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Summary 

One of the main tasks of ship's computational geometry is calculation of basic integrals 

of ship's hydrostatics. In order to enable direct computation of those integrals it is necessary to 

describe geometry using analytical methods, like description using radial basis functions  

(RBF) with L1 norm. Moreover, using the composition of cubic and linear Polynomial radial 

basis functions, it is possible to give analytical solution of general global 2D description of 

ship geometry with discontinuities in the form of polynomials, thus enabling direct 

calculation of basic integrals of ship hydrostatics. 

Key words: analytical, solution, integrals, intersection, ship, hydrostatics, polynomial, 
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1 Introduction 

From the beginning of naval architecture as science, in the works of its founders 

Chapman, [1] and Euler, [2] and others, there have been efforts for analytical description of 

ship geometry using polynomials in order to enable direct, analytical solution of ship's 

computational geometry problems, like direct solving of intersection problem or direct 

solving of basic hydrostatic integrals. At the beginning of 20th century, Taylor, [3], described 

ship's hydrostatic and geometric particulars approximating them with polynomials, thus 

showing the possibility of their usage in ship computational geometry calculations. 

Nevertheless, his method did not solve all computational geometry problems like solving 

belonging geometric and hydrostatic integrals or intersection problem, with possible multiple 

roots over single ordered pair of function domain values or not finding solutions for nearly 

parallel lines. That has not been achieved until the advances in the computer technology in 

recent decades that results in the development of meshless methods based on piecewise radial 

basis functions. 

In dissertation, [4], and paper, [5], it is shown that there exist global solution of 

description problem of 2D ship geometry with discontinuities using composition of cubic and 

linear Polynomial radial basis functions with dense description of discontinuities. Except very 

high accuracy, this solution gives possibility of direct solution of basic integrals of ship 
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hydrostatics expanded for the integral for the determination of wetted area of immersed part 

of the ship's hull, which is much faster and more accurate than numerical integration methods. 

In order to show the efficiency of the global 2D radial basis functions (RBFs) 

description method using Polynomial RBFs as the direct solution of basic ship hydrostatic 

integrals, two test frames are chosen: test frame of car-truck carrier with flat side and camber, 

and test frame in the shape of semicircle. Former is frame section with discontinuities which 

is complex from the ship's computational geometry point of view, and latter is theoretical 

frame section that enables analytical checking of integration results. Those test frames will 

enable the testing of novel calculation method using Polynomial RBFs, in the calculation of 

hydrostatic particulars for actual ship frame with discontinuities, and for the calculation of 

hydrostatic particulars of theoretical frame section in the shape of semicircle.  

2 Calculation of ship hydrostatics particulars 

There are five basic integrals defined for the calculation of ship hydrostatic particulars, 

with the assumption of using 2D description methods. Those integrals are all univariant 

definite integrals whose upper limit depends on the actual waterline position, defined for one 

of the coordinate axis of the ship coordinate system, Figure 1. 
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Figure 1 Ship coordinate system with origin set to aft perpendicular and baseline 

  

According to the hydrostatic values to be calculated, they can be divided to integrals for 

the calculation of actual waterline particulars and actual displacement properties.  

 

The ship waterline particulars and their belonging integrals to be determined are:  

 Waterplane area AWL , 

 The centroid of waterplane area  WLWLWL yx ,X  , and 

 The moment of inertia of waterplane  BLWL III , . 

The displacement particulars and their belonging integrals are:  

 The volume of displacement , and  

 The centre of buoyancy  BBBB zyx ,,X  . 
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After obtaining the results of frame section areas and belonging static moments around 

y axis, it is necessary to integrate along remaining x axis in order to obtain ship displacement 

particulars values.  

Respective integrals for the calculation of Bonjean curves correspond to the waterplane 

area integrals with:  

 Section area A, and  

 Section area moment around y axis, My. 

 

In order to calculate the centre of waterline area, it is necessary to determine belonging 

area moments as: 

WLWLWL AM X ,  
yWLxWLWL MMM ,, ,  

Respective displacement volume moments for the calculation of centre of buoyancy are: 

BBM X ,  
zByBxBB MMMM ,,, ,,  

In the case of 3D description of ship geometry, the formulae for the calculation of 

volume displacement  for some predefined waterline, and known geometry description 

 zxfy ,  using double integral definition, is: 

 
 

 

  
2

1

2

1

,

x

x

xz

xz

dzdxzxf  

Where    xzxzxx 2121 ,,,  are integration limits defined by the intersection of actual 

waterline with ship geometry and ship bottom line. 

Accordingly, belonging moment MB can be also determined using double integral as: 

 
 

 

  
2

1

2

1

,

x

x

xz

xz

MB dzdxzxfM  

Nevertheless, the 3D RBF description of ship geometry is not available yet, in the form 

suitable for direct integration of ship hydrostatic particulars. Therefore, only 2D Polynomial 

RBF direct integration methods will be shown in this paper. 

 

Except above mentioned, the surface area of the immersed ship's hull can be also 

included in basic hydrostatic particulars, with the calculation of: 

 Wetted area SW. 

When 2D calculation methods are used, it is first necessary to calculate: 

 Frame section curve lengths LW. 

After that, it is necessary to integrate along remaining x axis. 

 

In order to solve above stated integrals it is necessary to determine their limits first, by 

calculating the intersection of some arbitrary waterline with ship geometry, both described by 

computationally compatible RBF methods that will be shown in the next paragraph.   
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2.1 Five basic integrals of ship hydrostatics 

There are five basic integrals to be solved for the determination of ship's hydrostatics 

particulars. When defined for general coordinate x and function description f(x), those definite 

integrals are: 

1.  
2

1

x

x
dxxf  (1) 

2.  
2

1

x

x
dxxxf  (2) 

3.   
2

1

2x

x
dxxf  (3) 

4.   
2

1

3x

x
dxxf  (4) 

5.  
2

1

2
x

x
dxxfx  (5) 

 

The limits of above integrals are defined for the keel of the ship, x1, and the intersection 

of frame section curve with actual ship waterline, x2. 

 

The descriptions of the ship geometry in general case, contain translated points by 

elastic shift method and can be rotated for some angle , [1]. Therefore, general definitions of 

above integrals contain translation corrections and rotation terms, as will be shown in further 

papers. 

2.2 Curve length integral 

The curve length integral for 2D calculation of wetted area of the ship is: 

 
xC

dxyydxd 222 1  

Using function description f(x): 

   
2

1

2
1

x

x

dxxf  

More generally, basic integral to be solve is: 

6.   
2

1

1

x

x

dxxg  (6) 
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3 Polynomial Radial Basis Functions 

3.1 RBF Definition 

The main reason for using analytical curve description using functions is to enable 

direct 2D and 3D integration, as well as solving intersection problem. The possibility of 

solving integrals for belonging functional curve description depends on computational 

characteristics of function chosen. In the case of radial basis functions, except their basis type, 

there is additional problem of their definition with norm as function argument. 

Radial basis function networks are generally defined as the linear combination of basis 

functions, which depend on L2 norm, i.e. the distance ||x - ti|| between input data set points, x, 

and the points of centres, t, around  which the function is developed. Therefore, RBFs as 

direct feed-forward neural networks, Figure 2, can be represented in the form: 

   



O

i

iii txwf
1

,xy , dIRx , lIRy   

where i is radial basis function, x is input variables data points set, y is output variables data 

points set, t is the set of O centres radial basis functions are developed for, w is the matrix of 

the weight coefficients, d is the dimension of input data set, and l is the dimension of output 

data set. 

 
Figure 2 Single-layered, Feed-forward RBF Neural Network 

 

The main advantage of RBFs, and the reason why they are widely used, is that they are 

the solution of scattered data interpolation problem, where the number of centres equal the 

number of input points with O = N, i.e. t = x. The solution of above interpolation problem can 

be obtained by determination of weight coefficient vector/matrix w, using inversion of 

interpolating matrix H as: 

yHw  1  (7) 

 

The problem of the curve or some surface reconstruction is the problem of the 

determination of the function f for curve description, based on the input data set                       

X  {xj, j = 1,, N} and output data set points Y  {yj, j = 1,, N}, on the range [a, b]. 

Overall data set is then divided in two sets, one data set X for RBF calculation and one set XG 

for generalization of the description, with XG  {xj, j = 1,, NG}. 
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3.2 Polynomial RBF definition 

Although widely used, none of standard RBFs defined with L2 norm used for 3D ship's 

geometry description are not twice integrable for their argument ||x - xi||. Besides, it is not 

possible to solve intersection problem directly for 3D case using L2 norm, [4]. That is one of 

the reasons for choosing 2D ship geometry description using Polynomial RBFs with L1 norm 

and argument |x - xi|.  

Polynomial radial basis functions for 2D problems can be generally defined as: 

  ctxwxf
N

j

ii 
1


, INIR  2\  (8) 

With shape parameter c set outside weighted sum, c  IR, and function exponent  

defined in the whole space real numbers IR restricted for even integers. 

 

Moreover, it is shown in [4] and [5] that it is possible to solve general 2D description 

problem of ship geometry with discontinuities using composition of cubic and linear 

Polynomial RBFs with L1 norm and dense points around discontinuities. 

Thus Polynomial RBFs with L1 norm have simple form with odd integer exponents that 

enable direct integral solutions.  

 

3.3 Polynomial RBFs in general polynomial form 

Above mentioned Polynomial RBFs (PRBF) can be defined for general polynomial 

basis with polynomial coefficients as: 

  



n

i

i

i xCxf
1

 (9) 

where iC , ni ,,1  are polynomial coefficients.  

 

Regarding polynomial degree n of developed Polynomial RBF, it is equal to the 

function exponent , i.e.: 

n =  (10) 

Due to limitations of contemporary mathematics, the polynomial degree n is limited to 

direct univariate polynomial solutions with n  6, as will be described in chapter 5 of this 

paper. 

 

The integration of polynomials is the simplest possible, and the integration of cubic 

Polynomial radial basis functions will be shown in this paper. Moreover, the solutions of 

polynomial roots exist also, for some polynomial degrees as will be described later in the text.  

4 Precision of the description methods 

Except integrability and solvability of the basis function, it is necessary to ensure high 

precision of the ship geometry description, in order to enable integration procedure.  

 

Global and local measures of the accuracy of the description are defined as RMSE and 

Errmax, for chosen number of input points N. Global error is defined as: 
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N

yxf
N

i

ii




 1

2))((

RMSE   

Where N is the number of input data set yi, i = 1, …, N is the output data set of points, 

and )(xf is radial basis function. 

 

Corresponding local error is defined as: 

    Giiii Nixfy ,,1 ,Err,ErrmaxErrmax    

Where NG is the number of the points used for generalization of the description. 

 

The problem with precision usually occurs for the integration of the interpolating 

functions with small global precision of the description, where the effect of error grouping in 

a point occur, shown on Figure 3 for calculation of vertical centre of buoyancy zB, below, with 

low Root Mean Square Error (RMSE) value. 

 

 

 

Figure 3 Error grouping in a point with low precision integration of RMSE = 4.1610-2 

 

This problem is one of the main reasons why approximation methods, like 

decomposition methods, fast computing methods and the development into series methods, or 

approximation methods in general, are not suitable in computational geometry for the 

calculation of ship hydrostatics particulars using 2D methods. 

Opposite to above, Polynomial radial basis functions ensure high precision of the 

description, even for frame sections with discontinuities. For example, global accuracy of the 

description for Test frame No. 1 using composition of Polynomial RBFs with  = {3, 1} is 

RMSE = 3.510-10, while local accuracy is Errmax = 1.16810-6 (m), as shown on Figure 4. 
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Figure 4 The description of Test Frame No. 1 with camber and knuckles,                                                               

using composition of PRBF functions with  = {3, 1} 

 

It is obvious that the accuracy of the description of Test frame No. 1 using composition 

of Polynomial RBFs with  = {3, 1} is very high, much higher than required 10-4 (m).   

5 Solution of the intersection problem 

One of basic computational geometry tasks, together with solving basic hydrostatic 

integrals, is solving the problem of ship geometry intersection with actual waterline. In order 

to enable direct solution of this problem, both ship geometry and surrounding waterplane 

should be described in the same manner, analytically. The method that ensures such solution 

is polynomial description of ship geometry with corresponding waterplane, using Polynomial 

RBFs with L1 norm. 

It is known form the theory of polynomials that direct solution of roots of general 

polynomials are available for degrees lower than seven, only, [6]. Also, their direct solutions 

always exist for polynomials with exponents lower and including four, and those solutions 

can be obtained by basic arithmetic operations, adding, subtracting, multiplication and 

division, according to Abel's theorem, [7]. The roots of the polynomials for general quintic 

and sextic cannot always be obtained, and their available solutions are given using 

hypergeometric functions. The solution of septic equation is not always available too, and 

when it is, it can be solved using Galois groups, [6], that require hyperelliptic functions for 

their solution, or by superimposing continuous functions of two variables. 

Above degree restrictions of directly solvable polynomials is the reason for the 

limitation of the polynomial degree for ship geometry description, and therefore it is set to: 

n  4 (11) 
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Another restriction for polynomial degree comes from the definition of polynomial RBF 

where only odd integer values are allowed: 

 = 1, 3, 5, … (12) 

In order to produce smooth curve, Polynomial RBFs must be at least twice integrable, 

thus giving yet another restriction with: 

  3 (13) 

 

As mentioned before, belonging polynomial degree n of developed Polynomial RBF is 

equal to the function exponent . It can be concluded from above restrictions that the only 

Polynomial RBF exponent  that satisfies all three requirements is: 

  = 3 (14) 

 

As stated before, the solution of the global description of ship geometry with 

discontinuities is given using cubic-linear Polynomial RBFs, thus fulfilling above exponent 

conditions, and enabling direct solution of intersection problem. After writing it in the form 

with polynomial coefficients (9), cubic polynomial can be obtained with direct root solutions 

are always available. 

C3x
3 + C2x

2 + C1x + C0 = 0, C3  0 (15) 

 

The roots of above cubic polynomial (15) are found in 16th century by Nicolo 

Tartaglia, as published by Gerolamo Cardano, [8].  

 

General cubic with real coefficients (15) always has at least one real solution thus 

fulfilling the requirement for the existence of the solution. The solution of cubic polynomials 

equation is well known, and more detailed description of the cubic roots determination can be 

found in [4].  

6 Area integral 

6.1 General 

General area integral for some ship section area calculation can be written as a plane 

curve integral along some coordinate axis, as given for basic definite integral (1). The section 

area of a frame using integration along z axis is than: 

 
2

1

z

z

dzyA  (16) 

Where 1z  and 2z  are the limits of definite integral. 

In the case of the functional description of the ship's frame section curve with  zfy   

we have: 

  
2

1

z

z

dzzfA  (17) 

If we choose the point on the ship keel z0 as the lower integral limit, and the point of 

intersection with waterline zWL as upper limit of the integral limit, we obtain: 
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 
WLz

z

dzyA

0

 (18) 

 

Regarding Polynomial RBFs chosen, there are two integration procedures that can be 

done: by direct integration, or by transformation of radial basis into polynomial basis, and 

those two ways will be chosen in the text below. 

6.2 Direct Polynomial RBF integration 

6.2.1 Integration of compatible cubic-linear PRBF 

General form of cubic-linear compatible PRBF for z axis with  = {3, 1} is: 

   




1

2

3

3

1

3


i

ii

i

ii czzwczzwy  

Belonging integral can be written as: 

    




















2

1
1

2

3

3

1

3
z

z i

ii

i

ii dzczzwczzwA



 (19) 

The direct solution of above integral is: 

2

1
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2

2

3

3

1

4
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
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
 
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(20) 

6.2.2 Integration of Polynomial RBFs with general polynomial basis 

Since Polynomial RBFs can be written with polynomial basis, the area integral can be 

generally written as: 

  











2

1
0

z

z

n

k

k

k dzzCA  (21) 

Belonging area integral can be than written as: 

2

1
0

1

1

1
z

z

n

k

k

k zC
k

A 










 



  (22) 

 

Regarding solution is than: 

 


 



n

k

kk

k zzC
k

A
0

1

1

1

2
1

1
 (23) 
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7 Calculation of the static section area moment for y axis 

7.1 General integral form 

General integral for the calculation of ship's static section area moment for y axis in (2) 

can be rewritten as: 

 
2

1

z

z

y dzyzM  (24) 

For  zfy   we obtain integral: 

  
2

1

z

z

y dzzfzM  (25) 

 

The solutions of above integral will be shown below. 

7.2 Integral of compatible cubic-linear Polynomial RBF for y axis 

The integral of static section area moment for y axis in (2), using cubic-linear PRBFs, 

can be written as: 

    













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3
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iiy dzczzwczzwzM
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 (26) 

Above integral can be further separated in two integrals as: 

    
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3
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iiy dzzczzwdzzczzwM
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In order to solve the first integral in above, it is necessary to develop it as: 

32233
33 iiii zzzzzzzzzzzzz   
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The same has to be done with the second integral as: 

ii zzzzzzz   
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


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Final statement for calculation of static section area moment for y axis is: 
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Or we can write differently as 

  333

iiiii zzzzzzzzzz   

And 

  iiiii zzzzzzzzzz   

Final statement for direct calculation of static section area moment for y axis is than: 
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7.3 Integral of compatible cubic-linear PRBF for y axis written for polynomial basis 

The equation for static section area moment calculation using PRBFs with polynomial 

basis can be generally written as: 
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ky dzzCzM  (29) 

 

Belonging solution of moment integral can be than written as: 

2
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After including limit values we obtain: 

 

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
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ky zzC
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 (30) 

8 Calculation of the static section area moment for z axis 

8.1 General integral 

The integral for the calculation of static section area moment for z axis in (3) can be 

rewritten as: 


2

1

2

2

1
z

z

z dzyM  (31) 

 

If we insert explicit curve definition  zfy   we obtain integral: 
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  
2
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2

2

1
z

z

z dzzfM  (32) 

This integral has form of basic integral number 3, as defined in chapter 2. 

 

Similarly to the calculation of static area moment for y axis, direct integration of above 

equation with radial basis functions is very complex even for Polynomial RBFs, and therefore 

will not be done. In order to solve integral (32) above, Polynomial RBFs will be written in the 

form of algebraic polynomials, instead. Additionally, it will be shown that another efficient 

solution of above integral can be obtained by using the solution of interpolation problem 

for 2y .    

8.2 Integral of static area moment for z axis using compatible cubic-linear PRBF 

The integral of static section area moment for z axis using cubic-linear PRBF can be 

written as: 

    




















2

1

2

1

2

3

3

1

3

2

1
z

z i

ii

i

iiz dzczzwczzwM



 (33) 

This integral can be divided in three integrals as: 
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This equation with RBF description contains translated weighted sums with basis 

functions and therefore has multiple integral terms non suitable for direct calculation. More 

suitable polynomial form will be used instead, as will be shown below.      

8.3 Static area moment integral for z axis using PRBFs in polynomial form 

When radial basis function can be developed in polynomial form, static area moment 

integral for z axis can be generally written as: 
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By squaring we get: 
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1
z

z

n

k

k

kz dzzDM  (35) 

where  kk CfD   are polynomial coefficients. 

 

In the case of cubic-linear Polynomial RBFs, belonging solution of the moment integral 

can be written as: 
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By squaring we get: 
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The solution can be then written as 
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 (37) 

8.4 Direct integration using y2 

Instead of direct solving of basic integral for Mz by developing complex RBF form with 

norms, that integral can be solved by determining weight coefficients w2 for curve equation    

y = f(z) squared, i.e. for y2. Therefore, we are introducing the variable 2yq   and obtaining the 

integral with the same form as the area integral 1, i.e.: 


2

1
2

1
z

z

z qdzM  (38) 

By inserting  zfq 2  instead of y2 following integral is obtained then 

  
2

1

2
2

1
z

z

z dzzfM  (39) 

with the same form as the area integral (1). 

 

Nevertheless, the function f2 has different weight coefficients w2 than interpolation 

function f, with coefficients w. It is therefore necessary to define separate interpolation 

problem for y2 that will be shown below. 

8.4.1 Interpolation problem for y2 

Instead of basic interpolation problem wHy  , we are defining the problem: 

  222

2 wHzfy   (40) 

Where H2 is interpolating matrix for input data set, and w2 is weight coefficients vector. 

 

Similar to basic scattered data interpolation problem, the solution of this problem can be 

obtained by the inversion of interpolating matrix H2, and according to (7) we have: 

21

22 yHw  
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Since interpolating matrix does not depend on output data, but input data set, the 

interpolating matrix for y and y2 are equal: 

HH 2
 

Since interpolating matrices H and H2 equal, it is not necessary to do another matrix 

inversion that can be advantageous, i.e. we have: 

21

2 yHw  
 (41) 

Therefore, after solving the inversion of basic interpolating matrix, it is possible to 

determine weight coefficients of any output data set, and therefore it is possible to scale 

output data set. Following definition can be written: 

 

Definition 1:  The RBF description has basic property of affine transformation by scaling 

output data set Y. 

 

8.5 Solution of interpolating problem for y2 using cubic-linear PRBF 

The solution of the static area moment integral for z axis is identical to the solution of 

the area integral (20) for cubic-linear Polynomial RBFs but with weight coefficients w2 used:  
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 (42) 

 

Therefore, if direct solution of the basic RBF integral is known, it is easy to determine 

static moment for z axis then. This is the easiest way for solving above integral, and it will be 

applied in further calculations. 

 

9 Calculation of waterplane inertia moment for x axis 

9.1 Basic integral 

The basic integral for calculation of waterplane inertia moment around x axis, in (4), can 

be rewritten as: 


2

1

3

3

1
x

x

x dxyI  (43) 

By inserting curve functional definition in explicit form  xfy   in it, following 

integral is obtained: 

  
2

1

3

3

1
x

x

x dxxfI  (44) 

This integral represents fourth basic integral for ship's hydrostatic particulars calculation 

to be solved and its solution follows below. 
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9.2 Integral of inertia moment for x axis using cubic-linear Polynomial RBFs 

Belonging inertia moment integral for cubic-linear Polynomial RBFs can be written as: 
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Above integral can be separated into four integrals as: 
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This integral contains multiple terms because of basic RBF's definition with translated 

sums, and therefore it is not suitable for calculation in this form. Therefore, it will be solved 

for Polynomial RBFs written in basic polynomial form, (9). 

9.3 Moment of Inertia Integral for PRBFs written in general polynomial form 

The integral of inertia moment around x axis written for PRBF in general polynomial 

form can be written as: 

  
















2

1

3

03

1
x

x

n

j

j

jx dxxCI  (46) 

By cubing it we obtain: 
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Where:  
jj CfD    

 

Belonging integral solution, in the case of cubic-linear PRBF, can be written as: 
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By cubing it, complex solution is obtained, that can be written as: 
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9.4 Direct integration using y3 

Instead of solving basic moment of inertia integral Ix by developing complex RBF form 

with norms, corresponding integral can be solved using weight coefficients w3 for cubed 

curve equation, i.e. for y3, as shown before for y2 in (41). Therefore, by substituting 3yq   the 

same integral form as basic area integral is obtained, i.e. we obtain: 


2

1
3

1
x

x

x qdxI  (49) 

And by inserting  xf3 , following integral is obtained: 
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x dxxfI  

 

The function f3 has different weight coefficients w3 than function f with coefficients w, 

and it is necessary to define separate interpolation problem for 3y , as will be shown below. 

9.5 Interpolation problem for y3 

Instead of interpolation problem for wHy   we define problem: 

  33

3 wHxfy   (50) 

Where H is interpolating matrix for input data set, and w3 is weight coefficients vector. 

But interpolating matrix does not depend on output, but only input data set, as shown 

before, so we have: 

HH 3  (51) 

Similar to basic scattered data interpolation problem, the solution of this problem is 

obtained by inverting interpolating matrix H which is according to (7) known as: 

31
3 yHw  

 (52) 

9.6 The solution of interpolation problem for y3 using cubic-linear PRBF 

The solution of the inertia moment integral for x axis (4) using cubic-linear Polynomial 

RBF is identical to the solution of the area integral (20) with weight coefficients w3 used: 
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 (53) 

 

Therefore, if direct solution of the integral for general radial function is known, 

corresponding solution of the waterplane moment of inertia for x axis is known, also. 
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10 Calculation of waterplane inertia moment for y axis 

10.1 Basic integral 

Basic integral form for the calculation of waterplane moment of inertia for y axis shown 

in (5) can be rewritten as: 

 
2

1

2

x

x

y dxyxI  (54) 

By inserting waterline curve description in explicit form  xfy   following integral can 

be obtained: 
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y dxxfxI  (55) 

This integral represents basic fifth integral of ship's hydrostatics. 

 

Direct integration of above integral can be very complex when general Polynomial 

RBFs are used. Therefore, the integration of cubic-linear Polynomial RBFs will be shown 

instead, i.e. the integration of RBFs written in polynomial form. 

10.2 Moment of inertia integral for y axis using compatible cubic-linear PRBF 

Belonging integral of waterplane moment of inertia for y axis using cubic-linear 

Polynomial RBF can be written as: 
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I.e., above integral can be separated in two integrals as: 
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In order to solve first integral in above equation (56), it is necessary to develop the 

argument of L1 norm, i.e. develop |x - xi|
3 and multiply it with x2 as: 

3222223232 33 iiii xxxxxxxxxxxxx   

After inserting we have 
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Similar has to be done with second integral with: 
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ii xxxxxxx  22
 

 

We get 
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Final solution for ship's waterplane moment of inertia for y axis is then: 
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10.3 Moment of inertia Integral for y axis using Polynomial RBF in general polynomial form 

For general RBF written in polynomial form, the integral for moment of inertia for y 

axis can be generally written as: 
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I.e., we have: 
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In the case of cubic-linear Polynomial RBF, belonging moment of inertia integral 

solution can be written as: 
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The solution of this integral is simply obtained by integrating every polynomial term as: 
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Finally, when limits are inserted, the solution can be written as: 
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This solution of fifth basic integral (5) used for calculation of waterplane inertia 

moment for y axis is the easiest possible, and can be used in practice. 
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11 Curve length calculation using Polynomial RBF 

Except five basic integrals of ship' hydrostatics, there is a need for determination of 

wetted area of immersed ship hull on actual waterline, in ship resistance calculation. The 

integral of curve length for some frame section therefore can be included into basic integrals 

to be determined, too. Similarly to first five integrals, this integral should be always solvable. 

 

In order to define the length integral for curve description defined with f(x), it is 

necessary to differentiate it once, obtaining g(x) = f'(x). If Polynomial RBF is written in 

general polynomial form, with polynomial coefficients introduced for f(x), the function g(x) 

can be obtained after differentiation with: 

 
2

1

1
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
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




 




n

k

k
k zCkxg  (63) 

where Ck are polynomial coefficients. 

 

After inserting g(x) in integral (6) following integral is obtained: 
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Written by coefficients it becomes: 





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1

22

2210 ...1

x

x

k

k dxxcxccL  (65) 

where ck are polynomial coefficients after derivation and squaring of polynomial. 

 

However, as described before, only Polynomial RBFs with integer exponent  equal 

three is acceptable as smooth description solution, and therefore that case will be investigated 

here. After squaring Polynomial RBF with  = 3, belonging polynomial function g(x) with 

degree four is obtained.  

The indefinite integral for Polynomial RBF with exponent  = 3 is: 

 
x

dxxcxcxcxccL 4

4

3

3

2

2101  (66) 

The solution contains elliptic integrals of the first kind F(x|m), elliptic integrals of the 

second kind E(x|m) and elliptic integrals of the third kind (x|m). 

 

For special case where g(x) = (x – a)2 the solution is: 

        11sinh121
3

1 4144
  axiFaxaxL  

Where F(x|m) is elliptic integral of the first kind. 
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Above length integrals are not always solvable and their existing general solutions are 

complex. Therefore, it is more efficient to calculate curve length by segments using curve 

description with Polynomial RBFs, for total input data set XG used for generalization, with: 

   


 
GN

j

jjjj yyxxL
1

2

1

2

1  (67) 

where curve segments represent l2 norm of input and output point pairs. 

 

It can be concluded, that there is no efficient polynomial method available for direct 

solution of basic curve length integral using Polynomial RBFs with exponent   3. 

Therefore, the combination of analytical and numerical calculation method should be used for 

curve length determination, instead of solely analytical method. 

12 The example of the frame section area particulars calculation 

The solutions of above integrals are tested for actual ship's Test frame No. 1 shown on 

Figure 3, aft frame of car-truck carrier with flat of the side, camber and discontinuities, [9]; 

and theoretical semicircle test frame section, Test frame No. 2, Figure 5.  

r 
=
 2

.5
 m

y

z

 

Figure 5: Theoretical Test frame No. 2 in the form of semicircle 

 

The integration results will be tested for test frame sections Bonjean curves as:  

   zfzyA BB ,,  

 

The comparison of calculated results using composition of cubic-linear Polynomial 

RBFs and corresponding test frames are shown in Table 1, below.  

Table 1: The comparison of direct Polynomial RBF integration results and actual values for test frames 

 Test frame No. 1 until camber Test frame No. 2 

PRBF Trim & Stability Booklet PRBF Analytical values 

A (m2) 311.3901 311.3901 9.8178 9.8175 

zB (m)  - 1.4389 1.4389 
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Figure 6: The distribution of Test frame No. 1 area particulars for frame draft 

 

Theoretically, vertical centroid of the semicircle area zB can be obtained by: 

3

4r
rzB   

 

Vertical position of the centre of semicircle area for r = 2.5 (m) is than zB = 1.4389 (m). 

It can be seen from Table 1 that the same vertical centre of semicircle area is obtained by the 

calculations with Polynomial RBFs, while area value differs in forth decimal, thus satisfying 

required calculating precision of 1 (mm) in shipbuilding.  

 

Also, it is visible from Polynomial RBF integration results of area particulars for Test 

frame No. 1 shown on Figure 6, that their distribution is smooth for whole draft, as required 

by ship computational geometry. Table 1, above, shows that result for actual ship test frame 

are very accurate and correspond to the values from Trim and Stability Booklet for Test frame 

No. 1, [9].   

13 Conclusion 

Global curve description using composition of cubic-linear polynomial radial basis 

functions enables direct solution of five basic integrals of ship's hydrostatics for whole drafts 

range. Besides integrability, high precision of the geometric and hydrostatic particulars is 

shown, with the elimination of the effect of grouping of error in a point, connected with 

global geometry description. Belonging integral for curve length calculation is not always 

solvable, but functional geometry description using cubic-linear Polynomial radial basis 

functions enables its calculation using summation of segments used for its generalization. 

Except above mentioned, the direct solution of RBF integrals eliminates the need for 

numerical integration procedures that dominated ship's computational geometry calculations 



Analytical solution of basic ship hydrostatics integrals Dario BAN 

using polynomial radial basis functions   Josip BAŠIĆ 

37 

for a long time, and dictated the distribution of ship frame sections and waterlines in wire-

frame modelling of ship geometry. Direct RBF integration enables arbitrary distribution of 

ship frame sections using meshless RBF principle, as well as high precision of calculations, 

even for the existence of the discontinuities in ship geometry.  

 

It can be concluded that solution of arbitrary ship geometry using composition of cubic-

linear Polynomial RBFs represents required analytical solution of all ship's computational 

geometry problems in the case of global, non-two manifold 2D description, with remark of 

using the combination of analytical and numerical solution for curve length calculation. 

 

Corresponding analytical solution for 3D problem of ship geometry description is not 

found yet, and that will be the subject of further research of authors of this paper. 
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