristi se također i patent kalij i Tomas fosfat da se postigne najmanje pH 6,5,
- Mineralna gnojdbom bez lakotopivih gnojiva,
- Zaštita — sredstva na biljnoj osnovi i preparati na bazi Cu i S.

Proizvodi iz gospodarstva koja su usvojila ovaj sistem prodaju se pod markom »BIOLAND«.

* Stvaranje humusa imitirajući prirodu (šumu). Izvan sezone, proizvodnje po- krije se tlo slojem organskih otpadaka od 5—8 cm, a u vrijeme vegetacije nešto tanjim, koji služi kao malč.
Testiranje biološko-dinamičkog sistema

Znanstvena provjera ovih sistema predstavlja mnogostruki izazov. Ulrike Lindner (1985) prezentira 8-godišnje rezultate pokusne proizvodnje u upotrebi s konvencionalnom na eksperimentalnoj stanici Auweiler u SR Nje-
mačkoj. Kako stanica ne drži stoku, to nije bio u punom smislu biološko-
dinamički sistem. Kompost — kao osnova organske gnojidbe pripreman je
od slame. Za pripremu komposta koristila se ječmena i pšenična slama uz
odgovarajuće dodatke.

Ječmena slama:
17 velikih bala
15 kg živog vapna
500 kg riciusove prekrupke
100 kg bentonita
450 kg bazaltog brašna
300 kg vapna od alga
25 kg ugljene prašine od
bukovog drveta
30 dt komposta od šampinjona

Pšenična slama:
250 malih bala
15 kg živog vapna
500 kg riciusove prekrupke
100 kg bentonita
450 kg bazaltog brašna
300 kg vapna od alga
35 kg ugljene prašine od
bukovog drveta
30 dt komposta od šampinjona

Kompostne hrpe, zasnovane u veljači, prebačene su u lipnju uz dodatak
kompostpreparaata, a kompost je korišten u proljeće slijedeće godine. Ova-
kav kompost je dosta skup. Samo materijal koštia 6 DM/dt, pa se traže jefti-
nije kombinacije. U tabeli 1 prikazane su karakteristike dobivenog komposta:

<table>
<thead>
<tr>
<th>Kompost od</th>
<th>pH</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>Mg</th>
<th>Topivi N</th>
<th>soli</th>
<th>Humus</th>
<th>odnos C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ječmena slame</td>
<td>7,1</td>
<td>229</td>
<td>180</td>
<td>28</td>
<td>10,6</td>
<td>1490</td>
<td>21,4</td>
<td>14,4</td>
</tr>
<tr>
<td>Pšenična slama</td>
<td>7,3</td>
<td>234</td>
<td>110</td>
<td>24</td>
<td>12,9</td>
<td>1300</td>
<td>17,7</td>
<td>22,3</td>
</tr>
</tbody>
</table>

Gnojidba za:
- kupus 500—600 dt/ha
- poriluk i celer 400 dt/ha
- cikla 250 dt/ha

Od 1978. do 1985. u 4 plodoreda testirana je primjena navedena dva kom-
posta u uporedbi s uobičajenom mineralnom gnojidbom (kontrola) za dotične
kulture. Uzgajane su standardne sorte, a za zelenu gnojidbu korištene su:
ljetna repica, facelija i ožima raž. U tabeli 2 prikazan je slijed kultura po
godinama, a zvijezdicom je označena kultura, koja je gnojena kompostom.
Tab. 2
Plodored u pokusnom projektu Alternativno povrćarstvo

<table>
<thead>
<tr>
<th>Godina</th>
<th>Plodored</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978.</td>
<td>Lj. repica kelj</td>
<td>Lj. repica kelj</td>
<td>Bob poriluk</td>
<td>Bob poriluk</td>
<td></td>
</tr>
<tr>
<td>1979.</td>
<td>poriluk</td>
<td>poriluk*</td>
<td>cikla*</td>
<td>cikla*</td>
<td></td>
</tr>
<tr>
<td>1980.</td>
<td>celer*</td>
<td>celer*</td>
<td>kupus*</td>
<td>kupus*</td>
<td></td>
</tr>
<tr>
<td>1981.</td>
<td>cikla</td>
<td>mrkva</td>
<td>facelija</td>
<td>facelija koromač</td>
<td></td>
</tr>
<tr>
<td>1982.</td>
<td>zelena gnojidba</td>
<td>zelena gnojidba</td>
<td>špinat celer*</td>
<td>cikla*</td>
<td></td>
</tr>
<tr>
<td>1983.</td>
<td>mrkva</td>
<td>mrkva</td>
<td>cikla</td>
<td>grah mah. raž bob*</td>
<td></td>
</tr>
<tr>
<td>1984.</td>
<td>salata*</td>
<td>salata*</td>
<td>facelija</td>
<td>cikla*</td>
<td></td>
</tr>
<tr>
<td>1985.</td>
<td>cikla</td>
<td>koruncica</td>
<td>poriluk</td>
<td>celer</td>
<td></td>
</tr>
</tbody>
</table>

* Gnojidba kompostom

Kako su navedeni sistemi iskorištavanja djelovali na neke karakteristike tla vidi se iz tabele 3. Primjenom komposta pH vrijednost raste prema neutralnoj reakciji, % organske tvari s godinama raste, a zalihe fosfora, kalija i magnezija bitno se ne mijenjaju.

Tab. 3
Analize tla (0—30 cm dubine) na parcelama s povrćem (srednja vrijednost različitih kultura u plodoredu) 1978/84.

<table>
<thead>
<tr>
<th>God.</th>
<th>Kompost od ječmeni slame</th>
<th>Kompost od pšenične slame</th>
<th>Kontrola</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978.</td>
<td>6.2</td>
<td>6.1</td>
<td>6.2</td>
</tr>
<tr>
<td>1979.</td>
<td>6.6</td>
<td>6.5</td>
<td>6.3</td>
</tr>
<tr>
<td>1980.</td>
<td>6.9</td>
<td>6.9</td>
<td>6.5</td>
</tr>
<tr>
<td>1981.</td>
<td>6.8</td>
<td>6.8</td>
<td>6.4</td>
</tr>
<tr>
<td>1982.</td>
<td>7.0</td>
<td>7.0</td>
<td>6.5</td>
</tr>
<tr>
<td>1983.</td>
<td>7.1</td>
<td>7.1</td>
<td>6.7</td>
</tr>
<tr>
<td>1984.</td>
<td>7.2</td>
<td>7.2</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Organska tvr u %

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6</td>
<td>2.5</td>
<td>2.0</td>
<td>2.6</td>
<td>2.4</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>2.2</td>
<td>1.9</td>
<td>2.2</td>
<td>2.3</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Otvremena</td>
<td>1.4</td>
<td>2.0</td>
<td>1.6</td>
<td>2.1</td>
<td>2.2</td>
<td>1.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>
R. Lešić: Alternativno povrćarstvo

<table>
<thead>
<tr>
<th>P₂O₅</th>
<th>1978.</th>
<th>26</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/100 g tla</td>
<td>1979.</td>
<td>28</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1980.</td>
<td>30</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1981.</td>
<td>32</td>
<td>38</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1982.</td>
<td>31</td>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>1983.</td>
<td>36</td>
<td>42</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1984.</td>
<td>39</td>
<td>43</td>
<td>29</td>
</tr>
</tbody>
</table>

K₂O	1978.	30	29	29
mg/100 g tla	1979.	35	34	33
	1980.	30	27	31
	1981.	29	28	35
	1982.	23	23	30
	1983.	26	26	29
	1984.	21	20	26

Mg	1978.	5	4	5
mg/100 g tla	1979.	5	5	4
	1980.	4	4	3
	1981.	6	7	6
	1982.	6	6	6
	1983.	6	7	6
	1984.	6	6	7

Prinosi kultura u plodoredu prikazani su u tabeli 4 po godinama.

Tab. 4

<table>
<thead>
<tr>
<th>God.</th>
<th>Kultura</th>
<th>Kompost od ječmene</th>
<th>Kompost od pšen. slame</th>
<th>Kontrola</th>
<th>% u odnosu na kontrolu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979.</td>
<td>cikla</td>
<td>339</td>
<td>335</td>
<td>302</td>
<td>+ 12</td>
</tr>
<tr>
<td>1981.</td>
<td></td>
<td>178</td>
<td>207</td>
<td>284</td>
<td>+ 32</td>
</tr>
<tr>
<td>1982.</td>
<td></td>
<td>371</td>
<td>359</td>
<td>410</td>
<td>— 11</td>
</tr>
<tr>
<td>1983.</td>
<td></td>
<td>354</td>
<td>327</td>
<td>359</td>
<td>— 5</td>
</tr>
<tr>
<td>1984.</td>
<td></td>
<td>272</td>
<td>301</td>
<td>236</td>
<td>+ 22</td>
</tr>
<tr>
<td>1984.</td>
<td></td>
<td>303</td>
<td>306</td>
<td>318</td>
<td>— 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>God.</th>
<th>Kultura</th>
<th>Kompost od ječmene</th>
<th>Kompost od pšen. slame</th>
<th>Kontrola</th>
<th>% u odnosu na kontrolu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981.</td>
<td>mrkva</td>
<td>618</td>
<td>597</td>
<td>636</td>
<td>— 4</td>
</tr>
<tr>
<td>1982.</td>
<td></td>
<td>572</td>
<td>606</td>
<td>657</td>
<td>— 10</td>
</tr>
<tr>
<td>1983.</td>
<td></td>
<td>504</td>
<td>630</td>
<td>651</td>
<td>— 10</td>
</tr>
<tr>
<td>1984.</td>
<td></td>
<td>565</td>
<td>611</td>
<td>641</td>
<td>— 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>God.</th>
<th>Kultura</th>
<th>Kompost od ječmene</th>
<th>Kompost od pšen. slame</th>
<th>Kontrola</th>
<th>% u odnosu na kontrolu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980.</td>
<td>kupus</td>
<td>433</td>
<td>460</td>
<td>602</td>
<td>— 26</td>
</tr>
<tr>
<td>1982.</td>
<td></td>
<td>452</td>
<td>396</td>
<td>563</td>
<td>— 25</td>
</tr>
<tr>
<td>1984.</td>
<td></td>
<td>180</td>
<td>188</td>
<td>398</td>
<td>— 54</td>
</tr>
<tr>
<td>1984.</td>
<td></td>
<td>355</td>
<td>348</td>
<td>521</td>
<td>— 34</td>
</tr>
</tbody>
</table>

1979/80. zimski poriš | 318 | 315 | 370 | — 15 |
1982/83. poriš | 283 | 222 | 316 | — 20 |
1984/85. | 150 | 126 | 107 | + 29 |
<table>
<thead>
<tr>
<th>ạ</th>
<th>z. poriluk</th>
<th>250</th>
<th>221</th>
<th>264</th>
<th>— 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980.</td>
<td>celer</td>
<td>442</td>
<td>461</td>
<td>546</td>
<td>— 17</td>
</tr>
<tr>
<td>1982.</td>
<td>celer</td>
<td>403</td>
<td>441</td>
<td>415</td>
<td>+ 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ạ</th>
<th>rana salata</th>
<th>228</th>
<th>254</th>
<th>410</th>
<th>— 41</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984.</td>
<td>salata</td>
<td>241</td>
<td>275</td>
<td>384</td>
<td>— 33</td>
</tr>
<tr>
<td>1985.</td>
<td>špinat</td>
<td>193</td>
<td>223</td>
<td>418</td>
<td>— 50</td>
</tr>
<tr>
<td>1985.</td>
<td>špinat</td>
<td>211</td>
<td>163</td>
<td>224</td>
<td>— 17</td>
</tr>
</tbody>
</table>

|ạ | sve kulture (24) | 315 | 325 | 386 | — 17 |

U tabeli 5 prikazano je povećanje utroška živog rada u odnosu na kontrolu. Kao relativna vrijednost. To se odnosi samo na rad u uzgoju, a ne na pripremi robe za tržište. Najveći dio povećanog utroška rada odnosi se na mehaničko čišćenje od korova i pripremu komposta. U kasnijim godinama povećanje se ponešto smanjuje, pronalaženjem efikasnijih načina rada.
Tab. 5

<table>
<thead>
<tr>
<th>Godina</th>
<th>Kultura</th>
<th>Utrošak radne snage sati/ha kontrola = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978.</td>
<td>kelj pupčar/poriluk + 112</td>
<td></td>
</tr>
<tr>
<td>1979.</td>
<td>cikla/poriluk + 26</td>
<td></td>
</tr>
<tr>
<td>1980.</td>
<td>kupus/celer + 22</td>
<td></td>
</tr>
<tr>
<td>1981.</td>
<td>cikla + 112</td>
<td></td>
</tr>
<tr>
<td>1981.</td>
<td>mrkva + 71</td>
<td></td>
</tr>
<tr>
<td>1981.</td>
<td>endiviya + 23</td>
<td></td>
</tr>
<tr>
<td>1981.</td>
<td>komorač + 27</td>
<td></td>
</tr>
<tr>
<td>1982.</td>
<td>poriluk − 15</td>
<td></td>
</tr>
<tr>
<td>1982.</td>
<td>kupus + 21</td>
<td></td>
</tr>
<tr>
<td>1982.</td>
<td>celer + 9</td>
<td></td>
</tr>
<tr>
<td>1982.</td>
<td>cikla + 54</td>
<td></td>
</tr>
<tr>
<td>1983.</td>
<td>mrkva + 52</td>
<td></td>
</tr>
<tr>
<td>1983.</td>
<td>špinat + 26</td>
<td></td>
</tr>
<tr>
<td>1983.</td>
<td>cikla + 34</td>
<td></td>
</tr>
<tr>
<td>1983.</td>
<td>mahune + 3</td>
<td></td>
</tr>
<tr>
<td>1983.</td>
<td>bob + 13</td>
<td></td>
</tr>
<tr>
<td>1983.</td>
<td>kelj + 15</td>
<td></td>
</tr>
<tr>
<td>1984.</td>
<td>cikla + 14</td>
<td></td>
</tr>
<tr>
<td>1984.</td>
<td>mrkva + 31</td>
<td></td>
</tr>
<tr>
<td>1984.</td>
<td>salata + 9</td>
<td></td>
</tr>
<tr>
<td>1984.</td>
<td>kupus + 59</td>
<td></td>
</tr>
<tr>
<td>x 21 kultura</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 31</td>
<td></td>
</tr>
</tbody>
</table>

Obzirom na ukupne troškove proizvodnje autorica zaključuje da bi proizvođač »biološki« proizvedenog povrća morao ostvariti 50% veću cijenu. U pokusnoj proizvodnji proizvedeno povrće plasirano je na tržište, a rezultati preračunani na hektar prikazani su u tabeli 6 po kulturama i godinama. Iako je financijski rezultat po jedinici površine i po kulturi u »biološkoj« proizvodnji veoma pozitivan, sve količine robe nisu uvijek našle kupca.

Postotak tržne robe u ukupnom prirodu nije se bitno razlikovao 73,5 odnosno 74,4 prema kontroli 79,6 — tj. bio je za 7,1% manji.

Kupac pretpostavlja da je biološki proizvedeno povrće kvalitetnije. Sumarni podaci više analizu na pojedine komponente kvaliteta prikazani su u tabeli 7. Izrazito je veća količina samo vitamina C.

Tab. 6

<table>
<thead>
<tr>
<th>Godina</th>
<th>Prihodi DM/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982.</td>
<td>špinat 46805</td>
</tr>
<tr>
<td>1982.</td>
<td>celer 50634</td>
</tr>
<tr>
<td>1982.</td>
<td>cikla 17256</td>
</tr>
<tr>
<td>1982.</td>
<td>kupus 27546</td>
</tr>
<tr>
<td>1982/83.</td>
<td>poriluk 27516</td>
</tr>
<tr>
<td>1983.</td>
<td>cikla 15929</td>
</tr>
<tr>
<td>1983.</td>
<td>mrkva 52905</td>
</tr>
<tr>
<td>1984.</td>
<td>kelj zimski 13465</td>
</tr>
<tr>
<td>1984.</td>
<td>cikla 11372</td>
</tr>
<tr>
<td>1984.</td>
<td>mrkva 45360</td>
</tr>
<tr>
<td>x sve kulture</td>
<td>30890</td>
</tr>
<tr>
<td></td>
<td>14745</td>
</tr>
</tbody>
</table>

115
Sadržaj nitrata u biološki proizvedenom povrću bio je znatno manji u uporedbi s kontrolom, a to je čini se najveća prednost. (Tabela 8)

Tab. 7

<table>
<thead>
<tr>
<th>Karakteristični sastojci u svježem povrću</th>
<th>kompost od ječama</th>
<th>pšenična</th>
<th>kontrola</th>
<th>% prema kontroli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suha tvar %</td>
<td>12,74</td>
<td>12,62</td>
<td>12,24</td>
<td></td>
</tr>
<tr>
<td>Relativno</td>
<td>104,1</td>
<td>103,1</td>
<td>100</td>
<td>+ 36</td>
</tr>
<tr>
<td>Prinos suhe tvari dt/ha</td>
<td>40,09</td>
<td>40,09</td>
<td>46,77</td>
<td>− 13,4</td>
</tr>
<tr>
<td>Relativno bježancevine u %</td>
<td>45,3</td>
<td>43,5</td>
<td>41,6</td>
<td>+ 2,8</td>
</tr>
<tr>
<td>Ukupešni šećeri %</td>
<td>5,05</td>
<td>5,08</td>
<td>4,84</td>
<td>+ 0,23</td>
</tr>
<tr>
<td>C vit. mg/100 g</td>
<td>34,5</td>
<td>35,3</td>
<td>30,1</td>
<td>+ 16</td>
</tr>
<tr>
<td>Ukupešna kiselina m val/100 g</td>
<td>306</td>
<td>308</td>
<td>308</td>
<td>— 0,3</td>
</tr>
</tbody>
</table>

Minerali:
- Na + 10,7 %
- Mg + 2,1 %
- K − 0,1 %
- P + 5,9 %
- Ca + 8,0 %
- Cl − 9,8 %

Ukus povrća ocijenjivan je panel probama sa 30—50 učesnika. U prosjeku biološki proizvedeno povrće dobilo je 0,7 više poena. Od 21 seta uzoraka 13 ih je dobilo 0,16—2,7 poena više, a 8 uzoraka 0,02—1,28 poena manje. (Poeniranje 1—10). Negativne ocjene odnose se na vlažnu i hladnu 1984. godinu. Međutim, kada je provedena senzorska analiza u Institutu u Geisenheimu nisu utvrđene razlike.

U tabeli 8 rezimirani su ukupni rezultati u relativnim vrijednostima.

Tab. 8

<table>
<thead>
<tr>
<th>Sadržaj nitrata mg/kg u svježem povrću</th>
<th>Kompost od slame</th>
<th>% prema kontroli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ječmeni</td>
<td>pšenične</td>
</tr>
<tr>
<td>x lisnato povrće</td>
<td>240</td>
<td>264</td>
</tr>
<tr>
<td>x korjenasto povrće</td>
<td>677</td>
<td>711</td>
</tr>
<tr>
<td>mahune</td>
<td>330</td>
<td>308</td>
</tr>
</tbody>
</table>
Tab. 9

Rezultati proizvodnje
(Relativne vrijednosti u prosjeku)
(kontrola = 100)

<table>
<thead>
<tr>
<th></th>
<th>pozitivno</th>
<th>negativno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prinos</td>
<td>17% manji</td>
<td></td>
</tr>
<tr>
<td>Udio tržne robe</td>
<td>7% manji</td>
<td></td>
</tr>
<tr>
<td>Brutni prihod DM/ha</td>
<td>110% viši</td>
<td>31% više</td>
</tr>
<tr>
<td>Radna snaga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadržaj NO₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lisnato</td>
<td>54% manje</td>
<td></td>
</tr>
<tr>
<td>korjenasto</td>
<td>53% manje</td>
<td></td>
</tr>
<tr>
<td>Vitamin C</td>
<td>16% više</td>
<td></td>
</tr>
</tbody>
</table>

Na temelju ovih istraživanja autorica zaključuje slijedeće:
— Alternativni uzgoj povrća je provediv.
— Gubici kroz manje prinos, veći utrošak živog rada, neiskorištene po-
vršine zbog zelene gnojidbe nadoknađuju se višom cijenom proizvo-
da. Prodaja lako pokvarljivih robe je često u pitanju.
— Poticaj za prelazak na alternativno povrćarstvo nije cijena proizvoda,
 nego prvenstveno lični stav proizvođača u odnosu na sistem proizvo-
dnje.

Prednosti alternativnog povrćarstva:
— Kvaliteta tla i bolje gospodarenje.
— Kroz 8 godina ostvareno je prošječno povećanje sadržaja humusa za
 0,5% ali se već i to odrazilo na propusnost, lakšu obradu i manju
 pokoricu.
— U pripremi komposta treba tražiti bolja rješenja.
— U 8-godišnjem razdoblju nije bilo većih teškoća u zaštiti od bolesti
 i štetnika. Tome je sigurno razlog dobar plodored.
— Kvaliteta: nešto više vitamina C, manje nitrata i bolja organoleptič-
 ka svojstva.

Nedostaci:
— Nejednolično snabdijevanje N — mineraliziranje je ovisno o nizu faktora,
 prvenstveno temperaturi i vlazi.
— Rane kulture pokazuju znakove gladovanja N.
— Folijarna prihrana juhom od kopriva nije imala efekta.
— Teškoće u plasmanu proizvoda.
 Iako postoji veletrugovina tih proizvoda, Eko-zadruge, naročito lako
 pokvarljive robe ne mogu se uvijek prodati. Robe koje se mogu lako
 skladištiti: mrkva, cikla, kupus — manji su problem.

Ovaj način proizvodnje može se preporučiti samo onim proizvođačima,
koji proizvode mogu sami plasirati u neposrednoj okolini. Zbog asortiman
preporučivo je udruživanje više proizvođača.

U toj proizvodnji traži se dobro znanje i dalje istraživanje za bolju i ra-
acionalnu proizvodnju.

Prošetna salata u organskom uzgoju sporiše je rasa, imala je manju rozetu, glavice su bile rahle i otvorene, ali manje oštećene Botrytisom nego glavice u konvencionalnom uzgoju. Zbog oštećenja od lisnih ušiju od ukupnog prinosa organskog uzgoja tržnu vrijednost imalo je samo 8—35%. Količina nitrata iznosila je samo 100—200 mg/kg suhe tvari, a u konvencijalnom uzgoju 769—1072 mg/kg. To je međutim još uvijek manje od granične količine koja se smatra prihvatljivom za povrće (3000 mg/kg suhe tvari).

Na kineskom kupusu štete od kupusne muhe i gusjenice pri 'biološkom' uzgoju bile su 60—76% u uporedbi sa 6% u konvencijalnom uzgoju.

U 'biološkom' uzgoju pored mehaničkog suzbijanja, bilo je znatno više korova (209.000 biljaka/m³) uz veći broj vrsta, u uporedbi s konvencijalnim, gdje se herbicidi redovno primjenjuju (84 biljke/m³).

Od insekticida u 'biološkom' uzgoju koriste se samo sredstva na bazi Pyrethruma (buhaća) i Bacillus thuringiensis. Zbog njihovog slabijeg djelovanja potrebna je češća primjena. Bilo bi interesantno saznati i više podataka o ovom pokusu.

Idea o 'biološkoj' proizvodnji u nas ima sve više zagovornika, ali je u praksi primjenjuju pretežno vrtnari amateri, Omahen (1985.). Organizirane komercijalne proizvodnje povrća na 'biološki' način za sada još nema, kao ni organizirane prodaje.

Pitanje da li ima mjesta za takvu proizvodnju u nas, možda će naći odgovor nakon ovog Seminar o proizvodnji i opskrbi turističkog područja povrćem i cvijećem. U velikim turističkim centrima kao što je Poreč, Rovinj, Dubrovnik i dr. borave gosti iz evropskih zemalja, gdje povrće i voće iz različitih bio-programa ima stalne kupce. Ponuda menja s povrćem i voćem iz 'biološke' proizvodnje poznate marke uz adekvatno višu cijenu mogla bi obozivati našu ponudu i dati nešto novo.

Turistički radnici mogli bi proveštiti anketu među gostima, da li bi željeli takav meni. Ako se pokaže interes koji bi ekonomski opravdao takvu akciju, na agronomima je organizacija proizvodnje. Pri tome treba poći od naših uvjeta. Treba izabrati metodu, koja osigurava najmanje gubitke u prinosu i kvaliteti povrća.

Turistički radnici mogli bi proveštiti anketu među gostima, da li bi željeli takav meni. Ako se pokaže interes koji bi ekonomski opravdao takvu akciju, na agronomima je organizacija proizvodnje. Pri tome treba poći od naših uvjeta. Treba izabrati metodu, koja osigurava najmanje gubitke u prinosu i kvaliteti povrća.

Za 'biološku' proizvodnju potrebno je poznavanje i razumijevanje svih procesa u tlu i u biljci pod utjecajem klimatskih faktora. Tu je potrebno neprekidno praćenje i prilagođavanje različitih mjera, kako bi se ostvarila planirana proizvodnja. Na osnovu potrebnih istraživanja i svih agronomskih znanja mogu se razraditi tehnologije pojedinih kultura i čitavog sistema.

Uz veće proizvodne troškove i veću cijenu proizvoda, koja uključuje i veći rizik, koristeći znanstvena saznanja i bez 'kozmičkih utjecaja' moguće je 'biološku' proizvodnju povrća u društvenim ili društveno organiziranim gospodarstvima, ako se nađu kupci koji su to spremni platiti.
SUMMARY

The idea of vegetable production without mineral fertilizer and chemical pesticides are discussed. Some systems dealing with biological vegetable gardening are reviewed. The results of experimental production through 8 years in Germany are presented. Advantages and disadvantages of presented system are discussed, besides the possibility of application in the touristic aera of Yugoslavia.

LITERATURA:

1. ANN. 1986.: Im Ertrag liegt der konventionelle Anbau vorne. Gärtnerbörse und Gartenwelt 86/9: 390

Adresa autora — Author's address
Prof. dr Ružica Lešić
Fakultet poljoprivrednih znanosti
Simunska 25, 41000 Zagreb