
RAD HAZU. MATEMATIČKE ZNANOSTI

Vol. 19 = 523 (2015): 143-149

ELEMENTARY EXAMPLES OF ESSENTIAL PHANTOM

MAPPINGS

Sibe Mardešić

Abstract. It is known that essential phantom mappings (of the sec-
ond kind) between connected CW-complexes do exist. However, it appears
that in the literature there are few explicit examples of such mappings. One
usually finds descriptions of the domain and the codomain and an existence
proof that the set of homotopy classes of mappings from the domain to the
codomain is infinite. The purpose of the present paper is to describe some
elementary examples of essential phantom mappings. The codomain is the
n-sphere Sn, n ≥ 2, and the domain is the telescope T n, associated with
the sequence of copies of the canonical mapping f : Sn−1 → Sn−1 of odd
degree p > 1. There are no essential phantom mappings whose codomain
is the 1-sphere S1.

1. Introduction

1.1. A mapping h : Z → W between connected CW-complexes with
basepoints ∗ is said to be a phantom mapping (of the second kind, see [9])
provided the restriction h|C to any compact subset (equivalently, to any finite
subcomplex) C ⊆ Z is homotopic to a constant mapping. Since connected
CW-complexes are pathwise connected, there is no loss of generality in requir-
ing that h|C ≃ ∗, for all C. Clearly, if a mapping h is homotopic to ∗, it is
a phantom mapping. Therefore, of primary interest are phantom mappings,
which are not homotopic to ∗, i.e., are essential mappings. It is known that
essential phantom mappings do exist [9].

It appears that in the literature there are few explicit examples of essential
phantom mappings. One usually finds explicit descriptions of the domain and
the codomain and an existence proof that the set of homotopy classes of
mappings from the domain to the codomain is infinite.

1.2. Professor Jaka Smrekar of the University of Ljubljana kindly com-
municated to the author the following proof (here slightly modified) of the
existence of essential phantom mappings h : T n → Sn, n ≥ 2. Here Sn is
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the n-sphere and T n is the telescope, associated with the canonical mapping
f : Sn−1 → Sn−1 of prime degree p > 1. A detailed description of T n is given
in Section 2. It is easy to show that every mapping h : T n → Sn is a phan-
tom mapping (see Lemma 1 in Section 4). Therefore, in order to construct
essential phantom mappings h : T n → Sn, it suffices to construct essential
mappings h : T n → Sn.

By a generalization of the Hopf classification theorem, proved by C. H.
Dowker (see [2], Theorem 7.5), there is a bijection between the set [Pn, Sn]
of homotopy classes of mappings from an n-dimensional polyhedron Pn to
Sn and the n-th integral cohomology group Hn(Pn;Z) of that polyhedron.
Since dim T n = n, we see that there is a bijection between the sets [T n, Sn]
and Hn(T n;Z). Therefore, it suffices to show that Hn(T n;Z) 6= 0. Actually,
the latter group is uncountable. Indeed, it is known that Hn(T n;Z) ≈ Ẑp/Z,
where Ẑp denotes the group of p-adic integers and Z is naturally embedded
in Ẑp ([4], Example 3F.9). It is also known that the group Ẑp is uncountable
([4], Example 3F.6). Since Z is countable, Ẑp/Z is also uncountable.

1.3. The following explicit example of an essential phantom mapping
h : Z → Sn, n ≥ 3, is described in [5] (pp. 83-84) and [9] (pp. 1211-
1212). Let A and B be nonempty complementary sets of primes and let
φA : Sn−1 → Sn−1

A and φB : Sn−1 → Sn−1
B be the respective localizations

of the (n − 1)-sphere Sn−1. Let λ : Sn−1 → Sn−1
A ∨ Sn−1

B be the compo-
sition of two mappings. The first one Sn−1 → Sn−1 ∨ Sn−1 is the quo-
tient mapping, obtained by collapsing to a point the equator of Sn−1. The
second one is φA ∨ φB : Sn−1 ∨ Sn−1 → Sn−1

A ∨ Sn−1
B . Let Z be the CW-

complex obtained by attaching the n-cell Dn to Sn−1
A ∨Sn−1

B via the mapping
λ : ∂Dn → Sn−1

A ∨ Sn−1
B . Then the quotient mapping h : Z → Sn, obtained

from Z by collapsing Sn−1
A ∨Sn−1

B to a point, is an essential phantom mapping
h : Z → Sn.

The present paper describes explicitly elementary examples of some essen-
tial phantom mappings h : T n → Sn, n ≥ 2. There are no essential phantom
mappings, whose codomain is S1 [7].

2. The telescope T n

2.1. To fix notations we recall the definition of the telescope T n. First
consider the 1-sphere S1 = {ζ ∈ C : |ζ| = 1} with the basepoint ∗ = 1.
The canonical mapping f : S1 → S1 of degree p > 1 is defined by f(ζ) = ζp,
ζ ∈ S1. Note that f(∗) = ∗. In order to define the canonical mapping
f : Sn−1 → Sn−1 of degree p > 1, for n > 2, one views the (n − 1)-sphere
Sn−1 as the (unreduced) (n − 2)-fold suspension Σn−2(S1) with basepoint
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∗ ∈ S1 ⊆ Sn−1. Then f : Sn−1 → Sn−1 is the (n − 2)-fold suspension of
f : S1 → S1. Note that also in this case f(∗) = ∗.

The mapping cylinder M associated with f : Sn−1 → Sn−1 is obtained
from Sn−1 × [0, 1] by identifying the points (ζ1, 1) and (ζ2, 1), ζ ∈ Sn−1,
whenever f(ζ1) = f(ζ2). The corresponding quotient mapping will be denoted
by φ : Sn−1 × [0, 1] → M . The natural CW-structure of M consists of two
0-cells, v− = φ(∗, 0) and v+ = φ(∗, 1), called the initial and the terminal
basepoints of M , of the arc A = φ(∗× [0, 1]) as the only 1-cell, called the spine
of M , of two (n−1)-spheres B− = φ(Sn−1 ×0) and B+ = φ(Sn−1 ×1), called
the initial and the terminal bases ofM and of the n-cell M = φ(S(n−1)×[0, 1]).
Note that M is a connected 2-dimensional polyhedron.

2.2. The telescope T n, associated with the sequence Sn−1 f−→ Sn−1 f−→
Sn−1 → . . . is obtained from the direct sum M1 ⊔ M2 ⊔ . . . of the sequence
M1,M2, . . . of copies of the mapping cylinder M of f : Sn−1 → Sn−1, by
identifying the terminal base of Mi with the initial base of Mi+1, i ∈ N. The
(n− 1)-spheres obtained in this way will be denoted by Bi, i = 0, 1, . . .. The
mapping cylinders Mi and their spines Ai are naturally embedded in T n. The
two endpoints of Ai are denoted by vi−1 and vi. Note that T n = M1 ∪M2 ∪. . .
is a connected 2-dimensional polyhedron. It has a natural CW-structure,
which consists of the points vi as 0-cells, of the arcs Ai as 1-cells, of the
(n − 1)-spheres Bi as the (n − 1)-cells and of mapping cylinders Mi as the
n-cells.

3. The mapping h : T n → Sn

3.1. If in the cylinder Sn−1 × [0, 1] we collapse Sn−1 × 0 to a point v−

and we collapse Sn−1 ×1 to a point v+, we obtain the (unreduced) suspension
ΣSn−1 of Sn−1 with vertices v−, v+ and we obtain the corresponding quotient
mapping ψ : Sn−1 × [0, 1] → ΣSn−1. Note that, whenever y ∈ M belongs to
the terminal base B+ of M , then φ−1(y) ⊆ Sn−1 × 1 and thus, ψ(φ−1(y)) =
v+. If y ∈ M does not belong to B+, then φ−1(y) is a single point of Sn−1 ×
[0, 1) and so is ψ(φ−1(y)). Therefore, there is a unique mapping χ : M →
ΣSn−1 = Sn such that χφ = ψ. Clearly, χ is the quotient mapping, which
collapses the initial base of M to v− and collapses the terminal base of M to
v+.

We now repeat the described procedure for every mapping cylinder Mi,
i ∈ N, of the telescope T n, i.e., we collapse to a point vi each (n − 1)-sphere
Bi (including B0) and we consider the corresponding quotient mappings χi.
We obtain a CW-complex T n∗, called the pinched telescope. We also obtain
a quotient mapping χ : T n → T n∗ such that χ|Mi = χi. Note that χ maps
the initial and the terminal bases Bi−1 and Bi of Mi to the vertices vi−1

and vi of the n-sphere Sni = χi(Mi), respectively. The CW-structure of T ∗n
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consists of the points v0, v1, . . . as 0-cells, of the arcs A1, A2, . . . as 1-cells and
of the n-spheres Sni as n-cells, i ∈ N. Notice that T 2∗ looks like an infinite
string-of-beads.

3.2. Our next goal is to define a mapping χ′ of T n∗ to the wedge of a
sequence of pointed n-spheres, S = Sn1 ∨ Sn2 ∨ . . .. In the proof we need the
following fact. Let v− and v+ be the vertices of the (unreduced) suspension
ΣSn−1, let ∗ ∈ Sn−1 be the basepoint of Sn−1 and let A be the arc Σ(∗).
Then the quotient space (ΣSn−1)/A is an n-sphere Sn. If χ′ : ΣSn−1 → Sn is
the corresponding quotient mapping and we denote the point A of (ΣSn−1)/A
by ∗, then χ′(∗) = ∗.

The assertion is a very special case of well-known facts concerning decom-
positions of manifolds. If X is a cellular subset of a closed n-manifold N , i.e.,
X is the intersection of a sequence of n-disks Di ⊆ N , where Di+1 ⊆ IntDi,
i ∈ N, then the decomposition GX of N , whose only nondegenerate element
is X , is a shrinkable upper semicontinuous decomposition ([1], 1, Proposition
4 and 6, Proposition 2). Moreover, if G is a shrinkable upper semicontinuous
decomposition of a compact metric space N , then the corresponding quotient
mapping π : N → N/G is a near-homeomorphism, i.e., it can be approximated
by homeomorphisms ([1], 5, Theorem 2) and thus, N/G is homeomorphic to
N .

In our case, A is a cellular subset of the n-sphere ΣSn−1 and thus,
ΣSn−1/A is also an n-sphere. It is now clear that, by collapsing the union
of arcs A = A1 ∪ A2 ∪ . . . ⊆ T n∗ to a point ∗, one obtains the wedge
S = Sn1 ∨Sn2 ∨ . . . and a quotient mapping χ′ : T n∗ → S, χ′(∗) = ∗. Note that
the natural CW-structure of S consists of a single 0-cell ∗, and of a sequence
of n-cells Sn1 , S

n
2 , . . ..

The next mapping considered is the folding map χ′′ : S → Sn. It maps
each summand Sni of S to Sn by the identity mapping. Note that χ′′(∗) = ∗.
Finally, we define the desired mapping h : T n → Sn, by putting h = χ′′χ′χ.
Note that h(∗) = ∗.

Theorem 1. If p > 1 is an odd integer, the mapping h : T n → Sn, n ≥ 2,
is an essential phantom mapping.

4. Proof of Theorem 1

4.1. We first prove the following lemma.

Lemma 1. Every mapping k : T n → Sn from the telescope T n to the
n-sphere Sn, n ≥ 2, is a phantom mapping.

Proof. It is well known that there is a strong deformation retraction r of
M to its terminal base B+. Denote by ri : Mi → Bi, i ∈ N, the mappings
which correspond to r. For i ≤ n, put Tin = Mi ∪ . . . ∪ Mn and note that
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Tin = Mi∪Ti+1n, i < n. Also consider the deformation retractions rin : Tin →
Ti+1n, where rin|Mi = ri and rin|Ti+1n is the identity mapping. Note that
Tnn = Mn and put rnn = rn : Mn → Bn. Clearly, the composition rn1 =
rnn . . . r2nr1n : T1n → Bn is a strong deformation retraction. In particular,
the inclusion in : Bn → T1n has the property that inrn1 is homotopic to the
identity mapping on T1n. Therefore, k|T1n ≃ kinr

n
1 = (k|Bn)rn1 . Now note

that every mapping of Sn−1 to Sn is homotopic to the constant mapping ∗.
Since Bn is an (n − 1)-sphere, k|Bn ≃ ∗. However, this implies that also
k|T1n ≃ ∗. Now consider a compact subset C of T n. Since T11 ⊆ T12 . . . and
T11 ∪ T12 . . . = T n, one concludes that there is an n ∈ N such that C ⊆ T1n.
Consequently, k|T1n ≃ ∗ implies k|C ≃ ∗ and k is indeed a phantom mapping.

4.2. In view of Lemma 1, the proof of Theorem 1 will be completed if we
prove the following lemma.

Lemma 2. If p > 1 is an odd integer, then the mapping h : T n → Sn,
n ≥ 2, is essential, i.e., it is not homotopic to the constant mapping ∗.

Proof. In proving the assertion, we will use cellular cohomology groups
of CW-complexes with coefficients in Z (see e.g., [6], [10], [4], [3]). The map-
ping h : T n → Sn induces a homomorphism hn∗ : Hn(Sn;Z) → Hn(T n;Z).
Since homotopic cellular mappings induce equal homomorphisms of cellular
cohomology groups (see e.g., [3], Theorem 12.1.9 or [4], p. 201) and the ho-
momorphism H2(Yµ;Z) → H2(Tiµ ;Z), induced by the constant mapping ∗,
equals 0, Lemma 2 will be proved if we show that hn∗ 6= 0.

Recall that Sn has a CW-structure, which consists of a single 0-cell ∗ and
a single n-cell Sn. Let a be the cellular n-cochain of Sn, which assumes an odd
value α at the n-cell Sn. Since in Sn there are no (n+ 1)-cells, a is a cocycle.
The folding mapping χ′′ associates with a the n-cocycle χ′′n(a), which on
each n-cell Sni of the cellular chain complex of S assumes the same value
α. Furthermore, the mapping χ′ associates with the n-cocycle χ′′n(a) the
n-cocycle χ′nχ′′n(a), which on each n-cell ΣS1

i of the cellular chain complex
of T n∗ assumes the same value α. Finally, the mapping χ associates with the
n-cocycle χ′nχ′′n(a) the n-cocycle h∗(a) = χ∗χ′nχ′n(a), which on each n-cell
Mi of the cellular chain complex of T n assumes the same value α. Therefore,
to complete the proof of Lemma 2, it suffices to show that hn(a) is not the
coboundary of some (n− 1)-cochain of the cellular chain complex of T n.

4.3. The latter assertion is an immediate consequence of the next lemma.

Lemma 3. Let p > 1 be an odd integer and let a be the n-cochain of the
cellular chain complex of T n, which on each n-cell Mi, i ∈ N, of T n assumes
the same odd value α ∈ Z, i.e., a(Mi) = α, for all i ∈ N. Then a is an
n-cocycle, which is not a coboundary.
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Proof. Consider the telescope T n and assume that there is an (n − 1)-
cochain b such that δb = a. Since the n-cells of T n are the mapping cylinders
Mi, we must have (δb)(Mi) = a(Mi) = α. Note that, for n > 2, the (n − 1)-
cochain b is a function on the set {Bi|i ∈ N}. Put b(Bi) = βi. If n = 2,
the set of 1-cells also includes the arcs Ai, i ∈ N. By definition, (δb)(Mi) =
b(∂Mi) and thus, b(∂Mi) = α. Since ∂Mi = pBi − Bi−1, one concludes that
b(∂Mi) = b(pBi −Bi−1) = pβi − βi−1. Consequently,

(4.1) pβi − βi−1 = α, i ∈ N.

Subtracting pairs of consecutive equalities (4.1), one sees that
(4.2)
β1 −β0 = p(β2 −β1), β2 −β1 = p(β3 −β2), . . . , βi−βi−1 = p(βi+1 −βi) = . . . .

The equalities (4.2) show that

(4.3) β1 − β0 = p(β2 − β1) = p2(β3 − β2) = . . . = pi(βi+1 − βi) = . . . .

Since p > 1, formula (4.3) shows that the integer β1 −β0 has arbitrarily large
divisors pi. This is possible only when β1 −β0 = 0, i.e., β0 = β1. In that case,
for i = 1, (4.1) becomes α = pβ1 −β0 = (p−1)β0. Since it was assumed that p
is odd, p− 1 is even and so is α = (p− 1)β0. However, this is in contradiction
with the assumption that α is an odd number. �
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Elementarni primjeri bitnih fantomskih preslikavanja

Sibe Mardešić

Sažetak. Poznato je da bitna fantomska preslikavanja

(druge vrste) izmedu povezanih CW-kompleksa postoje. U lite-

raturi su rijetki eksplicitni primjeri takvih preslikavanja. Obično

je dana domena i kodomena preslikavanja te egzistencijski dokaz

da je skup klasa homotopije iz domene u kodomenu beskonačan.

U ovom radu opisuju se neki elementarni primjeri bitnih fantom-

skih preslikavanja. Kodomena je n-sfera Sn, n ≥ 2, a domena

je teleskop T n pridružen nizu kopija kanonskoga preslikavanja

f : Sn−1 → Sn−1, neparnoga stupnja p > 1. Nema bitnih fan-

tomskih preslikavanja čija je kodomena 1-sfera S1.
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