STROMAL REACTION IN SYNCHRONOUS IN SITU AND INVASIVE UROTHELIAL CARCINOMA OF THE BLADDER

Ante Reljić¹, Davor Tómas², Tereza Gabelić³, Jelena Zarubica¹, Stela Bulimbašić³, Hana Fazlić³, Hrvoje Ćupić³ and Božo Krušlin²

¹University Department of Urology and ²Ljudevit Jurak University Department of Pathology, Sestre milosrdnice University Hospital, Zagreb; ³Department of Pathology, Pula General Hospital, Pula; ⁴Department of Pathology, Sveta Duh General Hospital, Zagreb, Croatia

SUMMARY – The aim was to investigate stromal reaction, including inflammation and stromal desmoplasia in in situ and invasive urothelial carcinoma of urinary bladder and to determine the possible value of reactive stromal changes in the diagnosis of lamina propria invasion. We analyzed specimens from 24 consecutive patients with synchronous in situ and invasive urothelial carcinoma in the same biopsy. Specimens were obtained by transurethral resection, fixed and routinely stained with H&E and Mallory method. Immunohistochemistry was performed by monoclonal antibodies to vimentin, smooth muscle actin and desmin. The intensity of immunostaining was graded semiquantitatively on a scale of 0-3, and expressed as 0 = 0%; 1 = up to 33%; 2 = more than 33% to 66%; and 3 = more than 66% of positive stromal cells. The intensity of inflammation was labeled as 0 = no inflammation, 1 = weak, 2 = moderate, and 3 = dense inflammatory reaction. Mallory trichrome method showed predominantly no staining or weak green staining in 14/24 invasive and 20/24 in situ urothelial carcinomas (p>0.05). There was statistically significantly increased vimentin and smooth muscle actin immunostaining in the stroma of invasive carcinoma as compared with in situ carcinoma (p<0.05). Inflammatory reaction was statistically stronger in invasive carcinoma (p<0.05). The immunohistochemical expression of myofibroblastic markers was significantly stronger in invasive urothelial carcinoma. This may aid in the diagnosis of lamina propria invasion in urothelial carcinoma of urinary bladder.

Key words: Bladder neoplasms – pathology; Bladder neoplasms – diagnosis; Urothelium – pathology; Urologic neoplasms – classification; Stromal cells – pathology

Introduction

Morphological evidence of host participation in cancer invasion and metastasis is desmoplasia, consisting of fibroblast-like cells and extracellular matrix (ECM) remodeling, inflammation and immune response represented by lymphocytes, macrophages and dendritic cells, and angiogenesis with newly formed blood and lymph vessels¹.

Studies of human breast, colon and prostatic carcinoma have identified activated stromal cell phenotypes, modified extracellular matrix composition, and increased microvessel density, exhibiting biological markers consistent with stroma at the site of wound repair²-⁷. Myofibroblast seems to play a very important role in stromal reaction to invasion in different carcinomas, including urothelial carcinoma (UC) of the bladder²-⁷. Myofibroblasts are mesenchymal cells sharing characteristics with smooth muscle cells and fibroblasts, and have the ability to secrete large amounts of matrix molecules such as collagens and proteoglycans⁸-⁹. The origin of myofibroblasts remains controversial but some authors have shown that during migration towards can-
cer cells fibroblasts encounter a higher concentration of TGF-β, leading to their transdifferentiation into myofi-
broblasts10. The appearance of myofibroblasts precedes
the invasive stage of cancer9. Myofibroblasts not only
stimulate cancer cell invasion but also angio- and lymph-
angiogenesis11.

Stromal response in \textit{in situ} carcinomas is in the ma-
jority of cases associated with mononuclear inflam-
matory reaction in underlying lamina propria9. These in-
flammatory cells represent a class of host cells that are
regulated by cytokine balance and perform countercur-
rent invasion from the circulation into the tumor vicin-
ity7.

One of the most important pathological features in
bladder neoplasms is recognition of the presence and
extent of lamina propria invasion12. Patients with grade
1 noninvasive papillary neoplasm would have about 90% chancen for 20-year survival despite a number of recur-
rences3,13. On the contrary, patients with lamina propria
invasion will survive 5 years in 75% of cases14.

Occasionally it is quite difficult to identify the foci
of lamina propria invasion in urothelial carcinoma. The
criteria for urothelial carcinoma invasion are isolated cells
or small nests, larger cells and cell nuclei, and marked
cytoplasmic eosinophilia relative to the surface epithe-
lum. The foci of invasion are often single and solid but
may be mixed with papillary carcinoma and other growth patterns13,15.

The aim of this study was to analyze stromal reac-
tion in invasive and \textit{in situ} UC, and to estimate their
possible value in the diagnosis of lamina propria inva-
sion.

Materials and Methods

From the Urologic Pathology computer database at
Ljudevit Jurak University Department of Pathology, all
data regarding urothelial carcinoma of urinary bladder
diagnosed in the period from January 1, 1998 to Decem-
ber 31, 2003 were retrieved. There were 1398 biopsies
with the diagnosis of urinary bladder UC. In 814 cases
these were first biopsies of primary urothelial carcino-
ma and 584 cases were recurrences. According to the
1973 WHO classification16, 256 patients were diagnosed
with tumor grade 1, 331 patients with grade 2, and 227
patients with grade 3. Tumors were more common in
males with a male to female ratio of 3.5:1.

For the purpose of this study, 24 consecutive patients
(22 male and two female) with synchronous invasive and
\textit{in situ} urothelial carcinoma in the same biopsy obtained
by transurethral resection were analyzed. All relevant
patient data including age, sex and tumor grade were
analyzed. The age range of these patients was between
57 and 81 (median 71.0±6.6) years. In all 24 cases tu-
mors were diagnosed in first biopsy. These patients were
not previously treated for urothelial carcinoma or other
primary tumor.

Specimens were fixed in 10% buffered formalin,
embedded in paraffin, cut at 5-μm thickness and rou-
tinely stained with hematoxylin and eosin. For analysis
of stromal components, whole mount thin sections were
stained with Mallory trichrome method following the
standard protocol. By this procedure discontinuous mus-
cle layer in the lamina propria and muscularis propria
smooth muscle cells stained red, and myofibroblasts,
fibroblasts and collagen fibers stained green (400X).

Analyzed regions were previously selected on low pow-
er magnification and marked on slides. Sections were
scanned under low magnification and ten randomly se-
lected areas in lamina propria beneath \textit{in situ} carcinoma
and invasive carcinoma were analyzed under high mag-
nification (400X). The presence of myofibroblasts, fi-
brasts and collagen fibers was graded semiquantita-
tively and expressed as negative 0 = no green staining,
1 = weak, 2 = moderate, and 3 = strong green staining.

Deparaffinization and immunohistochemical staining
was performed following Microwave Streptavidin
Immunoperoxidase (MSIP) protocol on a DAKO Tech-
Mate™ Horizon automated immunostainer. We used
primary monoclonal antibodies to vimentin (M 0725),
α-smooth muscle actin (α-SMA) (M 0851) and desmin
(M 0760) (purchased from DAKO, Copenhagen, Den-
mark). Dilutions for all antibodies were 1:50.

The myofibroblastic immunohistochemical pheno-
type is characterized by coexpression of vimentin and
α-SMA without expression of desmin. The expression
of vimentin without additional smooth muscle markers
categorized fibroblast phenotype, and coexpression of
α-SMA and desmin without vimentin expression iden-
tified smooth muscle cells17. To evaluate the intensity
of vimentin, α-SMA, and desmin expression, the per-
centage of positive-staining stromal cells was examined
in ten HPF (X400) for each antibody in previously
marked areas. The staining intensity was graded on a
scale of 0-3, and expressed as 0 = 0%; 1 = up to 33%; 2
= more than 33% to 66%; and 3 = more than 66% of
positive stromal cells18.
Immunohistochemical slides were correlated with H&E stained slides for better identification of positive cells to avoid counting of endothelial and inflammatory cells as fibroblast (vimentin +, actin -, desmin -) phenotype.

The intensity of inflammation was also analyzed. Ten randomly selected areas in lamina propria beneath in situ carcinoma and invasive carcinoma were analyzed under high magnification (X400). Results were graded semi-quantitatively and labeled as 0 = no inflammation, 1 = weak, 2 = moderate, and 3 = dense inflammatory reaction.

For Mallory trichrome method, each marker (vimentin, α-SMA, desmin) and intensity of inflammation, Fisher’s exact test was used to compare 0/1 grading to 2/3 grading for invasive and in situ UC. The level of statistical significance was set at p<0.05.

Results

Out of 24 invasive urothelial carcinomas, 4 (16.7%) tumors were well differentiated, 8 (33.3%) moderately and 12 (50.0%) poorly differentiated. According to pTNM classification, 18 (75%) tumors were pT1 and 6 (25%) tumors were pT2. At the time of diagnosis all patients were without lymph node or distant metastases. The tumors were reclassified according to WHO 2004 classification as follows: 10 (41.7%) low-grade invasive UC and 14 (58.3%) high-grade invasive UC. Mallory trichrome method showed predominantly weak green staining in invasive and in situ UC, while statistical analysis revealed no significant between group-differences in the intensity of staining (p>0.05) (Table 1, Fig. 1 A, B).

The stroma from invasive UC showed a high level of vimentin and α-SMA expression in most cases, while the expression of desmin was absent in 19 and low in 5 cases (Table 2, Fig. 1 C, E, G). In in situ carcinoma, the expression of vimentin and α-SMA was predominantly low and moderate, whereas positive expression of desmin was observed in only one of the cases analyzed (Table 2, Fig. 1 D, F, H).

There was a statistically significantly increased vimentin and α-SMA immunostaining in the stroma from invasive carcinoma as compared to in situ carcinoma (p<0.05). Desmin expression showed no statistically significant between-group differences (p>0.05).

In lamina propria of in situ carcinomas inflammation was predominantly weak, while the stroma from most invasive carcinomas showed a moderate amount of inflammatory cells (Table 1).

Inflammatory reaction was statistically stronger in invasive as compared to in situ carcinoma (p<0.05).

Discussion

Results of our pilot study indicate that myofibroblasts and inflammatory host reaction may have an important role in urothelial carcinoma invasion and progression, and could also be useful in the differential diagnosis between in situ and invasive pT1 UC of urinary bladder.

An increased number of myofibroblasts in urinary bladder lamina propria could serve as a sign of invasion while dense inflammatory reaction does not exclude invasion because an increased number of immunocytes was observed in invasive carcinomas.

Myofibroblasts are large, mesenchymal, spindle-shaped cells with indented nuclei which appear in tu-

Table 1. Mallory staining and inflammatory reaction in 24 synchronous in situ and invasive urothelial carcinomas of the bladder

<table>
<thead>
<tr>
<th>Grade</th>
<th>Inflammation</th>
<th>Mallory</th>
<th>Inflammation</th>
<th>Mallory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>12</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

0=negative; 1=weak; 2=moderate; 3=strong

Table 2. Immunohistochemical analysis of 24 synchronous in situ and invasive urothelial carcinomas of the bladder

<table>
<thead>
<tr>
<th>Grade</th>
<th>Vimentin</th>
<th>Actin</th>
<th>Desmin</th>
<th>Vimentin</th>
<th>Actin</th>
<th>Desmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>19</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

0=0% of positive stromal cells; 1=up to 33% of positive stromal cells; 2=33%-66% of positive stromal cells; 3=more than 66% of positive stromal cells
Fig. 1.
mor stroma and granulation tissue during wound healing. Wiseman et al. have described a layer of cells with the ultrastructural characteristics of myofibroblasts within the human bladder lamina propria. These cells have both an efferent and an afferent nerve supply, and possibly are functioning as a bladder stretch receptor or have similar function as interstitial cells of Cajal in the gut.

Myofibroblasts have been shown to play a very important role in stromal reaction to invasion in different types of malignant epithelial tumors. Our pilot investigation suggests that stromal changes occur during UC invasion. The present study showed an increased number of cells with immunohistochemical phenotype characteristics of myofibroblasts in stroma of invasive cancers. Vimentin and α-SMA expression was increased in invasive as compared to in situ carcinomas, whereas desmin showed no significant difference. Myofibroblastic cells observed in lamina propria in specimens with in situ carcinoma probably represented myofibroblasts, which normally exist in urinary bladder lamina propria. Both studies analyzed synchronous in situ and invasive urothelial carcinoma in the same biopsy in order to minimize the possible influence of other factors such as previous surgical procedure or treatment.

The appearance and increased number of myofibroblasts precedes the invasive stage of cancer and probably leads to switching from noninvasive towards the invasive cancer phenotype. Myofibroblasts are a common stromal element in the colon from patients that have developed familial adenomatous polyposis and large villous adenomas, which both frequently transform towards invasive carcinoma. In contrast, myofibroblasts are rare in tubular adenomas of the colon, which carry a minor risk of progression.

In our study, inflammation was statistically stronger in invasive cancer stroma as compared to lamina propria adjacent to in situ carcinoma. These results were expected, because preserved basement membrane in in situ carcinoma prevents closer interaction between malignant epithelial cells and host, as well as stronger host reaction to malignantly transformed cells.

In vitro experiments indicate that the contractive properties and probably also the surrounding ECM of cancer-associated myofibroblasts prevent invasion of immune and inflammatory cells into tumors. In this way cancer associated myofibroblasts block direct contact between cancer cells and immunocytes and prevent destruction of cancer cells by the host immune system. On the other hand, tumor-infiltrating leukocytes are also capable to promote cancer progression because they produce proteinases, which are providing roads for cancer cell invasion.

One of the major barriers to tumor cell extravasation and invasion is the basement membrane extracellular matrix. Proteases specific for basement membrane are important in invasion since inhibitors of these proteases block metastases in experimental models. The basement membrane degradation during tumor invasion into tissues and during new blood vessel formation is likely to release active molecules and active fragments of matrix components, which promote tumor cell growth, spread, and angiogenesis.

We conclude that the immunohistochemical expression of myofibroblastic markers was significantly stronger in invasive urothelial carcinoma of urinary bladder, which may aid in the diagnosis of lamina propria invasion, whereas Mallory trichrome method showed no sensitivity in distinction between the two groups analyzed and could not be recommended for use in diagnostic purpose. However, it is obvious that a larger study to confirm our observation is needed.

Acknowledgment.

This work was supported by grant 0108001/02 (B.K.) from Ministry of Science and Technology, Republic of Croatia.

References

Sažetak

STROMALNA REAKCIJA U SINKRONOM IN SITU I INVAZIVNOM UROTELMOM KARCINOMU MOKRAĆNOG MJEHURA

Grij istraživanja bio je analizirati stromalnu reakciju, uključujući upalu i dezmooplaziju strome, u in situ i invazivnim uroternim karcinomima mokraćnog mjehura te odrediti moguću vrijednost reaktivnih stromalnih promjena u dijagnostici invazije lamine proprije. Analiza je provedena na 24 uzorka tumora s istodobnom in situ i invazivnom sastavnicom uroternog karcinoma u istoj biopsiji. Uzorci su dobiveni transuretrealnom resekcijom, fiksirani i bojeni standardnom metodom hemalaun-eozinom te metodom po Malloryju. Imunohistokemija je učinjena pomoću monoklonskih protutijela protiv vimentina, glatkomišićnog aktina i dezmina. Intenzitet imunohistokemijskih reakcija je određen semikvantitativno i označen kao 0 = negativna reakcija, 1 = do 33% pozitivnih stanica u stromi, 2 = više od 33% do 66% pozitivnih stromalnih stanica i 3 = više od 66% pozitivnih stromalnih stanica. Intenzitet upale označen je kao 0 = nema upale, 1 = slaba upalna reakcija, 2 = umjerena upalna reakcija i 3 = jaka upalna reakcija. Metoda po Malloryju je pokazala negativnu odnosno slabu reakciju zelenog bojenja u 14/24 invazivna i 20/24 in situ uroternkarcinoma (p>0.05). Utvrđena je statistički značajna jača reakcija na vimentin i glatkomišićni aktin u stromi invazivnih karcinoma u odnosu na karcinom in situ (p<0.05). Upalna reakcija je bila statistički značajno jača u invazivnim karcinomima (p<0.05). Imunohistokemijska izrađenost miofibrolastičnih biljega bila je statistički značajno jača u invazivnim uroternim karcinomima. Ovakvi rezultati mogu pomoći u dijagnozi invazije lamine proprije u invazivnom karcinomu mokraćnog mjehura.

Ključne riječi: Neoplazme mokraćnog mjehura – patologija; Neoplazme mokraćnog mjehura – dijagnostika; Urotel – patologija; Urološke neoplazme – klasifikacija; Stromalne stanice – patologija