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FORMULAS FOR QUADRATIC SUMS THAT INVOLVE
GENERALIZED FIBONACCI AND LUCAS NUMBERS

7ZVvONKO CERIN

ABSTRACT. We improve on Melham’s formulas in [10, Section 4] for
certain classes of finite sums that involve generalized Fibonacci and Lucas
numbers. Here we study the quadratic sums where products of two of these
numbers appear. Our results show that most of his formulas are the initial
terms of a series of formulas, that the analogous and somewhat simpler
identities hold for associated dual nulmbers and that besides the alternation
according to the numbers (—1) T itis possible to get similar formulas

n(n—1)
for the alternation according to the numbers (—1) ™~ 2 . We also consider

twelve quadratic sums with binomial coefficients that are products.

1. INTRODUCTION

The main goal of this paper is to improve several results by R. S. Melham
in [10, Section 4]. His idea was to consider identities for those finite sums
of products of two generalized Fibonacci and Lucas numbers where the right
hand side has a pleasing form. In order to achieve a balance between elegance
and generality, he choose to employ the following four sequences that we now
define.

Let a, b and p be arbitrary complex numbers such that p? # —2, —4 and

p # 0. The roots a = % and g = # of the equation 22 —pz—1=0
are distinct, where A = p? + 4. Now the first two sequences are given by their
Binet forms as
Aa™ — Bp"®
W, =W(a,b,p,n) = aiﬂﬁ, X, =X(a,b,p,n)=Aa™ +Bp"
o —

for any integer n, where A=b—af and B=b—aa.

For (a,b) = (0,1), we write W,, = U, and X,, = V,,. Then {U,}nez and
{Vi}nez are the third and the fourth sequence, respectively. Notice that W,
and X, generalize U,, and V,,, respectively, which in turn generalize F;, and
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L,, (Fibonacci and Lucas numbers), respectively. Aspects of W, and X,, have
been treated, for example, in [1], [7], and [15], and more recently in [9].

We shall employ also another four similar sequences that we call dual
and denote by the corresponding small letters which come from the equa-
tion 22 —pz+1=0 under the assumption that p # 0 and p? # 2, 4. Let
§=p>—4.

Let 4, k and s denote arbitrary integers. Let £ =k + ¢ and m =k — i.

As in [10], in each of our sums the lower limit is allowed to vary. Accord-
ingly, we always assume the upper limit to be greater than the lower limit,
and that either limit may be negative.

In Sections 2-5 we present our results that are collected into four sets of
sums similar to the quadratic sums in Section 4 of [10] and then conclude by
giving in Section 6 a sample proof.

2. THE SUMS OF PRODUCTS

Let a, b, ¢, d and p be arbitrary complex numbers. In this section be-
sides the numbers W,, = W(a,b,p,n), etc. we shall also use the numbers
W =W/(c,d,p,n), etc. Hence, the presence of the star only indicates differ-
ent initial values.

The formulas (4.1) and (4.2) in [10] consider the sums Z?:i W; U; and
Z?:i W; V; for the products W; U; = W (a,b,p, j) W(0,1,p,j) and W, V; =
Wi(a,b,p,j) X(0,1,p,7) when i and k are assumed to have different pari-
ties. Our extension replaces the products W; U; and W; V; with the products
W VVS*]7 Ws; X3; and X X, where s is any odd integer. Hence, our second
factor is more general and instead of a single formula we obtain a sequence of
formulas (one for each value of s).

Let s=2sand 5=2s+1. Let Z and Z; be W; W* +WHW*k and
Ws; W5, respectively. Recall that m =k — 4. For all 1ntegers 1, k and s, the
following identities hold:

_ smt2) 4, ife=iand f= k;

2.1) U%ZZ { Usm 7, if e=7and f = k.

We note that these sums for the products W5 ; X*4 and XSJ X*» are similar.
One simply replaces Z with W X* + Ws; X*k and D T st X:k, re-
spectively.

The analogous alternating sums of the numbers w,, are also products. Let

— _ * _ _ * _ * J— . *

Zu = Wggy g Wop — WeiWsy i, o = Wi Wagyy — We7_ Wiy and 2 = wsj wg
Then it holds

g

f p—
- Vi .. — ) Us(me2) Zu, ife=iand f =k
(2.2) ve Y (-1) 2 { ) e—tandf ok
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For the numbers w,, the even multiplies of indices could be used. Let z,, z, and

zj denote ws w;‘E_l — Wsi—1 w;‘E, We 41 w;‘E — Wsj w;‘E_l and ws ; ng, re-
spectively. Then
f . . -
(23) 0 3 (1)ig = Ustwrpz ie=iand £k
. s = e _
Us m Zvs ife=idand f =k.

j=e

The alternating sums of the products W;W7 need not be equal to prod-
ucts. However, for the following three products Z, = W; W7, Zs = Wij

and Z, = W;W7, , these sums are products. Let Sa, Ss and S, denote the
following sums Wy 1 Wi o + WaiWip .y, WairaWii o + Wait i Wi, and
WiitaWiy i s +Wairai Wi ». For t = a, 3, v the following identities are true:

f ‘ _
; —Uy( S, ife=ziand f =k;
_1\J _ m+1) Pt L ’
(24) V?z;( 'z { Usm St ife=7and =k
=
When for ¢t = 8, v in (2.4) we increase each index of the terms in S; by one, we
shall get formulas for alternating sums of the products W;Wj’:r L and W;Wﬁ .

respectively.
Let K = WzX7 — (=1)*(ad —bc). Let Z; denote either WFSW&_DS or
W(j_l)st"s. The following result also provides infinitely many alternating

sums that are products:

f K ' k
| U, ife=iand f=TF;

17 s(m+1) 5 = ,
(2.5) VQE (—1) Zy { Ussm K, ife=idand f =k.

j=e

When ¢ = a and d = b, the above formula reduces to the following identities.
Let Zy, = stW(jfl)s and Z, = W; X5 .. Then

f _ _

; —Uy, Zn, ife=iand f=k;

1\ _ s(m+1) ) L )

(26) Vﬁjzzz( L 2 { Ussm Zn, if e=7and f = k.

Similar sums that alternate according to the numbers (—1)](]2+ 2 are also
products and are given by the following identities. Let us, pg, ps and pg
be pairs (4i,4k+ 1), (4i,4k+3), (494 2,4k + 1) and (49 + 2,4k + 3) and
let w= (e, f) be either us, w4, ps or ug. Let A, B and € denote the
sum Wit o Wiy + Wainy Wei .y, for (z,y) = (2,1), (4, 3), (6,5), respectively.
Then

—Vim 2, ifw=ps;

Vy JG+1) « ) Vam'B, if w=pg;
@7 H L DT =0 TR e =
V4m€, ifw:/,l/ﬁ.
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Let v3 and vy be pairs of integers (4i + 1,4k) and (4i + 3,4k + 2) and let
w = (e, f) be either v3 or v4. Then

f .
Vy iU+ « A ifw=us;
(28) Vo Usg—i Z (=17 WZWF B { -€, ifw=uwy.
k=i e
The products appear also in analogous sums that alternate according
to the numbers (—1)](];1) Let ps, pa, s and pg be pairs (4i + 1,4k),
(4i+ 1,4k +2), (49 + 3,4k) and (4i + 3,4k +2) and let w = (e, f) be either

M3y pa, ps OF pg. Then

f U4m 22[, if w= M35

Vi iG=1) . —Vim B, ifw=puy;

(2.9) A DT W = Vi 1B, i — ps:
—Usm €, ifw=ps.

j=e

Let v3 and vy be pairs of integers (4i,4k + 3) and (47 + 2,4k + 1) and let
w = (e, f) be either v3 or v4. Then

/ .
‘/4 iG=1 { 7U4m+8, ifw= Vs,

(2.10) Vo B < G WZW7: Ui, if = .
j=e =

3. SUMS OF SQUARES

Recall that the first formula from the following pair

(3.1) y 3

F? = Fj, Fyqa, Z L?=Li Ly —2
1 j=1

J

was the motivation in [10] to undertake a task to explore those sums of (gen-
eralized) Fibonacci and Lucas numbers where the right side has a pleasing
form. The identity [10, (4.18)] is the only other sum for squares of Fibonacci
numbers that appears in [10]. In this section a more extensive study of sums
of squares of (generalized) Fibonacci and Lucas numbers is given. In this ex-
position from less to more general formulas, it is possible that some of those
identities are already known.
Let H denote either F' or L. The following generalizations

‘
(3.2) > H}=H/Hypy — HiHi 4
j=i
suggests that we might vary lower and upper limits of summation as much as

possible (preferably keep them arbitrary as in (3.2)) provided the right side
is still relatively simple.
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When the part k& in the upper limit ¢/ = k + 4 is odd, then these sums
factor as follows. Let M3 = Fy Lyy1 4+ (—1)" = FZ + FZ_,. Then

T+i k+i
(3.3) SN =LY LI=F, M,
j=i j=i

The sums that can be expressed as a product are particularly pleasing.

For example, the factor Fy 4 in (3.3) depends only on the number of terms

in the sum and therefore has a greater importance.
When this k is even, then the sums almost factor as follows. Let My
denote Fi2 + FEFE‘H while N, = Lz2 + 5FEF£+1 = 2(—1)i — SFZ + L&Lﬁ_ﬁ.l.

k+i

~~ o [ M, if H=F;
(3.4) Z Hy = { Ny, if H=L.

=

The word “almost” refers that the right hand side is a product plus or minus
a number that is small in respect to the sum itself. In the following versions of
these identities this distance from a product is even smaller. Let M5 = Ly L,.
Then

k+i ki
(3.5) SR =1 [Ms—2(-1)'], ) LI=M;s+2(-1)"

j=i j=i

Let Y be either W or X. Let Y be X if Y = W and W if Y = X. The
dual numbers are y and y. For the numbers Y,,, the analogue of (3.2) is as
follows:

L
(3.6) pY_YP =YY — ViV

j=i

Let A=a? —b*+abp, O =1 and Ox = A. The relations (3.3)—(3.5)
extend similarly. The upper or lower sign appliesif Y = W orY = X. Let Mg

denote Oy |Y, 17g+1 F (-1)* )\} . Note that Mg = Y2 + YZQH. Then we have

k+i
§ : 2

(37) P }/j = UEJrl Mﬁ.
j=i

Let M, = Wi+1 + 2Wi—1 + Wi_g. Then

k+i
(3.8) POy > V7 = X1 Xp—a My £2(~1) pA,

i=i
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Let Mg =aA[b+U;—1 Q4] and Ng = a A [b + %} , where Q+ = Wiy
iWi—l- Then
= X1 Xo — Ms T2p), if i is odd
N 2 _ k+1 8¢ — Mg F 2pA, 1218 0dd;
(3.9) p@Y Z Yy = { Xk41 X — Ng£2pA, if i is even.
Another variation is the following:

Eti
(3.10) P Z Y2 =Yy Y1 — Yo Yira.
j=i+1

The factorization occurs also in the following sums. Let ¢t = 3¢. Then

kJr'L
Z Vi =Y, + YA = ViV F (-1) A Us.

3.11
(38.11) Uﬁ(k+1)

This is the second formula (for s =1) of the the following family of for-
mulas beginning with the above formula (3.7) (for s =0). Let My be
Y2501 Y5, Note that

= Oy [ szYs(eH) F (= )“\Ug} :
It holds

EJr’L
(3.12) Vs Z = Oy Ugpyy)s Mo

The sums of consecutive squares ng are not products. However, they
retain some overall similarities with the above sums. Let Mo and Nig be
Xs(et2) + Xse and Wy 511 + Wsi—s—1, respectively. Then

ki
(3.13) O U4SZY W, 1) Mio = Vi [a Niog F4Ak+ 1) U | -

When the limits of summation are ¢ and k + 4, then we have the following
formulas. Let &5 = U‘f‘k and (3 = £ V2. Then

E+i
(3.14) &3 Z Y§2] = (3 + My.
The alternating sum Zk“( 1)7Y? is not a product. However, for the

numbers y,,, we have the following result. Let p = a? 4 b% — abp, 0, = 1,
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0, =39 and & = (—1)° Ty Then
k+i '

(3.15) § > (=1 =F0, [ntyetiera] = v7 — v
j=i

These formulas are the initial ones of the following series of formulas. Let
&= (-1 —=— and

U541
mg = y§+se yé+ée+1 F0, [M%i Yse ﬂ;(eﬂ)] .
Then we have
k+i
(3.16) &Y (=1 y2 = mo.
Jj=t
The following formula gives the factorization for the alternating sum of
an even number of consecutive squares of the numbers Y ; for an even number
s:
E+i
(3.17) V. Z Y Y = (1) Oy Uy Yorse Yasse

For the numbers Yn the similar formulae hold. One has to replace the
letters V', Y, © and U by the corresponding small letters.

4. ALTERNATION ACCORDING TO (—1)“72?1) AND (—1)

iG-1
2

The most identities in [10, Section 4] (more precisely (4.4)-(4.15)) consider

sums of products W,, U,,, X,, Uy, W,, V,, and X, V,, that alternate according to
the numbers (71)% In this section we treat analogous sums for squares
of the numbers W,, and its duals numbers w, and as above include also
alternation according to the numbers (71)%

For an integer f,let fo=s4+4f35+1, f1i=s+ (4f+1)s+ 1land fo = s+

(4f +2)5+ 1. Let Sp(f,9) = Vas 20—, (-1 )% W2, If g = %
Sy (4141, 4k+2 Sy (4142, 4k+1 S+ (4i43, 4k

= [Tfé‘ztzvyﬁj;;’ c= T(V;-i_UAlmE-i_ )’ da = U;§/21(1'7"71)l and q = Wi, Wi,

W’L‘l*l Wklfla then

(4.1) Goa=—Q =—Gc = qqa = 1.

Let B and R be W;, Xi, + Wiy—1 Xgo—1 and Wi, X, + Wi,—1 Xiy—1.
Two additional such sums are the following:
Sy(4i+1, 4k) St(4i+ 3, 4k + 2)
UsUss e UsUsms
The versions of the above formulas for the alternation according to the
numbers (fl)j(jgl) are the following. Let p = W;, Wi, + Wiy—1 Wio—1, t =

(4.2) =N
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Wi2 Wk2 —+ Wi2—1 Wk2_1 and Q = Wil Xkl —+ Wi1—1 Xkl—l- Let Si(f,g) de-
iG=1)

note the sum Vaz Y °9_ (=1)72 WZ,. Then it holds
Sy(4i, 4k + 1) S,(4i + 1, 4k)

43 _ —p,

(4.3) Us Viam+2)s VsUsms P

(4.4) 7S¢(4z,4k+3):S¢(4z+2,4k+1):9’
UsUumy1ys UsUsms

(4.5) Sy(4i+2,4k+3) S (4i+3,4k+2)

Us Viams2ys VeUsms

iG+1) iG-1)
Let 03(f,9) = X0, (~1) "5 w2, and o3 (f,9) = S0, ()T ;.
These sums are also products for all multiples of the index j. Let g, and gy
vs 05 (4i, 4k+1) and us vs 05 (4i+1, 4k)

denote the quotients , respectively. Then

Vam st2s Vs Udm s
(4.6) —Qe = qf = W34y, — Wh
. e = qf = Woypsqs Woys-
vs oy (4142, 4k+3 us vs 0f(4i+3, 4k+2 .
Let ¢4 = v o (it 4k43) o q qn = —= i ) Then it holds
V4 m s+2s Vs Udm s
_ 2 2

(47) qg = —Gh = Wy yps13s — Wapsyass

(48) V2 s 0%(42 + 2, 4k + ].) = UsVims [)\Ugms — T(8i+3)s T(8k+3)s ] ,

(49) V235 0'1%(42 + 2, 4k + 1) = UsU4ms [’U.)il,1 Thy—1 — Wiy Ty ] y

(4.10) (P U$(4i, 4k + 3) = Us Vam s+8s {ximi%s -2 )\} ,
(4.11) V25 0’?(42', 4k +3) = Uz Ug(m+1)5 [’u}gl Tp, — Wey—1Tpy—1 ] .
The following formulas show the analogous results for the alternation

) iG=1) . s w0y (44, 4k+3)
according to (—1)7" = . Let oy(f,9) =vs0{(f,9), o = =55 ——— TP

o (4i+1, 4k + 2) o (4i+2,4k+1) us o (41 + 3, 4k)
qMm = y N = o= —" -

U(m+1)s Y(m—1)s Us Uam s

If s denotes the difference w%s(lﬂ) — wg(Q 041) then

(4.12) —qr = —qym = qN = qo = S,
(4.13) g 07 (4043, 4k 4+ 2) = ugtams [2X — 2740154 5
(4.14) ’Uggo‘f(lli + 3, 4k + 2) = UsU4ms [wi2_1 Thy—1 — Wiy Ik2] ,

(4-15) V2 s Uf(4l +1, 4k) = Us Uqam s [w4€s+s+1 Tar4+s — Wal+s $4€+s—1] )
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(4.16) ’Uggdj(lli + 1, 4k) = usUgms [wgo Toy — Wey—1 Igo_l] .

5. SUMS WITH BINOMIAL COEFFICIENTS

In this section we consider certain finite sums of squares with binomial
coefficients that are not present in [10]. Of course, we selected those that have
pleasing right hand sides.

Recall that £ =k +i. Let t = ¢+ g s. Then

1 X24+2(=1)N, ifg=k
(5~1) Oy Ak-179 Z <J> i+sj { A [Wt%rl +Wt2] , ifg = k.

5]0

Recall that § = p?> — 4 and p = a® + b?> — abp. We have

2 .
) w2 if g=£k;
(5.2) 0, 5k 1u9 Z < >y1+5J { g. ) ifg:_.

*5 werg S x’LJrg Sy

Let mig = w”g5 _we+gs+1- Then we have

g I?Jr —2u, ifg=k;

_ gs ) X

(53) 9 5k 1 UZ ]ZO < > yz-‘ré] { 5m10’ lfg = L.
Let t =0+ (g+1)s and m1; = X(2k+1)§+i —2(—=1)*\. Then

[ W W, ifg =k

(5.4) g@yAk e 1 Z <) z+sj{ M, if g = F.
Let m12 = W(g41)s+i T(g+1)s+s and miz =2y — I(2g+1)s+i' Then
_ mi2, if g = E)
(5:5) g0, 6’“ Tud™ g0, 0k—1 39"t z_; ( )yH_” N { mis, if g=k.

Let mqs = w(2 Then

ot Ds o1~ o)

g
_ mig, 1f9—E
(56) g9 5k 1ug T a1 a—1 Z] ()szrsg{ mis, 1fg—E

_ 2
st and mis = Quf:c(gﬂ)s%ﬂ.

6. A SAMPLE PROOF

Each of our formulas can be discovered and proved with the help of a
computer. Here we describe how to do this for the first formula in (3.12) (for
Y =WwW).

In Maple V, the following code performs search for those sums of consec-
utive terms of the sequences (ij) jez which are products. In order to figure
out some pattern, we consider the values i, n and t in some small ranges
(for example, 1 <i<4,1<n <10 and 1 <t <10). We use the fact that
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the products have considerably smaller number of parts than the high order
polynomials that do not factor.

for i from 1 to 4 do for n from 1 to 10 do for t from 1 to 10 do
if nops(factor(add(W(a,b,p,t*j)~2,j=i..i+n)))<8 then
print([i,n,t]);fi;od;od;od;

Of course, the function W is the Binet form of the numbers W,, from the
introduction.

As a result of this search, we conclude that products show up when the
integers t and n are both odd.

Next we repeat the above search for n = k and ¢ = 5 for a small range of
values k and s and take a closer look into the factors. One factor contains a,
b and p, while all other factors are polynomials only in p and are (factors of
the) polynomials U,,. The trick here is to multiply the sum Zf;l ng with
V5 in order to conclude that these factors of the second kind (that do not
contain a and b) are in fact Oy U(E+1)§'

Finally, the first factor (the one containing a, b and p) does resemble
numbers W2 but not quite. The idea here is to select the index n simply to
eliminate the leading term of the first factor (considered as a polynomial in
p). It is useful here to remember that polynomials (in p) on both sides of
(3.12) have equal degrees. After we subtract this W2 ,.,, what remains is
W2, 5. The first factor is therefore W2, 5, + W2, 5.

Hence, so far we know that the identity

kti

() V5D WE = Ugynys [Worempn + W]
j=i

holds for some very small ranges of values ¢, k£ and s. In order to prove that
it is true for all values of i, k and s, note that W,, = a U,, + bU,,_1 holds for
any integer n. Since

AU2=Vay —2(-1)"  and AU, Upoy = Vapo1 +p(~1)",

the product A W§2j can be written as
(Vosjoz +2(~1))a® + 2(Vaz;1 +p(~1))ab+ (Vas, — 2 (~1))82.

In this way, the evaluation of the left hand side of (x) is reduced to the sums
g = S Vo — PR T O T g
The parts with (—1)7 do not contribute anything because the number of terms
in the sum is even.

The left hand side of (x) is LHS = M a®> +2 N ab+ Pb? while the right
hand side of () is RHS = M*a? +2N*ab+ P*b?, where M = Vzwa, N =
Vswi, P =Vswo, M* =Ug )5 (U2 p5-1 +U2105)s

N =Ug1ys Usses(Usprs—1 + Usqrstr)
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and P* = (k+1)5 (U52+Z§+1 + Us,2+e§)-

If we replace each § in the difference M — M* with fé we get zero. Simi-
larly, we conclude that N = N* and P = P* sothat LHS = RHS. Hence, the
first formula in (3.12) (for Y = W) is true for all integer values of 4, k and s.

7. CONCLUDING COMMENTS

The concluding comments in [10] explain the role of Russell’s papers [11]
and [12] in this area and how the contribution [10] and therefore also the paper
[4] (only for the linear sums) and the present paper (for quadratic sums) want
to explore those cases when these formulas are particularly simple. Of course,
this is possible only for more specialized Horadam numbers like Y,, and y,.

We hope that the paper [4] (for linear sums) and this paper on quadratic
sums together constitute a partial realization of Melham’s prediction “we
expect that there is scope for further research along the lines that we set
forth” on the first page of [10].
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Formule za kvadraticne sume poopcéenih Fibonaccijevih i
Lucasovih brojeva

Zvonko Cerin

SAZETAK. Ovaj ¢lanak poboljSava Melhamove formule u [10,
Odjeljak 4] za neke klase kona¢nih suma poopéenih Fibonaccijevih
i Lucasovih brojeva. Ovdje se promatraju kvadratne sume gdje se
koriste produkti dva takva broja. Dobiveni rezultati pokazuju da
su njegove formule pocetni ¢lanovi nizova formula, da sli¢ni i nesto
jednostavniji identiteti vrijede za pridruzene dualne brojeve i da
se pored alternacije po brojevima (—1) S mogu dobiti sli¢ne

n(n—1)
formule za alternacije po brojevima (—1)— = . Pored toga, pro-

matra se dvanaest kvadratnih suma s binomnim koeficijentima
koje su produkti.
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