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SEIFFERT MEANS, ASYMPTOTIC EXPANSIONS AND

INEQUALITIES

Lenka Vukšić

Abstract. In this paper we study inequalities of the form

(1 − µ)M1(s, t) + µM3(s, t) ≤ M2(s, t) ≤ (1 − ν)M1(s, t) + νM3(s, t),

which cover some classical bivariate means and Seiffert means. Using
techniques of asymptotic expansions detailed analysis was made and the
method for obtaining optimal parameters µ and ν was described.

1. Introduction

Let 0 < s < t. Seiffert means are defined by (see [4]):

P (s, t) =
t− s

2 arcsin t−s
t+s

,

and

T (s, t) =
t− s

2 arctan t−s
t+s

.

There is a large number of papers studying inequalities between Seiffert
means and convex combinations of other means. Some of the known results
are the following. In [7] authors established that the double inequality

(1.1) µA(s, t) + (1 − µ)H(s, t) < P (s, t) < νA(s, t) + (1 − ν)H(s, t)

holds for all s, t > 0 with s 6= t if and only if µ ≤ 2
π and ν ≥ 5

6 . Authors in [9]
gave the optimal parameters µ = 3

5 , ν = π
4 for the following double inequality:

(1.2) µT (s, t) + (1 − µ)G(s, t) < A(s, t) < νT (s, t) + (1 − ν)G(s, t)

where s, t > 0, s 6= t. Furthermore, in [8] it was proved that the double
inequality

(1.3) µQ(s, t) + (1 − µ)A(s, t) < T (s, t) < νQ(s, t) + (1 − ν)A(s, t)

2010 Mathematics Subject Classification. 26E60, 41A60.
Key words and phrases. Seiffert means, asymptotic expansion, optimal convex

combination.

129



130 L. VUKŠIĆ

holds for all s, t > 0 with s 6= t, if and only if µ ≤ 4−π
π(

√
2−1)

and ν ≥ 2
3 . In [13]

it was proved that the double inequality

(1.4) µC(s, t) + (1 − µ)H(s, t) < P (s, t) < νT (s, t) + (1 − ν)H(s, t)

holds for all s, t > 0 with s 6= t, if and only if µ ≤ 3
2π and ν ≥ 5

8 . In [17]
authors proved that the double inequality

(1.5) µN(s, t) + (1 − µ)G(s, t) < P (s, t) < νN(s, t) + (1 − ν)G(s, t)

holds for all s, t > 0 with s 6= t, if and only if µ ≤ 2
9 and ν ≥ 1

π .
The subject of this paper is to give a systematic study of inequalities of

the form

(1.6) (1 − µ)M1 + µM3 ≤ M2 ≤ (1 − ν)M1 + νM3

where Mi are chosen from the class of elementary means given below.
Here is the list of means which along with the Seiffert means take part in

the inequalities of the type (1.6):

H(s, t) =
2st
s+ t

, G(s, t) =
√
st, L(s, t) =

t− s

log t− log s
,

A(s, t) =
s+ t

2
, C(s, t) =

2
3

· s
2 + st+ t2

s+ t
, Q(s, t) =

√
s2 + t2

2
,

N(s, t) =
s2 + t2

s+ t
.

These means are harmonic mean (H), geometric mean (G), logarithmic mean
(L), arithmetic mean (A), centroidal mean (C), root mean square (Q), and
contraharmonic mean (N). Since it holds

(1.7) H ≤ G ≤ L ≤ P ≤ A ≤ T ≤ C ≤ Q ≤ N

we assume

(1.8) M1 ≤ M2 ≤ M3.

Hence, (1.6) is equivalent to

(1.9) µ ≤ M2 −M1

M3 −M1
≤ ν

and we are dealing with the problem of finding minimum and maximum of
the function in the middle.

It is explained in [10] how asymptotic expansions can be used in finding
optimal constants a, b and c such that inequality

aM1 + bM2 + cM3 ≥ 0

would be possible. For some general information concerning asymptotic series
see [12]. Applying the same method here we find the smallest value of µ
and the largest value of ν such that (1.6) is possible. This optimality will
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be ensured by conditions imposed on appropriate coefficients in asymptotic
power series expansion of considered combinations of means.

2. Asymptotic expansions

Asymptotic expansion of a mean M has the following form

M(x+ s, x+ t) ∼ x+ c1(s, t) +
c2(s, t)
x

+
c3(s, t)
x2 + . . . as x → ∞,

where cn(t, s) is a polynomial of order n. The coefficients cn have a simpler
form when they are presented in terms of variables α and β where

α =
t+ s

2
, β =

t− s

2
.

Asymptotic expansions of harmonic, geometric, logarithmic, arithmetic
centroidal, quadratic mean and contraharmonic mean among other classical
means are given in [11]:
(2.1)
H(x+ α− β, x+ α+ β) ∼ x+ α− β2x−1 + αβ2x−2 − α2β2x−3 + . . .

G(x+ α− β, x+ α+ β) ∼ x+ α− 1
2
β2x−1 +

1
2
αβ2x−2

− 1
8
β2(4α2 + β2)x−3 + . . .

L(x+ α− β, x+ α+ β) ∼ x+ α− 1
3
β2x−1 +

1
3
αβ2x−2

− 1
45
β2(15α2 + 4β2)x−3 + . . .

A(x+ α− β, x+ α+ β) ∼ x+ α

C(x+ α− β, x+ α+ β) ∼ x+ α+
1
3
β2x−1 − 1

3
αβ2x−2 +

1
3
α2β2x−3 + . . .

Q(x+ α− β, x+ α+ β) ∼ x+ α+
1
2
β2x−1 − 1

2
αβ2x−2

+
1
8
β2(4α2 − β2)x−3 + . . .

N(x+ α− β, x+ α+ β) ∼ x+ α+ β2x−1 − αβ2x−2 + α2β2x−3 + . . .

It remains to find asymptotic expansions of Seiffert means. Computation
of coefficients in asymptotic expansion of these means is based on manipu-
lation with series expansions of functions arcsin and arctan. The following
lemma, known in the context of power series, will be used here. We give its
version for asymptotic series (see [6]).

Lemma 2.1. Let g be a function with asymptotic expansion (as x → ∞):

g(x) ∼
∞∑

n=0

cnx
−n, (c0 6= 0).
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Then for all real r it holds

[g(x)]r ∼
∞∑

n=0

Pnx
−n

where

P0 = cr0,

Pn =
1
nc0

n∑

k=1

[k(1 + r) − n]ckPn−k, n ≥ 1.

In particular, for the choice r = −1, coefficients Pn of the reciprocal value
of an asymptotic series are given by the recursive relation:

P0 =
1
c0
,

Pn = − 1
c0

n∑

k=1

ckPn−k, n ≥ 1.

Let

f(x) =
∞∑

n=1

anx
n

be Maclaurin expansion for any of the functions arcsin or arctan. Then for
any of Seiffert means M :

1
M(x+ s, x+ t)

=
1
β

∞∑

n=1

anβ
n(x + α)−n

=
∞∑

n=1

anβ
n−1

∞∑

k=0

(−n
k

)
x−n−kαk

=
∞∑

n=1

[
n∑

k=1

akβ
k−1
( −k
n− k

)
αn−k

]
x−n

=
∞∑

n=1

[
n∑

k=1

(−1)n−kakβ
k−1
(
n− 1
k − 1

)
αn−k

]
x−n

= x−1
∞∑

n=0

(−1)n




⌊n/2⌋∑

k=0

a2k+1β
2k
(
n

2k

)
αn−2k


x−n

= x−1
∞∑

n=0

rnx
−n.

Now we have

a2k+1 =

(
k − 1

2
k

)
1

2k + 1
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for the first Seiffert mean, and

a2k+1 = (−1)k
1

2k + 1

for the second one. In order to find asymptotic expansion of Seiffert means, it
is sufficient to apply Lemma 2.1. Thus we have proved the following theorem.

Theorem 2.2. Seiffert means have the asymptotic expansion (M stands
for either P or T ):

M(x+ s, x+ t) ∼ x
∞∑

n=0

cnx
−n, x → ∞,

where coefficients ck are given by recursive relation

c0 = 1,

cn =
n∑

k=1

(−1)k+1




⌊ k
2 ⌋∑

j=0

a2j+1

(
k

2j

)
β2jαk−2j


 cn−k, n ≥ 1.

In the case of the first Seiffert mean a2j+1 =
(j− 1

2
j

)
1

2j+1 , and in the case of

the second Seiffert mean a2j+1 = (−1)j 1
2j+1 .

Here are the first few coefficients for both of these means.
The first Seiffert mean P :

c0 = 1, c4 = −β2(60α2 + 17β2)
360

,

c1 = α, c5 =
αβ2(20α2 + 17β2)

120
,

c2 = −β2

6
, c6 = −β2(2520α4 + 4284α2β2 + 367β4)

15120
,

c3 =
αβ2

6
,

...

The second Seiffert mean T :

c0 = 1, c4 =
β2(15α2 − 4β2)

45
,

c1 = α, c5 = −αβ2(5α2 − 4β2)
15

,

c2 =
β2

3
, c6 =

β2(315α4 − 504α2β2 + 44β4)
945

,

c3 = −αβ2

3
,

...
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3. Comparison of means. Asymptotic inequalities

In this section we present a method for obtaining the best parameters
µ and ν such that (1.6) is possible for all combinations of means mentioned
in the introduction that include one or both Seiffert means. To this end we
introduce the notion of asymptotic inequality.

Definition 3.1. Let F (s, t) be any homogenous bivariate function such
that

F (x+ s, x+ t) = ck(t, s)x−k+1 + O(x−k).

If ck(s, t) > 0 for all s and t, then we say that F is asymptotically greater
than zero, and write

F ≻ 0.

Theorem 3.2. If F ≥ 0, then F ≻ 0.

Proof. For x large enough, F (x+ s, x+ t) has the same sign as the first
term in its asymptotic expansion.

Therefore, one may consider asymptotic inequalities as a necessary rela-
tion between comparable means. Furthermore, for the asymptotic inequalities
it is sufficient to observe the case α = 0 as explained in [10].

In this paper we will compare convex combination of two means with the
third mean. Let

F (s, t;µ) = (1 − µ)M1(s, t) + µM3(s, t) −M2(s, t).

Then function F has the following asymptotic expansion:

F (x+ s, x+ t;µ) ∼ F (0)(µ)x + F (1)(µ) + F (2)(µ)x−1 + F (3)(µ)x−2 + · · ·
where F (j) is expressed through j-th coefficients of means Mi, that is

F (j)(µ) = (1 − µ)M (j)
1 + µM

(j)
3 −M

(j)
2 .

Asymptotic expansions of all of the means under consideration start with
x+α. Hence, first two coefficients in expansion of the function F equal zero.
Suppose that also F (2)(µ) = 0 and that the following inequality holds

(3.1) (1 − µ)M1 + µM3 −M2 ≥ 0.

Thus the linear combination on the left is asymptotically greater than 0. As
a consequence of theorem (3.2) and sequence of inequalities (1.8) we obtain
the monotonicity of

(1 − µ)M (2)
1 + µM

(2)
3 −M

(2)
2

in variable µ. This can also be seen from asymptotic expansions (2.1). Hence,
in the case where M (2)

1 and M
(2)
3 are different, taking smaller µ will result

by decreasing F (2)(µ). Then the linear combination will be asymptotically
smaller than zero and thus inequality (3.1) cannot be true for some point
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(s, t). If M (2)
1 equals M (2)

3 then obviously M
(2)
2 is the same as those two so

we proceed similarly with the next coefficients. For example, that situation
can happen if we involve Heronian mean in combination with first Seiffert and
identric mean. Analogous conclusions are drawn if in the (3.1) stands ≤ 0.

Values of µ such that F (2)(µ) = 0 are given in the table below and the
corresponding first nonzero term in asymptotic expansion of F (x−β, x+β;µ)
is calculated. Combinations of means for which the numerical calculation
showed that proper inequality couldn’t hold are excluded from the table.

Table 1

H G L P A C Q N ×β4/x3

2/5 −1 3/5 29/300
1/5 −1 4/5 23/450
1/6 −1 5/6 17/360
3/8 −1 5/8 17/360
7/12 −1 5/12 17/360

1/2 −1 1/2 1/360
1/3 −1 2/3 1/180

−3/5 1 −2/5 1/36
−2/3 1 −1/3 7/90
−7/9 1 −2/9 1/20

−3/4 1 −1/4 7/360
−4/5 1 −1/5 11/225
−7/8 1 −1/8 11/225

−2/3 1 −1/3 17/540
−3/4 1 −1/4 1/15
−6/7 1 −1/7 17/420
−1/4 1 −3/4 19/180
−4/7 1 −3/7 17/630
3/7 −1 4/7 11/105

This table should be interpreted as follows:
2
5H + 3

5P ≻ G

1
5H + 4

5P ≻ L

1
6H + 5

6A ≻ P

3
8H + 5

8C ≻ P

...

Other parameter can be obtained from the boundary condition in the
most of the cases. Because of homogeneity of means it suffices to observe
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relations on some curve that intersects all lines passing through the origin.
We chose the line segment {(s, 1−s) : s ∈ [0, 1]}. Moreover, in our case means
are symmetric and the problem reduces on finding infimum and supremum
of the function in the middle of (1.9) in variables (s, 1 − s) for s ∈ [0, 1

2 ].
For the most of the combinations of means mentioned in the introduction,
this function appears to be monotonic and takes the minimum and maximum
values at the edges. Therefore, in order to reach the optimality we require

(1 − ν)M1(0, 1) + νM3(0, 1) = M2(0, 1)

which makes sense if the value of M1 differs from value of M3 in (0, 1). Then
we calculate corresponding value of F (2)(ν) to determine the direction of the
inequality. Such inequalities still have to be proved. Notice that µ and ν
obtained by procedure described above, coincide with those from (1.1), (1.2),
(1.3), (1.4) and (1.5). Among the other combinations of means there is a large
number of those which can hold for all s, t ≥ 0. Some of them are proved in
the following subsections and some are stated in the form of conjectures.

3.1. Comparison of the first Seiffert mean with other means. Let us illustrate
more precisely previously explained method for obtaining the best parame-
ters by taking the example of the first Seiffert, arithmetic and contraharmonic
mean. We want to find the largest µ and the smallest ν such that the inequal-
ity

(3.2) (1 − µ)P (s, t) + µN(s, t) ≤ A(s, t) ≤ (1 − ν)P (s, t) + νN(s, t)

is possible. We read from the Table 1:
6
7P (x− β, x+ β) + 1

7N(x− β, x+ β) −A(x − β, x+ β) ∼ − 17
420β

4x−3 + . . .

and conclude that µ = 1
7 . On the other side, we have

A(0, 1) − P (0, 1)
N(0, 1) − P (0, 1)

=
π − 2
2π − 2

,

and
π

2π−2P (x−β, x+β)+ π−2
2π−2N(x−β, x+β)−A(x−β, x+β) ∼ 5π−12

12(π−1)β
2x−1+. . .

Hence, ν = π−2
2π−2 . The double inequality (3.2) really holds for such µ and ν

which will be proved in the next theorem.

Theorem 3.3. The following double inequalities hold for all s, t > 0:
6
7P (s, t) + 1

7N(s, t) ≤ A(s, t) ≤ π
2π−2P (s, t) + π−2

2π−2N(s, t)(3.3)
2
3P (s, t) + 1

3C(s, t) ≤ A(s, t) ≤ π
4π−6P (s, t) + 3π−6

4π−6C(s, t)(3.4)
4
7P (s, t) + 3

7N(s, t) ≤ C(s, t) ≤ π
3π−3P (s, t) + 2π−3

3π−3N(s, t)(3.5)

and the choice of parameters is the best possible.
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Proof. First, we prove (3.3) which is equivalent to

(3.6)
1
7

≤ A(s, t) − P (s, t)
N(s, t) − P (s, t)

≤ π − 2
2π − 2

for all s, t ≥ 0. Since these means are symmetric and homogeneous, it is
sufficient to show (3.6) for all t ≥ 1, s = 1. Let t = 1+sinϕ

1−sinϕ , ϕ ∈
[
0, π2

〉
. Then

(3.6) becomes
1
7

≤ M(ϕ) ≤ π − 2
2π − 2

where

M(ϕ) =
ϕ− sinϕ

ϕ+ sinϕ(ϕ sinϕ− 1)
.

As it was proved in [16], function

h(ϕ) =
1

ϕ sinϕ
− 1

sin2 ϕ
+ 1

is strictly decreasing on [0, π]. In particular, h(ϕ) − 1 is strictly decreasing on[
0, π2

〉
and negative so

M(ϕ) =
1

1 + 1
1−h(ϕ)

is strictly increasing. Values at the edges

lim
ϕ→0

M(ϕ) =
1
7
, M

(π
2

)
=

π − 2
2π − 2

complete the proof of (3.3). Analogously

MPAC(ϕ) =
A(1, t) − P (1, t)
C(1, t) − P (1, t)

=
1

1 + 1
3

1
1−h(ϕ)

is strictly increasing and

lim
ϕ→0

MPAC(ϕ) =
1
3
, MPAC

(π
2

)
=

3π − 6
4π − 6

.

Finally,

MPCN (ϕ) =
C(1, t) − P (1, t)
N(1, t) − P (1, t)

=
1
3

+
2
3

1

1 + 1
1−h(ϕ)

is strictly increasing and

lim
ϕ→0

MPCN(ϕ) =
3
7
, MPCN

(π
2

)
=

2π − 3
3π − 3

.

Other than these inequalities there are unproved ones of this type. We
mention some interesting examples verified through CAS. For the sake of
simplicity, variables s, t are omitted.
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Conjecture 3.4. The following double inequalities hold true with the
best possible parameters:

π−2
π G+ 2

πA ≤ P ≤ 1
3G+ 2

3A(3.7)

2
3G+ 1

3Q ≤ P ≤ π−
√

2
π G+

√
2
π Q(3.8)

4
5L+ 1

5Q ≤ P ≤ π−
√

2
π L+

√
2
π Q(3.9)

7
8L+ 1

8N ≤ P ≤ π−1
π L+ 1

πN(3.10)

3
4P + 1

4Q ≤ A ≤ (
√

2−1)π√
2π−2

P + π−2√
2π−2

Q(3.11)

3.2. Comparison of the second Seiffert mean with other means. We proceed
equally with the second Seiffert mean. Here are given optimal parameters for
the asymptotic side of the double inequality.

Table 2

H G L A T C Q N ×β4/x3

5/8 −1 3/8 11/120
1/2 −1 1/2 2/45

−1/4 1 −3/4 1/15
0 −1 1 4/45

−1/9 1 −8/9 1/45
1/3 −1 2/3 4/45

−2/5 1 −3/5 31/300
0 −1 1 4/45

−1/6 1 −5/6 13/360
−1/2 1 −1/2 4/45

0 −1 1 4/45
−1/5 1 −4/5 13/450

0 −1 1 4/45
1/3 −1 2/3 1/180
2/3 −1 1/3 4/45

−1 1 0 4/45
−1 1 0 4/45
3/4 −1 1/4 7/120

Consider the arithmetic, second Seiffert and contraharmonic mean. By
equating (1 − µ)A(2) + µN (2) with T (2) we obtain µ = 1

3 (as it is written in
Table 2). In that case we have

2
3A(x − β, x+ β) + 1

3N(x− β, x+ β) − T (x− β, x+ β) ∼ 4
45β

4x−3 + · · ·
Hence, by the definition

2
3A+ 1

3N ≻ T.
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On the other side, from the boundary condition

(1 − ν)A(0, 1) + νN(0, 1) = T (0, 1)

we get ν = 4−π
π and

2π−4
π A(x−β, x+β)+ 4−π

π N(x−β, x+β)−T (x−β, x+β) ∼ − 4(π−3)
3π β4x−1+· · ·

Therefore,
2π−4
π A+ 4−π

π N ≺ T.

Inequality

(3.12) 2π−4
π A(s, t) + 4−π

π N(s, t) ≤ T (s, t) ≤ 2
3A(s, t) + 1

3N(s, t)

was proved in [15]. Furthermore, we can prove some double inequalities that
cover centroidal mean C.

Theorem 3.5. The following double inequalities hold for all s, t > 0
1
4H(s, t) + 3

4T (s, t) ≤ A(s, t) ≤ 4−π
4 H(s, t) + π

4T (s, t)(3.13)
π−3
π H(s, t) + 3

πC(s, t) ≤ T (s, t) ≤ C(s, t)(3.14)
π−2
π H(s, t) + 2

πN(s, t) ≤ T (s, t) ≤ 1
3H(s, t) + 2

3N(s, t)(3.15)
4π−12
π A(s, t) + 12−3π

π C(s, t) ≤ T (s, t) ≤ C(s, t)(3.16)

and the chosen parameters are the best possible.

Proof. For the first double inequality consider the function

MHAT (t) =
A(1, t) −H(1, t)
T (1, t) −H(1, t)

, t ≥ 1.

Because of the homogeneity and symmetry of means and since

lim
t→1

MHAT (t) = 3
4 , lim

t→∞
MHAT (t) = π

4 ,

it suffices to show MHAT is increasing. The discussion from the beginning of
this section will provide the optimality of given parameters.

Substituting t−1
t+1 with tanϕ, we obtain

MHAT (t) =
ϕ

ϕ+ cotϕ− ϕ cot2 ϕ
=

1
M(ϕ) + 1

, ϕ ∈
[
0, π4

〉

where

(3.17) M(ϕ) = 1
ϕ cotϕ− cot2 ϕ.

By the monotonicity of the function M(ϕ) proved in [18], inequality (3.13)
follows.

Other double inequalities follow similarly since

MHTC(ϕ) =
T (1, t) −H(1, t)
C(1, t) −H(1, t)

=
3
4

(1 +M(ϕ)),
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MHTN (ϕ) =
T (1, t) −H(1, t)
N(1, t) −H(1, t)

=
1
2

(1 +M(ϕ)),

MATC(ϕ) =
T (1, t) −A(1, t)
C(1, t) −A(1, t)

= 3M(ϕ).

As in the case of the first Seiffert mean, among other combinations of
means we find inequalities that could be proved. Some of them are given in
the following conjecture and the corresponding parameters are optimal.

Conjecture 3.6. The following double inequalities hold true with the
best possible parameters:

1
4H + 3

4T ≤ A ≤ 4−π
4 H + π

4T(3.18)

1
9H + 8

9Q ≤ T ≤ π−2
√

2
π H + 2

√
2

π Q(3.19)
π−2
π H + 2

πN ≤ T ≤ 1
3H + 2

3N(3.20)

1
6G+ 5

6Q ≤ T ≤ π−2
√

2
π G+ 2

√
2

π Q(3.21)
1
2L+ 1

2T ≤ A ≤ 4−π
4 L+ π

4T(3.22)

1
5L+ 4

5Q ≤ T ≤ π−2
√

2
π L+ 2

√
2

π N(3.23)
2π−4
π A+ 4−π

π N ≤ T ≤ 1
2A+ 1

3N(3.24)

(2−
√

2)π
2π−4 T +

√
2π−4

2π−4 N ≤ Q ≤ 3
4T + 1

4N(3.25)

3.3. Comparison of the first and second Seiffert mean with other means. We
find the best parameters for the combinations of the first and second Seiffert
mean with other means. The following table was obtained analogously to
previous cases.

Table 3

G L P A T C Q ×β4/x3

−3/5 1 −2/5 19/300
−3/4 1 −1/4 1/24

−2/3 1 −1/3 11/180
0 −1 1 4/45

−1/4 1 −3/4 1/60

Finally, we claim that the following inequalities are true.

Conjecture 3.7. The following double inequalities hold true with the
best possible parameters:

3
5G+ 2

5T ≤ P ≤ 1
2G+ 1

2T(3.26)



SEIFFERT MEANS, ASYMPTOTIC EXPANSIONS AND INEQUALITIES 141

3
4L+ 1

4T ≤ P ≤ 1
2L+ 1

2T(3.27)
2
3P + 1

3T ≤ A ≤ 4−π
2 P + π−2

2 T(3.28)

1
4P + 3

4Q ≤ T ≤ π−2
√

2
π−

√
2
P +

√
2

π−
√

2
Q(3.29)

All of these conjectures are verified using CAS. Applying methods shown
in this paper it is possible to draw the similar conclusions for the other com-
binations of means.
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Asimptotski razvoji i nejednakosti za Seiffertove sredine

Lenka Vukšić

Sažetak. U ovom radu proučavaju se nejednakosti medu

klasičnim sredinama oblika (1 − µ)M1(s, t) + µM3(s, t) ≤

M2(s, t) ≤ (1 − ν)M1(s, t) + νM3(s, t), koje obuhvaćaju posebno

i Seiffertove sredine. Primjenom tehnika asimptotskih razvoja

napravljena je detaljna analiza te je opisana metoda odredivanja

optimalnih parmetara µ i ν.
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