
RAD HAZU. MATEMATIČKE ZNANOSTI

Vol. 19 = 523 (2015): 117-127

ASYMPTOTIC BEHAVIOUR OF THE ITERATIVE

PYTHAGOREAN MEANS

Tomislav Burić

Abstract. Asymptotic expansion and behaviour of the iterative com-
binations of the Pythagorean means (arithmetic, geometric and harmonic
mean) is obtained and analyzed. Results are used for asymptotic compar-
ison of means.

1. Introduction

The well-known Pythagorean means are three classical means: arithmetic,
geometric and harmonic mean defined by

(1.1) A(s, t) =
s+ t

2
, G(s, t) =

√
st, H(s, t) =

2
1
s + 1

t

,

where s and t are real positive numbers.
These means have following ordering

(1.2) min(s, t) ≤ H(s, t) ≤ G(s, t) ≤ A(s, t) ≤ max(s, t),

and there are many results and papers concerning their properties, inequalities
and comparison to other classical means.

In recent papers [5–7] authors studied asymptotic expansions of means
and developed new technique of deriving and calculating coefficients in this
expansions. They succesfully used new method to establish various relations
between classical means, see cited papers for details.

The asymptotic expansion of the mean M(s, t) is representation of this
mean in the form

(1.3) M(x+ s, x+ t) = x

∞∑

n=0

cn(s, t)x−n, x → ∞,
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where cn(s, t) are homogeneous polynomials of the degree n in variables s
and t. It is shown that simpler form of these coefficients is obtained under
substitution

(1.4) t = α+ β, s = α− β,

so variables α and β will be used in the rest of the paper.
Obviously, expansion of the arithmetic mean is

(1.5) A(x+ s, x+ t) = x+ α

and it has only these two terms. Asymptotic expansion of the geometric and
harmonic mean is derived in [6] and it reads as

G(x + s, x+ t) ∼ x+ α− β2

2 x
−1 + αβ2

2 x−2 − β2

8 (4α2 + β2)x−3 + . . .(1.6)

H(x+ s, x+ t) ∼ x+ α− β2x−1 + αβ2x−2 − α2β2x−3 + . . .(1.7)

Recall that arithmetic-geometric mean is an example of an interesting
mean obtained by the iterative combination of arithmetic and geometric mean
in the following way. Define a0 = s, g0 = t and

(1.8) ak+1 =
ak + bk

2
, gk+1 =

√
akbk, k ≥ 0.

Then both of this sequences converge to the same limit AG(s, t) which is
called arithmetic-geometric mean.

Same idea can be used to the other combinations of Pythagorean means
as well. For an example, iteration of geometric and harmonic mean

(1.9) gk+1 =
√
gkhk, hk+1 =

2
1
gk

+ 1
hk

,

leads to same limit geometric-harmonic mean and iteration of arithmetic and
harmonic mean

(1.10) ak+1 =
ak + hk

2
, hk+1 =

2
1
ak

+ 1
hk

,

defines arithmetic-harmonic mean. It is not hard to see that this mean is
exactly equal to the geometric mean.

In a recent paper [4], authors studied arithmetic-geometric mean and
derived its asymptotic expansion:

(1.11) AG(x+ t, x+s) ∼ x+α− β2

4 x
−1 + αβ2

4 x−2 − β2

64 (16α2 +5β2)x−3 + . . .

By comparing coefficients in this expansion with expansion of A and G
mean, one can see that AG clearly lies somewhere in the middle, but is a
little bit closer to the geometric mean. This iterative process also showed
interesting convergence and stationary properties of the coefficients in the
asymptotic expansion of AG mean, for details see [4].
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The main aim of this paper is to derive coefficients in asymptotic expan-
sion of the arithmetic-harmonic and harmonic-geometric mean by analyzing
their iterative proccesses in a similar way as it has been done for AG mean.
These coefficients will be used in the third section where we give relations and
inequalities between this means.

We shall need the following fundamental lemma for the transformation of
the asymptotic series. The proof is easy, see e.g. [6].

Lemma 1.1. Let function f(x) have asymptotic expansion (a0 = 1)

f(x) ∼
∞∑

n=0

anx
−n, x → ∞.

Then for all real p it holds

[f(x)]p ∼
∞∑

n=0

cn(p)x−n,

where c0 = 1 and

(1.12) cn =
1
n

n∑

k=1

[k(1 + p) − n]akcn−k.

We shall also need the following standard result:

Lemma 1.2. Let f(x) and g(x) have asymptotic expansions (a0 = b0 = 1):

f(x) ∼
∞∑

n=0

anx
−n, g(x) ∼

∞∑

n=0

bnx
−n.

Then their product f(x)g(x) and quotient f(x)/g(x) have asymptotic expan-
sions

f(x)g(x) ∼
∞∑

n=0

cnx
−n,

f(x)
g(x)

∼
∞∑

n=0

dnx
−n,

where c0 = d0 = 1 and

(1.13) cn =
n∑

k=0

akbn−k, dn = an −
n∑

k=1

bkdn−k.
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2. Asymptotic expansions of iterative Pythagorean means

To derive asymptotic expansion of the combination of two Pythagorean
means, we shall follow its iterative process.

Let us start with arithmetic-harmonic mean. Let sequence (an) be lim-
iting sequence which converges above to the limit AH(s, t) and let An(s, t)
be the value of n-th iteration. Similarly, let Hn(s, t) be defined through the
sequence (hn). An and Hn are also means because they are obtained as the
composition of arithmetic and harmonic mean to the previous members of
these sequences.

Then, let

(2.1) An(s, t) = x

∞∑

k=0

a
(n)
k (s, t)x−k,

and

(2.2) Hn(s, t) = x

∞∑

k=0

h
(n)
k (s, t)x−k,

be asymptotic expansions of the n-th iteration.
We shall show that functions a(n)

k and h
(n)
k converge to the same limit

ck(t, s) when n → ∞, and it holds

(2.3) AH(s, t) = x

∞∑

k=0

ck(s, t)x−k.

Theorem 2.1. Let n be arbitrary natural number. Then we have

(2.4) a
(n)
k = h

(n)
k

for all k ≤ 2n.

In other words, for fixed k, the sequence a(n)
k is stationary sequence which

defines the limiting value ck. Proof of the theorem follows from the next
lemma by mathematical induction.

Lemma 2.2. Suppose that coefficients a(n)
k and h

(n)
k , for arbitary n ≥ 1,

satisfy
a

(n)
k = h

(n)
k , k = 0, 1, . . . ,K.

Then it holds

(2.5) a
(j)
k = h

(j)
k = a

(n)
k , j ≥ n+ 1, k = 0, . . . ,K,

and

(2.6) a
(n+1)
K+1 = h

(n+1)
K+1 , a

(n+1)
K+2 = h

(n+1)
K+2 .

Therefore, in each following step, at least two new coefficients coincide
and remain equal in the future.
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Proof. For the arithmetic series the statement (2.5) is obvious. Let us
examine (hn).

Denote

An,k =
k∑

j=0

a
(n)
j x−j+1, ARn,k =

∞∑

j=k+1

a
(n)
j x−j+1,

and similarly for Hn,k, HRn,k.
Then

Hn+1 =
2

A−1
n +H−1

n

=
2AnHn

An +Hn
=

2(An,k +ARn,k)(Hn,k +HRn,k)
An,k +ARn,k +Hn,k +HRn,k

.

Since An,k = Hn,k, this can be written as

(2.7) Hn+1 = An,k

(
1 +

ARn,k
An,k

)(
1 +

HRn,k
An,k

)

1 +
ARn,k +HRn,k

2An,k

and clearly (2.5) follows.
Now, to prove (2.6), let us find the first two coefficients in the expansion

of the quotient ARn,k/An,k. Using Lemma 1.2 (recall that a0 = g0 = 1), we
have

ARn,k
An,k

=
a

(n)
k+1

xk+1 +
a

(n)
k+2 − a

(n)
1 a

(n)
k+1

xk+2 + . . .

In a same way,

HRn,k
An,k

=
h

(n)
k+1

xk+1 +
h

(n)
k+2 − a

(n)
1 h

(n)
k+1

xk+2 + . . .

Now, from (2.7) it follows

Hn+1 = x

(
1 +

a
(n)
1

x
+ . . .

)(
1 +

a
(n)
k+1

xk+1 +
a

(n)
k+2 − a

(n)
1 a

(n)
k+1

xk+2 + ...

)
·

·
(

1 +
h

(n)
k+1

xk+1 +
h

(n)
k+2 − a

(n)
1 h

(n)
k+1

xk+2 + ...

)(
1 +

u
(n)
k+1

xk+1 +
u

(n)
k+2 − a

(n)
1 u

(n)
k+1

xk+2 + ...

)−1

,

where

u
(n)
k+i =

a
(n)
k+i + h

(n)
k+i

2
,

and therefore
h

(n+1)
k+1 = a

(n)
k+1 + h

(n)
k+1 − u

(n)
k+1 = a

(n+1)
k+1 ,

h
(n+1)
k+2 = a

(n)
1 a

(n)
k+1 + a

(n)
1 h

(n)
k+1 − a

(n)
1 u

(n)
k+1 +

(
a

(n)
k+2 − a

(n)
1 a

(n)
k+1

)
+

+
(
h

(n)
k+2 − a

(n)
1 h

(n)
k+1

)
−
(
u

(n)
k+2 − a

(n)
1 u

(n)
k+1

)
= a

(n+1)
k+2 .
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Now we can calculate coefficients ck of the asymptotic expansion (2.3). In
each iteration, coefficients a(n)

k are easily obtained and for calculating sequence

h(n) =
2a(n−1)h(n−1)

a(n−1) + h(n−1)
,

we use Lemma 1.2 for multiplication and quotient of asymptotic series.
Here are the first few coefficients in terms of variables α and β:

c0 = 1,

c1 = α,

c2 = −β2

2
,

c3 =
αβ2

2
,

c4 = −β2

8
(4α2 + β2),

c5 =
αβ2

8
(4α2 + 3β2),

c6 = −β2

16
(8α4 + 12α2β2 + β4),

c7 =
αβ2

16
(8α4 + 20α2β2 + 5β4).

c8 = − β2

128
(64α6 + 240α4β2 + 120α2β4 + 5β6).

As expected, since arithmetic-harmonic mean is equal to the geometric
mean, we have obtained the same coefficients as in expansion (1.6), but this
way we have shown that iterative process for arithmetic-harmonic means has
same stationary and convergence properties as arithmetic-geometric mean an-
alyzed in paper [4].

We will now show that this properties are also valid for the geometric-
harmonic mean.

As before, let sequence (gn) be limiting sequence which converges above
to the limit GH(s, t) and let Gn(s, t) be the value of n-th iteration. Hn(s, t)
is defined as before.

Then,

(2.8) Gn(s, t) = x

∞∑

k=0

g
(n)
k (s, t)x−k,



ASYMPTOTIC BEHAVIOUR OF THE ITERATIVE PYTHAGOREAN MEANS 123

and

(2.9) Hn(s, t) = x
∞∑

k=0

h
(n)
k (s, t)x−k,

are asymptotic expansions of the n-th iteration.
Functions g(n)

k and h(n)
k converge to the same limit dk(t, s) when n → ∞,

and it holds

(2.10) GH(s, t) = x

∞∑

k=0

dk(s, t)x−k.

Theorem 2.3. Let n be arbitrary natural number. Then we have

(2.11) g
(n)
k = h

(n)
k

for all k ≤ 2n.

Again, for fixed k, the sequence g(n)
k is stationary sequence which defines

the limiting value dk. Proof follows from the next lemma.

Lemma 2.4. Suppose that coefficients g(n)
k and h

(n)
k , for arbitary n ≥ 1

satisfy
g

(n)
k = h

(n)
k , k = 0, 1, . . . ,K.

Then it holds

(2.12) g
(j)
k = h

(j)
k = g

(n)
k , j ≥ n+ 1, k = 0, . . . ,K,

and

(2.13) g
(n+1)
K+1 = h

(n+1)
K+1 , g

(n+1)
K+2 = h

(n+1)
K+2 .

Proof. Let us first prove (2.5).
Denote

Gn,k =
k∑

j=0

g
(n)
j x−j+1, GRn,k =

∞∑

j=k+1

g
(n)
j x−j+1,

and same for Hn,k, HRn,k.
Then

Hn+1 =
2

G−1
n +H−1

n

=
2GnHn

Gn +Hn
=

2(Gn,k +GRn,k)(Hn,k +HRn,k)
Gn,k +GRn,k +Hn,k +HRn,k

.

Since Gn,k = Hn,k, this can be written as

(2.14) Hn+1 = Gn,k

(
1 +

GRn,k
Gn,k

)(
1 +

HRn,k
Gn,k

)

1 +
GRn,k +HRn,k

2Gn,k



124 T. BURIĆ

and clearly (2.12) is valid for the harmonic series.
Similary,

Gn+1 =
√
GnHn =

√
(Gn,k +GRn,k)(Hn,k +HRn,k),

which can be written as

(2.15) Gn+1 = Gn,k

√(
1 +

GRn,k
Gn,k

)(
1 +

HRn,k
Gn,k

)

and (2.12) follows.
To prove (2.13), we again start with the first two coefficients in the ex-

pansion of the quotients

GRn,k
Gn,k

=
g

(n)
k+1

xk+1 +
g

(n)
k+2 − g

(n)
1 g

(n)
k+1

xk+2 + . . . ,

and
HRn,k
Gn,k

=
h

(n)
k+1

xk+1 +
h

(n)
k+2 − g

(n)
1 h

(n)
k+1

xk+2 + . . . .

Now, applying binomial formula to (2.15) it follows

Gn+1 = x

(
1 +

g
(n)
1

x
+ . . .

)(
1 +

(1
2
1

)
g

(n)
k+1

xk+1 +

(1
2
1

)
g

(n)
k+2 − g

(n)
1 g

(n)
k+1

xk+2 + ...

)
·

·
(

1 +

(1
2
1

)
h

(n)
k+1

xk+1 +

(1
2
1

)
h

(n)
k+2 − g

(n)
1 h

(n)
k+1

xk+2 + ...

)
,

and from (2.14) we have

Hn+1 = x

(
1 +

g
(n)
1

x
+ . . .

)(
1 +

g
(n)
k+1

xk+1 +
g

(n)
k+2 − g

(n)
1 g

(n)
k+1

xk+2 + ...

)
·

·
(

1 +
h

(n)
k+1

xk+1 +
h

(n)
k+2 − g

(n)
1 h

(n)
k+1

xk+2 + ...

)(
1 +

v
(n)
k+1

xk+1 +
v

(n)
k+2 − g

(n)
1 v

(n)
k+1

xk+2 + ...

)−1

,

where

v
(n)
k+i =

g
(n)
k+i + h

(n)
k+i

2
.

Therefore,

h
(n+1)
k+1 = g

(n)
k+1 + h

(n)
k+1 − v

(n)
k+1 =

g
(n)
k+1 + h

(n)
k+1

2
= g

(n+1)
k+1 ,

h
(n+1)
k+2 = g

(n)
1 g

(n)
k+1 + g

(n)
1 h

(n)
k+1 − g

(n)
1 v

(n)
k+1 +

(
g(n)k+2 − g

(n)
1 g

(n)
k+1

)
+

+
(
h

(n)
k+2 − g

(n)
1 h

(n)
k+1

)
−
(
v

(n)
k+2 − g

(n)
1 v

(n)
k+1

)
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=
g

(n)
1 g

(n)
k+1

2
+
g

(n)
1 h

(n)
k+1

2
+
g

(n)
k+2 − g

(n)
1 g

(n)
k+1

2
+
h

(n)
k+2 − g

(n)
1 h

(n)
k+1

2

= g
(n+1)
k+2 ,

and the proof is complete.

Finally, we shall derive coefficients dk of the asymptotic expansion (2.10).
In each iteration, for calculating h(n) we use Lemma 1.2 for multiplication
and quotient of asymptotic series, and for g(n) we use Lemma 1.1 with p = 1

2 .
So, the first few coefficients in the expansion of the geometric-harmonic

mean, in terms of variables α and β, are:

d0 = 1,

d1 = α,

d2 = −3β2

4
,

d3 =
3αβ2

4
,

d4 = −β2

64
(48α2 + 7β2),

d5 =
3αβ2

64
(16α2 + 7β2),

d6 = − β2

256
(192α4 + 168α2β2 + 11β4),

d7 =
αβ2

256
(192α4 + 280α2β2 + 55β4).

d8 = − 3β2

16384
(4096α6 + 8960α4β2 + 3520α2β4 + 125β6).

Remark 2.5. Asymptotic expansion of the geometric-harmonic mean can
be also obtained through its relation to the arithmetic-geometric mean. It
holds

(2.16) GH(s, t) =
1

AG(1
s ,

1
t )
.

Therefore, we can apply Lemma 1.1 (p = −1) with asymptotic expan-
sion of AG mean derived in paper [4], but it was also interesting to examine
stationary properties of GH mean through its iterative process.

3. Asymptotic comparison of Pythagorean means

In [5, 7], authors developed techniques for comparison of means through
their asymptotic expansions.
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Definition 3.1. Let M1 and M2 be any two means and

M1(x+ s, x+ t) −M2(x+ s, x+ t) = ck(s, t)x
−k+1 +O(x−k).

If ck(s, t) > 0 for all s and t then we say that mean M1 is asymptotically
greater than mean M2 and write

M1 ≻ M2.

Of course, this is equivalent to

M1 ≺ M2.

Theorem 3.2. If M1 ≥ M2, then M1 ≻ M2.

In other words, asymptotic inequalities can be considered as a necessary
relation between comparable means, see cited papers.

We will now present asymptotic relation between Pythagorean means
and their iterative combinations. It is shown in [5] that for the comparison of
means, it is sufficient to consider the case α = 0. In this case c2n+1 = 0, so in
the next table we will show only even coefficients in the asymptotic expansions
obtained in the previous section.

Table 1. Expansions of the iterative Pythagorean means

M x t2/x t4/x3 t6/x5 t8/x7

A 1 0 0 0 0

AG 1 −1
4

− 5
64

− 11
256

− 469
16384

G = AH 1 −1
2

−1
8

− 1
16

− 5
128

GH 1 −3
4

− 7
64

− 11
256

− 375
16384

H 1 −1 0 0 0

As we can see, coefficients coincide with the known inequality between
Pythagorean means:

(3.1) H ≤ GH ≤ G = AH ≤ AG ≤ A.

Iterative means AG and GH obviously lie in the middle of their starting
means, but they are both closer to the geometric mean. According to coeffi-
cients next to x−3, it is also interesting to see that GH is a little bit closer
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to the geometric mean than AG. Using this method, one can easily compare
GH with other classical means as well, see cited papers for details about this
concept.

Acknowledgements.
This work has been fully supported by Croatian Science Foundation under

the project 5435.

References

[1] P. Bracken, An arithmetic-geometric mean inequality, Expo. Math. 19 (2001), 273–
279.

[2] P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publisher,
Dordrecht, 2003.

[3] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and theirs inequalities, D. Reidel
Publishing Co., Dordrecht, 1988.

[4] T. Burić and N. Elezović, Asymptotic expansion of the arithmetic-geometric mean and
related inequalities, J. Math. Inequal. 9 (2015), 1181–1190.

[5] N. Elezović, Asymptotic inequalities and comparison of classical means, J. Math. In-
equal. 9 (2015), 177-Ű196.

[6] N. Elezović and L. Vukšić, Asymptotic expansions of bivariate classical means and
related inequalities, J. Math. Inequal. 8 (2014), 707–724.

[7] N. Elezović and L. Vukšić, Asymptotic expansions and comparison of bivariate param-
eter means, Math. Inequal. Appl. 17 (2014), 1225–1244.

[8] M. K. Vamanamurthy and M. Vuorinen, Inequalities for means, J. Math. Anal. Appl.
183 (1994), 155–166.

Asimptotsko ponašanje iterativnih pitagorejskih sredina

Tomislav Burić

Sažetak. Dobiveni su i analizirani asimptotski razvoji

i ponašanje iterativnih kombinacija pitagorejskih sredina (arit-

metičke, geometrijske i harmonijske sredine). Rezultati se koriste

za asimptotsku usporedbu sredina.

Tomislav Burić
Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3,
10000 Zagreb, Croatia
E-mail: tomislav.buric@fer.hr

Received: 8.11.2014.



128


