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Abstract To remedy the lack of mathematical programming 
and the Expected Marginal Seat Revenue (EMSR) model 
for multi-leg seat inventory control, this paper proposes a 
method based on passenger choice. Except for data about 
which seats passengers decide to opt for, there is no need 
to obtain distributions of passengers’ demands or other “a 
priori” information. The proposed method can discover the 
real factors that affect passengers’ choices, and then 
estimate the probabilities of seat choices and the revenue 
according to the weights of the factors. Simulated 
experiments and comparison with the shadow price 
method and the virtual “bucket” method confirm the 
feasibility and effectiveness of the proposed method in seat 
inventory control for multi-leg flights. 

Keywords Seat Allocation, Passenger Choice, Multi-leg, 
EMSR Model 

1. Introduction 

In recent years, the aviation and passenger transport 
industry has developed swiftly with rapid economic 
growth. As air travel has become a common transport 

option in many regions, more and more people have 
begun to consider not only ticket prices but also other 
factors, such as service level and ticketing conditions, 
when buying tickets. At the same time, airlines have 
divided market segments according to the characteristics 
of their passengers, and have developed different levels 
of accommodation to meet their needs. In general, a lower 
class and/or a lower fare is usually attached to stronger 
restrictions. In this way, the airlines try to attract some 
travellers in pursuit of low cost while retaining 
passengers who are price sensitive and do not like to be 
highly restricted. 

A consumer needs motivation to make a purchase 
decision, to modify the purchase programme, and finally 
to complete the purchase. The theoretical study of 
consumer behaviour concerns consumers’ reactions to 
products, services, and marketing[1]. Consumer choice 
refers to the process of selecting a commodity from a 
group of candidates. For example, passengers select a 
particular class of seat from all classes in a group. The 
choice is sometimes based on subjective judgement. If a 
consumer likes a commodity, he/she is likely to choose it. 
Sometimes the choice is made because of the characteristics 
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of the commodity. Consumers can either buy a product, or 
not buy it. There cannot be any other choice. 

The traditional Expected Marginal Seat Revenue (EMSR) 
model, and also the seat inventory control model based 
on mathematical programming for the multi-leg seat 
allocation problem, assume that the needs of passengers 
follow independent normal distributions. In fact, both the 
EMSR model and the mathematical programming model 
make two important presumptions: (i) reservation needs 
of passengers for a certain class obey a certain distribution, 
and (ii) those distributions are independent of each other. 
However, these presumptions are not necessarily 
consistent with the actual situation of passenger demand in 
relation to real-world markets and culture. 

The probability of passengers buying expensive tickets is 
closely related to the availability of cheap tickets, as well 
as utility evaluations of the available fare levels. If the 
available levels cannot satisfy a visitor, he/she is unlikely 
to purchase a ticket or select a suboptimal seat; a 
suboptimal seat would have to be at an available fare 
level with maximum utility. Clearly, analysis of passenger 
choice behaviour plays an important role in the 
decision-making process of airline sales. When a seat 
inventory control model is established, passenger choice 
behaviour and the impact on revenue should also be 
considered. 

There are two types of research directions in passenger 
behaviour[2]. The first and oldest uses qualitative analysis 
based on passenger surveys. Here, different importance is 
accorded to different factors influencing passenger choice 
behaviour. For example, Hersh and Ladany presented a 
model considering the time distribution of reservations 
and cancellations, as well as the effects of waiting lists, 
standbys and overbookings; the model then constructed a 
Bayesian reassessment of the probabilities sequential 
decision procedure. Such a model accords more 
importance to factors such as standbys and 
overbookings[2]. However, such methods can only 
provide a qualitative reference; they cannot reveal the 
internal mechanism of passenger choice behaviour[3].

The other type of research uses the logit model, which 
represents random utility theory based on an econometric 
discrete choice model. In 1993, Berge and Hopperstad 
explored preference and passenger choice behaviour on the 
basis of the logit model[4]. In 2006, Wang took the logit model 
as a foundation and analysed cabin choice behaviour for 
a specific service and a particular type of passenger[5].

Figure 1. Leg revenue and line revenue (US$) 

2. Multi-leg Seat Inventory Control  
with Passenger Choice 

2.1 Multi-leg seat inventory control problem  

After American deregulation in the 1970s, the 
emergence of fare levels lead to the seat inventory 
control problem becoming a focal issue. When airlines 
can offer their service at many fare levels with revenues 
equal to costs, this is sometimes known as multi-class 
ticketing[4]. The different fare levels correspond to 
several demand aspects such as departure time, ticket 
price and service. However, assigning the seats at 
different fare levels to successfully maximize revenue 
then becomes a hard nut to crack for airlines. 

In the early days, airlines usually carried out economic 
analysis on the basis of legs travelled[6]. However, the 
summation of maximized income of the individual legs is 
usually not equal to the line income for a multi-leg airline, 
because the legs are usually mutually conflicted[7].

Maybe a flight starts from A and arrives at C via B (Fig. 1). 
So there are two legs AB and BC, and three segments AB, 
BC and AC. Assume that the three segment fares are 
US$ 700, US$ 500 and US$ 1000, respectively, where each 
segment has only one ticket class. If one seat can be sold 
at A, selling the ticket to an AC segment passenger can 
make sure the revenue is maximized (the revenue will be 
US$ 1000). However, if there are sufficient passengers in 
the AB segment and BC segment, the airline will lose the 
opportunity to sell two tickets to AB and BC passengers, 
i.e., the company incurs a loss of revenue (the revenue 
could be US$ 700 + US$ 500 instead of US$ 1000).  

At present, there are a lot of multiple segment lines in 
China’s domestic market. There are, generally, three 
segments. Although the number of segments thus is 
not large, the classes are complicated in every leg. The 
problem of seat allocation becomes challenging due to 
the compilation of segments and series of classes, 
especially when each class affects the others[6].

2.2 Multi-leg seat inventory control model  
with passenger choice 

Preference and utility are basic concepts to describe the 
choice behaviour of the consumer. By attaching some 
reasonable assumptions to preferences, one can 
immediately obtain a utility function. Through analysis of 
utility functions, we can establish mathematical models. 
The application process of passenger choice behaviour is 
shown in Fig. 2. 
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Figure 2. Flow chart of passenger choice  

2.2.1 the passenger utility analysis 

Preference refers to judgements and evaluations when 
comparing two or more options. Sometimes preference is 
based on subjective attitude and sometimes on objective 
features or characteristics of two or more products[8]. The 
utility of a good or a service is justified in the mind of a 
consumer in that it meets his/her desires or needs; the 
relationship can also be related to pleasure or pain. Utility 
value is related to objective performance or service level 
of a product as well as a consumer’s subjective 
evaluations of efficacy or quality of service. It is usually 
assumed in microeconomics that consumer choice always 
pursues maximization of utilities. Measurement of 
rational utility functions of various classes of passengers 
is the foundation of seat inventory control for airlines. 

In the air transportation market, passengers travel for 
different purposes and/or at different preferred cost. This 
leads to different levels of demand among different types 
of passengers, and thus different classes of utility 
evaluation. Therefore, what are the factors affecting their 
selections? 

For example, in the Chinese domestic market, the flight 
fares of business passengers are generally paid by 
enterprises or organizations. These organizations are 
concerned mostly with maximizing production time, not 
the ticket price. Their schedules may be frequently and 
suddenly changed. Meanwhile, a high level of service is 
needed, i.e., most such passengers prefer to be in the first 
and business class cabins. Leisure passengers, with more 
stable schedules, advance booking and fewer journeys, 
often buy tickets at their own expense. They are more 
sensitive to price, but less sensitive to temporary changes 
in flight schedule and cabin conditions[9]. Airlines usually 
make rules and restrictions for different types of 
passengers to prevent those who are able to purchase at 

higher price levels from buying cheap tickets. Common 
restrictions include: (1) advance ticket limit, (2) 
restrictions on refunds and changing flights, (3) departure 
time limit, (4) Residence time limit (5) visa restrictions, (6) 
alternate boarding restrictions. Each level or class may 
contain only some of these restrictions. 

2.2.2 The seat inventory control model 

A common way of measuring utility for passengers is the 
degree of satisfaction they demand at each level. Price 
and other restrictions mean utility evaluations are 
different for different passengers. In the following, utility 
function is used to represent the evaluation of passenger 
choice behaviour. 

Suppose there are N legs and M fare levels on a given 
flight route. There are MN ODFs (i.e., combination of 
origin, destination and fare grade), and Ω  is the sum of 
all ODFs. ODF passenger utility can be represented by a 
linear equation including its characteristic attributes, such 
as departure and destination, price, advance ticket 
restrictions, and refund and change restrictions:  

,
1

K

ODF k ODF k ODF ODF ODF
k

U X Vλ ε ε
=

= + = +   (1)             

where UODF represents the utility of an ODF product for 
one passenger. Larger UODF means larger purchasing 
probability. K is the number of attributes of a certain ODF. 
XODF,k represents  the k-th attribute of the ODF (all the 

attributes are taken from surveys[6]). Kλ is a coefficient to 

be determined to illustrate the share of XODF,k; in other 
words, Kλ  represents the weight of a certain attribute. 

When a passenger chooses an ODF, he/she will make the 
decision based on the specific weights he/she accords to 
each of the attributes connected to this ODF. ODFε is a 

random variable obeying the Gumbel extreme value 

distribution, independently. 
=

=
K

k
kODFkODF XV

1
,λ

means the utility of an ODF not including the random 
variable. 

Passengers usually rationally select the largest ODF 
utility available to them. The probability is as follows: 

{ }
( ){ }

'

'  , ' ODF ' '

, '  ,  ' ODF
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ODF ODF ODF

ODF ODF ODF ODF ODF ODF
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where figures for ODFε  are independent of each other 

and obey the Gumbel extreme value distribution. Thus, 
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Using Equation 3 we can find the probability of each 
possible choice (PODF). The possible passengers can then 

be calculated for each ODF. We can use the weight Kλ
for each attribute to find the PODF, according to the 
maximum likelihood estimation method. 

Assume that the overall passenger demand is C and CODF

is the ODF choice demand, 

ODF
ODF

C C
∈ Ω

=               (4)

When purchasing tickets, each passenger can only buy a 
ticket for a CODF, so the purchasing behaviour of CODF th
passengers can be seen as CODF times Bernoulli 
experiment. The demands related to selecting from MN
ODFs are 

1ODFC ,
2ODFC ,…, and 

MNODFC . The 

maximum likelihood function is therefore as follows: 

( )1 2

1 2 1

, ,..., |
, ,...,

ODFi

MN

MN

MN
C

ODF ODF ODF i
iODF ODF ODF

CL C C C P
C C C

λ
=

= = ∏
 (5)

where 1 2( , , . . . , )kλ λ λ λ=


is a vector to be 

determined. 

Pi is the probability of choosing ODFi, and the logit for L 
is defined as Logit(L):  

1 21

( ) ln( )

ln
, ,...,i

MN

MN

ODF
i ODF ODF ODF

Logit L L
CC

C C C=

=

= + (6)

After the constant part of equation (6) is removed, e.g., 

1 2

ln
, ,...,

MNODF ODF ODF

C
C C C

, the partial derivative against 

kλ can be obtained. Assume it is 0 and we have: 

1

0i i

k

MN
ODF P

i i

C
P λ=

∂
=

∂             (7)    

1, 2, . . . ,k m=

Solving Equation 7, we obtain: 1 2, ,..., kλ λ λ . Substituting 

1 2, , . . . , kλ λ λ  into Equations 1 and 3, we obtain utility 

and probability for each ODF. 

We can calculate the share level fares for each ODF by 
using the method presented by Dong, where level fares 

are distributed based on shadow prices and prorate 
distribution in segments’ O&D combinations[9]. We can 
then sort all ODFs by their share of the respective level 
fares, from highest to lowest, stamping them S,S-1,…,1, 
where S=MN. According to the famous nesting rule[10], we 
can book a limited number of seats for every ODF. For 
example,


−

+=

−

−=

−=
=

1

1

1

*

;*
;

S

ik
ki

sS

S

PCCaBL

PCCaBL
CaBL

           (8) 

where C is the total demand for all ODFs, as in Equation 
4, and Ca is the total seats on the flight. C*Pi is the 
demand for ODFi, P0=0, k,i=S,…,0. 

After determining the probabilities of passengers 
selecting various fare levels or classes, we can obtain the 
revenue R as in Equation 9, where fi is the real fare of the 
ODFi fare level. 

i

S

i
i PfCaR ⋅⋅= 

=1

             (9) 

3. Numerical Simulation and Results 

The experimental data was taken from a Chinese 
domestic route, Guilin(A)---Shenzhen(B)---Sanya(C). 
The total number of seats was 140. There were three 
segments, AB, BC and AC, and two legs, AB and AC. 
Every segment had three fare levels, shown as y, q, and v. 
Each ODF’s fare and demand is listed in Table 1.  

No. ODF Fare 
1 ABy 500 
2 ABq 300 
3 ABv 150 
4 ACy 1000 
5 ACq 625 
6 ACv 250 
7 BCy 600 
8 BCq 350 
9 BCv 200 

Table1. Fare level and demand of ODFs 

The utility function is established according to the factors 
fares, advance booking restrictions, change restrictions, etc. 

1 ,1 2 ,2 3 ,3i i i i iU x x xλ λ λ ε= + + +     (10)             

where Xi,1 is the attribute of ODFi, Xi,2 is the constraint 
attribute of ODFi on the condition of purchasing 
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tickets in advance, and Xi,3 is the constraint attribute of 

ODFi on the condition of changing  tickets. iε is a 

random variable obeying the Gumbel extreme value 
distribution. We applied maximum likelihood estimation 
to calculate the factors as follows:  

1 34. 5, 2 4. 2, 0. 2λ λ λ= − = − = ,

Then, Equation 10 becomes: 

Ui = -4.5Xi,1 -4.2Xi,2 +0.2Xi,3               (11)  

A total of 100 questionnaire surveys were distributed. 
There were 20 valid questionnaires. The scores are shown 
in Table 2. The figures under “No.” in Table 2 are 
consistent with those in Table 1.                                

No. Xi,1
Adv 
days 

Xi,2
Chang 
times 

Xi,3

1 0.1 0 1 2 0.8 
2 0.4 8 0.8 1 0.6 
3 0.2 24 0.9 N 0.7 
4 0.3 0 0.8 2 0.8 
5 0.7 8 0.3 0 0.8 
6 0.5 24 0.6 N 0.5 
7 0.6 0 0.3 2 0.6 
8 0.9 8 0.2 1 0.3 
9 0.8 24 0.1 N 0.1 

Table 2. Scores for ODF attributes 

Thus, through Equations 3, 8, 9 and 11 we obtain the 
probability of choice and the booking limit for each ODF. 
Sorted by the booking limit, we obtain Table 3: 

No. ODF fare Choice 
Pro. 

demand Booking 
limit  

1 ABy 500 0.1030 14.42 140 
2 ABq 300 0.0594 8.316 125.58 
7 BCy 600 0.0980 13.72 117.264 
4 ACy 1000 0.0970 13.58 103.544 
3 ABv 150 0.1162 16.268 89.964 
8 BCq 350 0.0861 12.054 73.696 
5 ACq 625 0.1973 27.622 61.642 
6 ACv 250 0.0748 10.472 34.02 
9 BCv 200 0.1682 23.548 23.548 

Table 3. Probability of choice and booking limit 

We thus obtain the booking limit numbers for the ODFs: 140, 
125.58, 89.964, 103.544, 61.642, 34.02, 117.264, 73.696, 23.548. 
Because the number of seats to be sold can only be an integer, 
these are rounded to: 140, 126, 90, 104, 62, 34, 117, 74, 24).  

For comparison, the booking limit number is then 
recalculated by the shadow price method and the bucket 
method. This yields the following respective results: 140, 
129, 103, 109, 61, 52, 129, 89, 21 and 107, 97, 32, 140, 132, 
67, 107, 92, 22. 

Next, 10 groups of random numbers are generated by 
Matlab software to simulate the passenger choice 
procedure. This obtains simulation data for every ODF, as 
shown in Table 4.  

NO. ABy ABq ABv ACy ACq ACv BCy BCq BCv 
1 5 17 28 7 26 39 10 23 43 
2 9 25 41 11 29 39 19 32 51 
3 7 17 47 7 21 39 19 27 50 
4 12 20 35 6 24 40 17 19 55 
5 5 23 40 7 25 52 13 28 51 
6 8 21 31 4 26 34 10 20 51 
7 9 25 32 7 35 36 15 29 56 
8 15 13 43 2 21 47 14 23 42 
9 13 23 44 11 25 42 15 23 49 
10 14 18 40 10 25 44 13 24 46 

Table 4. Booking of each ODF 

We then compare the average revenue using the 
passenger choice, shadow fare and bucket methods, 
respectively. For the same passenger arrival procedure 
shown in Table 4, the above three methods obtain 
different results and different revenues, as shown in Table 
5. It is easy to see that the average revenue with the 
passenger choice method is the lowest given by any of the 
three methods. 

No. Passenger 
choice

Shadow
fare  

Bucket 
method 

1 65900 69800 68800 
2 63275 63425 63325 
3 78125 78775 77175 
4 74025 75675 73025 
5 84275 86675 84925 
6 75475 78625 76875 
7 73725 75375 74975 
8 70325 72725 72625 
9 75150 76800 76250 
10 64875 64275 62825 
Avg. Revenue 72515 74215 73080

Table 5. Revenue comparison using three methods 

Scatter plots were also made, as shown in Fig. 3 and Fig. 4. 
From Fig. 3, we can see that the passenger choice method 
resulted in a lower EMSR than with the shadow price 
method, in general. Similar results can also be seen in Fig. 
4. In 10 trials, the passenger choice method obtained a 
higher revenue figure only three times. 

To sum up, this paper has assessed the use of passenger 
choice behaviour in solving the multi-leg seat allocation 
problem. The revenue yielded by this method is lower 
than by the shadow price method and the virtual “bucket” 
method. However, customers’ needs are better met and 
the loss of revenue is insignificant. 
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Figure 3. Results of passenger choice method and shadow price 
method in 10 trials 

Figure 4. Results of passenger choice method and the visual 
“bucket” method in 10 trials 

Although this method does not increase revenues, it can 
be important for airlines’ product design and route 
network planning. It allows airlines to meet passenger 
demand in more detail, thereby reducing the direct 
contradiction between the interests of airlines and 
passengers while cultivating passenger satisfaction and 
loyalty. 

4. Conclusion 

This article has considered the impact of subjective 
passenger factors on multi-leg seat inventory control. 
Through analysis of passenger utility and preferences, a 
discrete choice model was built, and parameters were 
evaluated by estimation. Although an inferior 
experimental result is obtained compared to the shadow 
fare method and the virtual “bucket” method, the 
passengers’ choice does need to be introduced into 
approaches to multi-leg seat inventory control. The 
passenger choice method proposed in this paper can be 
further improved, for example, by using more scientific 
analysis of flight characteristics, and/or a rough set 
method. 
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