ZAŠTITA SKLADIŠNIH SILOSA POLJOPRIVREDNIH PROIZVODA OD POŽARA I EKSPLOZIJE

PROTECTION FROM FIRE AND EXPLOSIONS OF SILOS FOR STORING AGRICULTURAL PRODUCTS

N. Perić

Sada kada se misli na obnovu i izgradnju skladišnih silosa za poljoprivredne proizvode (kukuruz, pšenica, soja, manioka, tapioka, pšenično brašno) mora se misliti na havarije koje se događaju i koje su se desile u posljednje vrijeme kod nas i u svijetu, zbog nepravilne zaštite skladišnih silosa od eksplozije. Članak obrađuje svojstva materijala čije je poznavanje osnova za izbor sistema za transport, skladištenje i otpašivanje.

Posebno upozorava na posljedice koje mogu nastati ukoliko se ne poznaju i eksplozivne karakteristike navedenih materijala i način rješavanja.

UVOD

Silosi, bilo čelični ili betonski, obično se grade na neodređeno vrijeme i vijek trajanja, i u vrijeme upotrebe u njima se skladište različiti materijali. Zato je potrebno, da se, osim što se upoznalo s osobinama materijala koji će biti uskladišteni, moramo upoznati i druge faktore koji utječu na opterećenje zidova silosa; te faktore treba točno razgraničiti na one koji se mogu sa sigurnošću predvidjeti, i faktore koji se mogu procijeniti. Nas u ovom slučaju isključivo zanimaju požarno eksplozivne karakteristike materijala koje treba uzeti u obzir pri izračunavanju omotača silosa.

Osnovni materijali što cirkuliraju u transportnim sistemima, skladišnom i manipulativnom prostoru, imaju svoje fizičko-kemijske karakteristike što ima presudni utjecaj na transport, skladištenje i otpašivanje. Oni uslovljavaju izbor načina transporta kao i same transportne uređaje, izbor uređaja za otpašivanje i filterskog medija kao i stupanj protueksplozijske zaštite.

Transportni materijali mogu se klasificirati po svojim svojstvima u tri grupe:

I ZRNATI MATERIJALI
II ZDROB - ŠROTO - PALETE - BRIKETI
III BRAŠNO

Kod praktičnog rada s navedenim materijalima pri transportu, skladištenju i otpašivanju, kao važna ističu se fizička svojstva karakteristična za sve materijale: sipkost
- raslojavanje
- porožnost
- sorpciono-desorpciona sposobnost para i plinova
- svojstva u vezi s izmjenom toplote i mase (vlaga)

Svaki od navedenih materijala raspolaže svojim odgovarajućim stupnjem zaprašenosti i razredom eksplozivnosti.

Zajednička karakteristika svih materijala s aspekta otprašivanja su:
- hidroskopnost
- ljepljivost
- abrazivnost
- eksplozivnost
- visoka koncentracija zaprašenosti (odnosi se samo na brašna manioke i zdrob tapioke gdje dostiže čak i do 40 g/m³).

Razred eksplozivnosti kome pripadaju svi navedeni materijali je: EXD II A T₁ (prema VDI 2263 normama).

Svi gore navedeni materijali organskog su porijekla gorljivi su, i u određenim uvjetima u vezi sa zrakom postaju eksplozivni.

KARAKTERISTIKE POŽARNO EKSPLOZIVNIH MATERIJALA POLJOPRIVREDNIH PROIZVODA U ZRNU I PRAHU

Tablica 1

<table>
<thead>
<tr>
<th>Vrsta prašine</th>
<th>Temperatura tinjanja 5 mm debljine nataloženog sloja na površini zagrijanoj na °C</th>
<th>Temperatura paljenja uzvitolane prašine u zraku u °C</th>
<th>Temperatura paljenja oblaka prašine °C</th>
<th>Minimalna energija iskre potrebna za paljenje mJ</th>
<th>Minimalna eksplozivna koncentracija materijala kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pšenična prašina</td>
<td>305</td>
<td>415</td>
<td>–</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>Zobena i ječmena prašina</td>
<td>305</td>
<td>–</td>
<td>440</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ražena prašina</td>
<td>270</td>
<td>430</td>
<td>–</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pšenična prašina</td>
<td>470</td>
<td></td>
<td></td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Kukuruzna prašina</td>
<td>400</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Sojina prašina</td>
<td>560</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pšenična prašina</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kukuruzna prašina</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sojina prašina</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Prema tablici 5 od 1954 g. NEPA)
Prema podacima CN II PO CN II "Ventilacione ustanove zjerno pjererabivajuščih preprijatih - AM. Dzajzi Moskva 1974/4 imamo slijedeću tablicu:

Tablica 2

<table>
<thead>
<tr>
<th>Materijal koji stvara prašinu</th>
<th>Podaci teh. analize</th>
<th>Zapaljivost prašine</th>
<th>Eksplozivnost prašine</th>
<th>Silosna prašina</th>
<th>Silosna prašina u prostorijama</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vlažnost</td>
<td>Pepeo</td>
<td>Tem. iskre</td>
<td>Tem. tin.</td>
<td>Tem. eksp.</td>
</tr>
</tbody>
</table>

Za pravu ocjenu požarno-eksplozivnih karakteristika navedenih materijala nedostaje još nekoliko važnih podataka kao što su: maksimalna donja granica eksplozivnosti, maksimalni porast pritiska kao i eksplozijski razred kome materijal pripada. Pošto su manioka i tapioka ustvari jedan isti materijal, samo što je jedan krupica a drugi brašno, podaci će biti dati za brašno odnosno za tapioku kao materijal s izraženijim karakteristikama za požar i eksploziju. Na tablici 3 dati su podaci o gore navedenim karakteristikama, uzeti iz STF-Reporter Nr. 2-79 Brend und Explosionsenngrössen von Stäuben -Institut für Explosionschutz und Spregetechnik BVS.

Tablica 3

<table>
<thead>
<tr>
<th>Naziv materijala</th>
<th>Max. donja granica eksplozije u bar</th>
<th>Max. porast pritiska u bar/s</th>
<th>Eksplozijski razred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pšenična prašina</td>
<td>9,3</td>
<td>112</td>
<td>1</td>
</tr>
<tr>
<td>Kukuruza prašina</td>
<td>9,4</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Ječmenova prašina</td>
<td>7,4</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>Sojina prašina</td>
<td>9,2</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>Sojin šrot</td>
<td>8,5</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>Tapiokina prašina</td>
<td>9,9</td>
<td>97</td>
<td>1</td>
</tr>
</tbody>
</table>
MJERE ZA ZAŠTITU OD POŽARA I EKSPLOZIJE

Zajednička karakteristika svih materijala s aspekta otprašivanja, što smo već naveli, a sada ponovno nabrajamo su: hidroskopnost, ljepljivost, abrazivnost, eksplozivnost i visoka koncentracija zaprašenosti. U tijeku transporta i skladištenja one stvaraju ogromne probleme, osobito pri izboru vrste transporta i sistema pražnjenja silosa. Posebno pogлавlje je teškoća sprečavanja požara i eksplozije kao i izbor uređaja za zaštitu od požara i eksplozije. Zato evo nekoliko prijedloga za otklanjanje škodljivih osobina navedenih materijala.

A) Hidroskopnost i ljepljivost

Hidroskopnost i ljepljivost otklanjaju se na tri načina.
Podizanjem brzine u aspiracijskim cjevovodima većim od 20 m/s; time spriječavamo aglomeraciju prašnih djelilica na koljenima, račvama i regulacijskim elementima, kao i sedimentaciju prašnih djelilica u horizontalnim cjevovodima.

Prema VDI 2263 za materijale organskog porijekla ta brzina nesmije biti manja od 25 m/s.

Ljepljivost i stvaranje aglomeracijskih pojava u uređajima za otprašivanje sprečavamo ne samo povećavanjem brzine nego i pravilnim izborom filterskog medija. Određivanjem vrste naboja prašnog djelilica i izbor filterskog medija istog naboja omogućavamo lakše otrešanje filterskih vreća. Dodatnom apreturom na frontalnoj strani filterskog medija postizemo smanjivanje adhezijske sile između prašnog djelilica i filterskog medija.

B) Abrazivnost

Abrazivnost se ublažuje (a ne otklanja) izborom kvalitetnijeg materijala za koljena. Koljena moraju imati najmanji radijus R=1500 mm. Za abrazivne materijale predviđamo koljena od bazalta.

Otpornost na abraziju izražava se takozićanjem koeficijentom brušenja. Koeficijent brušenja određuje se specijalnom metodom, kojom se dokazuje gubitak probnog materijala u cm³/cm².

Bazalt ima koeficijent (misli se na topljeni bazalt, kao materijal koji se upotrebljava za koljena cjevovoda) brušenja vrijednost od 0,055 - 0,045 cm³/cm². Stoprostotna recipročna vrijednost ovog koeficijenta daje takozvanu brusnu tvrdoću. Brusna tvrdoća topljenog bazalta ima vrijednost do 2200 cm³/cm². Primjera radi navedimo vrijednosti brusne tvrdoće nekih materijala: staklo u pločama 609, tvrdi porculan 1370, majolika 860, prirodni bazalt 800 i topljeni bazalt kao što smo već napisali 2200. Tvrdoća topljenog bazalta po Mohs skali ima vrijednost 8,5 i približava se vrijednosti korunda.

Vijek trajanja bazaltnih cjevovoda i koljena kod pneumatskog transporta abrazivnih materijala iznosi od 8 do 10 godina. Za to vrijeme morala bi se koljena iz čelika
mijenjati najmanje 20 puta. Zanimljivi su i ovi podaci. Na primjer, molibdinski čelik ima 20% manje habanje od kromolibdinskog čelika, ali se zbog visoke cijene ne upotrebljava. Po ruskim podacima habanje cijevi i koljena od livenog čelika 2 puta je manje od habanja cijevi od čelika. Bijeli liv ima 3 do 4 puta veće habanje a sivi liv čak 5 puta veće habanje od ugljenikovog čelika itd.

C) Eksplozivnost

Eksplozivnost se uklanja ugradnjom pasivne PE zaštite i to:
Ugradnjom vreća s metalnom armaturom za odvode proizvodne elektrike.
Na svim obrtnim sklopovima transportera (elavator, tračni transport, puž, lančani transport i ventilator) ugraditi temperaturni detektor na ležajevima. Predvidjeti termostatsku blokadu uslijed sagorijevanja kao opasnost za upaljenje, požar i eksploziju.
Ugradnjom rotora ventilatora od neiskrećećeg materijala (prema preporuci BVS. Atesta komisija na području Zapadne Njemačke, koja je nakon iskustva i dobivenim ispitnim rezultatima odobrila materijale koji trenjem i udarom stranih krutih čestica te međusobnim dodiru, ne mogu stvoriti nikakvu zapaljivu iskru), i to:

<table>
<thead>
<tr>
<th>Za košuljicu rotora</th>
<th>Za ventilatorska krila</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Silumin GAL Si 12</td>
<td>GAL Si 12</td>
</tr>
<tr>
<td>2. Silumin GAL Si 12</td>
<td>Medeni lim Ms 63</td>
</tr>
<tr>
<td>3. Med Ms 63</td>
<td>Silumin GAL Si 12</td>
</tr>
<tr>
<td>4. Za neke specijalne ventilatore čelik ST. 37</td>
<td>Medeni lim Ms 63</td>
</tr>
</tbody>
</table>

Poslije određivanja reduciranog pritiska, koji bi vladao po eksploziji u silosima, u ovisnosti od karakteristika usklađenog materijala, odrediti potrebnu veličinu eksplozionih otvora na silosu izraženu u metrima kvadratnim čistog odušnog presijeka.
Ugradnjom PE klapni, membranskih ili inercijskih, na eksplozionim otvorima na silosima kao odušnih organa u slučaju naglog skoka pritiska u određenom štitištem volumenu.
Siguran rad PE klapne mora zadovoljiti osnovne radne uvjete:
Mora reagirati na napritisak od 0,1 bara.
Mora imati što manju inerciju; ako se izvode s kontrategom bitno je da on bude kvalitetno namješten.
Za ugradnju membranskih klapni potrebni su određeni materijali s precizno definiranim karakteristikama; izbor materijala ovisi o karakteristikama radnog medija, radne okoline (klimatski uvjeti) i mjestu ugradnje; ukoliko je ugradnja PE klapni na krovnim (gazećim) površinama ispod njih je obvezna ugradnja zaštitne rešetke;
Inercijske klapne s kontrategom imaju prednost pred membranskim ali i mane; prednosti su im što nakon odušivanja zauzimaju početni položaj bez ikakvih deformacija dok se membranske razara i potrebno ih je zamijeniti, inercijske klapne su po svojoj funkciji lijene i spore pri odušivanju.

235
Redovito ih treba čistiti od nečistoća, paziti da se prilikom bojedisanja ne zalijepi poklopac s okvirom i time poveća silu dizanja, podmazivati redovito šarke, a naročito su osjetljive na slojeve leda i snijega (ako su u horizontalnom položaju).

Dimenzioniranje klapni znači u suštini određivanje njihove ukupne površine prema potencijalnom volumenu eksplozije koju moraju amortizirati; izbor površine PE klapni prema dijagramu u zavisnosti da li je riječ o silosima, transportnim ili filterskim uređajima.

D) Smanjivanje visoke koncentracije zaprašenosti prije ulaska materijala u filter

Smanjivanje visoke koncentracije zaprašenosti, koja može biti i do 40 g/m³ rješava se već samim projektom i to ugradnjom ciklona ispred filtera; ovim se postiže snižavanje koncentracije, u ovisnosti o granulaciji materijala, za 75 do 80%, a to je vrlo važno kada se zna da standardni filterski mediji podnose trajno opterećenje od 10 do 15 g/m³ zaprašenog zraka.

Gdje je moguće, koncentracija materijala koji se transportira mora biti izvan granice eksplozivnosti; granica eksplozivnosti za poljoprivredne proizvode odnosno za prašinu poljoprivrednih proizvoda kreće se od 4,7 do 950 g/m³ (po NFPA br. 66 - 1964 g. standardu).

Slika 1 Veličina otvora za izjednačenje pritiska kod filtera

Pravilno određivanje površine otvora na uređajima za otprašivanje - filterima. Veličina otvora na filteru dana je na dijagramu sl. 1.

Ugraditi filterske vreće u otprašivaču s otporom manjim od 10^8 Ohma (JUS GEO 049.050/74).

Zone u neposrednoj blizini protueksplzijskih otvora na silosima, cjevovodima i filterima proglasiti izuzetno opasnim sa zabranom kretanja neovlaštenim osobama kako ne bi došlo do povrede radnika.
ODREĐIVANJE VELIČINE EKSPLOZIJSKIH OTVORA NA SILOSIMA

U VDI 2263 standardu dat je dijagram za izbor eksplozijskih otvora na skladišnim silosima a u VDI 3673 date su upute kako i računskim putem doći do pravih veličina odnosno do čiste površine otvora za ugradnju eksplozijskih klapni. U VDI 2263 dat je dijagram za izbor veličine otvora za reducirani pritisak do 3 bara, koji vlađa poslije eksplozije i za kakav bi pritisak bio dimenzioniran silos. Na osnovi datog dijagrama do veličine silosnog volumena 100 m³, izradio sam novi dijagram do 3000 m³ zapremine a za reducirni pritisak do 3 bara.

Što znači veličina površine otvora na silosu? To je ona veličina kojom se izabire reducirni pritisak što bi vladao u silosu poslije eksplozije. Ako je veličina otvora i prema njenoj veličini određen i reducirni pritisak onda će šteta biti daleko manja prilikom eksplozije a sačuvati će se i dosta opreme i time skratiti vrijeme za popravak i nastalu štetu. Na sl. 2 dat je dijagram određivanja eksplozijskog otvora na silosima.

IZBOR FILTERSKE TKANINE S OBZIROM NA SVOJSTVA PRAŠINE POLJOPRIVREDNIH PROIZVODA

Davno je već poznato da pri postupku čišćenja u otprašivačkim uređajima, bilo da imaju mehaničko i pneumatsko otresanje filterskih vreća, kod normalnog rada dolazi do stvaranja statičkog elektriciteta i visokog napona. Veličina napona ovisi o materijalu koga otprašujemo, odnosno o smjesi materijala i zraka, o temperaturi na kojoj se otprašuje materijal, o pritisku, filterskoj tkanini kao i o brzini filtracije, (koja može biti od 0,01 do 0,05 m/s).

Elektrostaticke sile imaju veliki utjecaj na odvajanje praša. Krivac za eksploziju praha nije samo materijal već i trenje vlakna o vlakno i time stvaranje električnog naboa, kao i izbor filterskog vlakna suprotnog naboa od nabosa materijala.

Intenzitet naboa ovisi o površinskoj hrpaavosti. Takvi naboji su vrlo opasni jer kod napona od 3 000 V može doći do stvaranja iskre i do eksplozije. Nije neobično da se pri radu s različitim materijalima u filterskim vrećama stvara napon i do 40 000 V.

Evo nekoliko podataka o vlaknima materijala s pozitivnim i negativnim nabojima datih na tablici 4.

| Tablica 4 |
|------------------|------------------|------------------|
| Stakleno vlakno | + + 25 V/mm | Acetatna svila | - - 5 V/mm |
| Vuna | + + 20 V/mm | Poliestar | - - 10 V/mm |
| Svilka | + + 10 V/mm | Polivinilklorid | - - 12 V/mm |
| Pamuk | + + 5 | Polietilen | - - 20 |
| Polikrilitril | ± ± 0 | | |

237
Slika 2 Dijagram određivanja eksplozijskog otvora na silosima
Ako filterska tkanina ima visok naboj s drugačijim predznakom nego što ga ima materijal koga odprašujemo dolazi do stvaranja aglomeracijskih pojava.

Normalna filterska tkanina ima otpor izražen u Ohmima veći od 10^{12}, bez obzira iz koga materijala je napravljena filterska vreća (pamuka, vune i umjetnih materijala kao što su polyester, nomex i dr.). Svi se ti materijali svrstavaju u električno neprovodljive materijale i u većini slučajeva uzročnici su stvaranja statičke elektrike. Dodatkom 2 do 3% metalnih vlakana može se smanjiti otpor ispod 10^3 do 10^5 Ohma, čime je osigurana električna provodnost za odvajanje elektrostatičke napetosti. Da bi se odveo električni naboj potrebno je kućište vrećastog filtera dobro uzemljiti.

Da bi filterska vreća obavila svoju ulogu pravilno mora biti izradena i montirana. Ako se radi o materijalima o kojima ovdje pišemo onda filterska vreća mora biti napravljena iz komada bez rubova i ugrađenih obruča, kako se ne bi taložio materijal po rubovima, koji su često uzrok eksplozije; a i približno za 10% se smanjuje efektivna filterska površina. Za navedene materijale opterećenje filterske vreće ne smije biti veće od $36 \text{ m}^3/\text{m}^3 \cdot \text{h}$. Osim što filterska vreća mora biti antistatička mora biti i nezapoljiva. Često pri brušenju metalnih komada iskre preko cjevovoda elevatorskih odleto u filtersku vreću. Ako je filterska vreća od pamuka, iskra u vreći napravi rupu i plamen polako tinja u vreći. Budući da struja zraka stalno ulazi u filtersku vreću, rupa na vreći se širi dok koncentracija smješte propaha i zraka ne stvori povoljne uvjete da se zajedno s vrećom upale a često i eksplodivaju. Ako je umjesto pamučne vreće ugrađena filterska vreća od umjetnog materijala odnosno od iglane tkanine od umjetnog materijala onda iskra napravi rupu, rupa se "zakali" bez širenja tinjanja i stvaranja plamena.

Karakteristike poliestera kao materijala za filterske vreće

Igličasta filterska tkanina od poliestera izabrana je na osnovi karakteristika materijala i tipa filterskog postrojenja, jer je najpogodnija za filtere s pneumatskim otresanjem vreća odnosno regenaracije filterskih vreća. Osim toga igličasta filterska tkanina ima veliku propustljivost i veliku sposobnost zadržavanja fine frakcije prašine (99,98% granulacije materijala do 5 mikrometara i 85% od 0 do 5 mikrometara), Izabrani igličasti medij YPEK 50/5 L ima površinsku otpornost 1 x 10^3 Ohma/cm² i transverzalnu otpornost 5,9² Ohma/cm² što je daleko ispod propisanih međunarodnih normi O^0 Ohma/cm² za takve vrste materijala. Filterske vreće proizvodi Tekstilna Medvode.

Na slici 3 prikazane su zone opasnosti u silosnom postrojenju u LUCI KOPAR.

239
Slika 3. Zone opasnosti u silosnom postrojenju - LUKA KOPAR
LITERATURA

Dr. IR. Peschal, Die Mühle,. 110 (1973) 40, str. 635 - 642

Dr. S. Radandt, Versuchsergebnisse über elektrostatische Aufladung beim Füllen grosser Silos durch brennbare Stäube, Moderne Unfallverhütung, Heft 22, 1978 g. str. 101 - 106

Perić Nedeljko, d. i. s., Osnove za projektovanje uređaja za otpašivanje i izbor tkanine za filtriranje, Tekstil, 1986 1. str. 320

Perić Nedeljko, d. i. s., Pneumatski transport, usklađenje, homogenizacija otpašivanje, Itas, 1987 1. str. 500

VDI 3673 DRuckentlastung von Staubexplosionen., ENTWURP, juni 1975
VDI 2263 Verhütung von Staubbränden und Staubexplosionen

Adresa autora - Author's address:
Perić Nedeljko, dipl. str. ing.
Naučni suradnik - savjetnik, Ljubljana

Primljeno: 18. 05.1992.