MAGNETIC RESONANCE IMAGING AND MAGNETIC RESONANCE ANGIOGRAPHY IN THE MANAGEMENT OF PATIENTS WITH ISCHEMIC STROKE IN VERTEBROBASILAR CIRCULATION

Martina Špero, Miljenko Kalousek, Josip Hat, Darko Bedek and Miljenko Marotti

Section of Neuroradiology, Department of Interventional and Diagnostic Radiology, Sestre milosrdnice University Hospital, Zagreb, Croatia

SUMMARY – Vertebrobasilar occlusion is a life-threatening event that requires prompt diagnostic evaluation and subsequent therapy. Advanced magnetic resonance imaging (MRI) methods, including diffusion-weighted imaging and magnetic resonance angiography (MRA), are highly sensitive for the detection of ischemic tissue injury, and for the detection and localization of intracranial arterial occlusion and stenosis. In the era of thrombolytic therapy, MRI and MRA provide useful information for therapeutic decision making in the early stage of stroke evaluation. This retrospective review included patients with posterior circulation symptomatology examined at our Department between July 2002 and January 2005, 8 female and 11 male, mean age 54.9 years. The aim was to present the possibilities of MRI and MRA in the management of patients with ischemic stroke in posterior circulation. In 19 patients with an ischemia in the vertebrobasilar circulation detected by MRI of the brain, MRA identified 8 cases of basilar artery occlusion, 4 cases of basilar artery stenosis, 3 cases of multiple atherosclerotic stenoses of the vertebral arteries with 2 cases of concurrent vertebral artery occlusion, 2 cases of vasculitis in the posterior circulation, 1 case of proximal posterior cerebral artery occlusion, and 1 case of posterior cerebral artery stenosis. In 8 patients with basilar artery occlusion, the site of occlusion was proximal in 3 cases, proximal and middle in 2 cases, middle and distal in 2 cases, and distal in 1 case. MRI is a powerful tool to detect ischemic changes in stroke immediately upon stroke onset, while MRA is highly sensitive for the detection of occlusive disease in large intracranial arteries as well as in posterior circulation. In the acute stroke setting, MRI and MRA are useful for: 1) early and reliable identification of ischemic stroke; 2) improved choice of treatment modality by helping exclude from thrombolysis patients at high risk of hemorrhage and by identifying those patients most likely to benefit from it; 3) pinpoint the vascular origin of ischemic stroke; 4) determination of neurologic consequences of stroke, including final infarct size, clinical outcome and hemorrhagic risk.

Key words: Cerebrovascular accident – diagnosis; Cerebrovascular circulation – diagnosis; Cerebral arteries – pathology; Ischemic attack – diagnosis; Magnetic resonance imaging – methods; Magnetic resonance angiography

Introduction

Ischemia in the vertebrobasilar region may cause involvement of the pons, midbrain, cerebellum, thala-
as spiral computed tomography with computed tomography angiography (CTA), and magnetic resonance imaging (MRI) with diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) and magnetic resonance angiography (MRA) as well as the advent of new treatments such as systemic, intravenous and local intra-arterial thrombolysis (LIT) and percutaneous transluminal angioplasty (PTA), have facilitated diagnosis and treatment of BAO and basilar artery stenosis (BAS).

The aim of the study was to present the possibilities of MRI and MRA in the management of patients with ischemic stroke in posterior circulation through evaluation of our own results.

Patients and Methods

Medical records and reports of head CT, MRI and MRA findings of 19 patients examined at our Department between July 2002 and January 2005, and diagnosed as having occlusive disease of the vertebrobasilar artery system were retrospectively reviewed. Eight (42.1%) female and 11 (57.9%) male patients, mean age 54.9 years, were admitted to our hospital with clinical signs suggestive of ischemic stroke in the posterior circulation: 18/19 had sudden onset of symptoms (one patient had been hospitalized at another institution for a month and was transferred to our hospital for neuroradiologic diagnostic procedures), and 1/19 had transient symptoms.

Eleven of 19 patients underwent emergency CT scan of the head within few hours of arrival (in eight patients emergency head CT was unavailable for technical reason). Emergency brain CT studies were performed using a conventional Shimadzu Intellect 4800 CT scanner. CT scans were unenhanced, with a slice thickness of 5 mm throughout the skull base and posterior fossa. Head CT findings were classified as positive with, and negative without signs of acute ischemic stroke in the posterior circulation.

All patients were submitted to MRI and MRA studies of the brain within 2 to 10 days of admission to the hospital. MRI and MRA studies were performed with a 1.0-T MR imaging system (25 mT/m, Magnetom Harmony, Siemens, Erlangen, Germany), using a standard head coil. The standard MRI study included diffusion weighted echo-planar sequence (DWI) in transverse plane, T1-weighted (T1W) spin-echo (SE) sequence in sagittal plane, T2-weighted (T2W) fast SE sequence in transverse plane, fluid attenuated inversion recovery (FLAIR) fast SE sequence in transverse plane, and T2*-weighted gradient-echo sequence in transverse plane. MRAs of the intracranial arteries were performed with a standard three-dimensional time-of-flight technique (3D TOF MRA): 3D TOF angiograms were reconstructed using maximum-intensity projection (MIP) images.

Ischemic lesions on MRI were categorized as thalamic, midbrain, pons, posterior cerebral artery (PICA) territory, and cerebellar [subdivided into superior, anterior inferior, and posterior inferior cerebellar artery

Fig. 1. A 74-year-old female patient with right frontotemporal headache, vertigo, nausea and vomiting, ataxia: (a) transverse T2W image: acute ischemia in the right posterior inferior cerebellar artery territory involving dorsolateral medulla oblongata; (b) 3D TOF MRA: right vertebral artery occlusion.
The sites of basilar artery (BA) occlusion were classified according to Archer and Horenstein\(^1\) following the three anatomic segments of the BA: proximal, from the confluence of the vertebral arteries to the origin of the anterior inferior cerebellar artery (AICA); middle, from the origin of the AICA to the origin of the superior cerebellar artery (SCA); and distal, distal to the SCA. The length of occlusion was classified as “short” if only one segment of the BA was occluded, and “long” if two or more segments were occluded.

Results

Eleven patients were evaluated by head CT on admission. CT findings were negative in 6 and positive in 5 cases with acute brain infarction involving vertebrobasilar territory. MRI and MRA studies were performed in 19 patients with suspected or previously confirmed acute stroke in the posterior circulation. On MRI studies, abnormal parenchymal signals related to ischemic stroke were localized as follows: 8 in the cerebellum, 5 in the pons, 3 in the PICA territory, 1 in the PCA territory, and 1 in the thalamus. MRI and MRA in vertebrobasilar ischemic stroke

Table 1. Magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) findings

<table>
<thead>
<tr>
<th>MRI findings</th>
<th>MRA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellum</td>
<td>8/19 Basilar artery occlusion 8/19</td>
</tr>
<tr>
<td>PICA territory</td>
<td>proximal, short 5/8</td>
</tr>
<tr>
<td>AICA territory</td>
<td>distal, short 2/8</td>
</tr>
<tr>
<td>SCA territory</td>
<td>proximal and middle, long distal and middle, long</td>
</tr>
<tr>
<td></td>
<td>1/8</td>
</tr>
<tr>
<td>Pons</td>
<td>5/19 Basilar artery stenosis 4/19</td>
</tr>
<tr>
<td>Midbrain</td>
<td>1/19 Multiple atherosclerotic stenoses of vertebral arteries 1/19 with vertebral artery occlusion 2/19</td>
</tr>
<tr>
<td>PICA territory</td>
<td>3/19 PICA territory, proximal occlusion 1/19</td>
</tr>
<tr>
<td>PICA territory and thalamus</td>
<td>1/19 PICA territory, proximal stenosis 1/19</td>
</tr>
<tr>
<td>Thalamus</td>
<td>1/19 Vasculitis in posterior circulation 2/19</td>
</tr>
</tbody>
</table>

PCA = posterior cerebral artery; AICA = anterior inferior cerebellar artery; PICA = posterior inferior cerebral artery; SCA = superior cerebellar artery

Fig. 2. A 53-year-old male patient with vertigo, right hand and leg paresthesias, horizontal nystagmus, transient dysarthria: (a) transverse T2W image: acute ischemia of the left paramedial pons and crura cerebri; (b) 3D TOF MRA: occlusion of the proximal and middle basilar artery.
tory and thalamus, 1 in the thalamus, and 1 in the mid-
brain. Five cerebellar infarctions were localized in the
territory of PICA, 2 in the territory of AICA, and 1 in the
territory of SCA. Results are summarized in Table 1.

In 19 patients with ischemia in the vertebrobasilar
 circulation, MR angiograms identified 8 cases of BA oc-
cclusion, 4 cases of BA stenosis, 3 cases of multiple athero-
sclerotic stenoses of the vertebral arteries with 2 cases of
concurrent vertebral artery occlusion, 2 cases of vasculi-
tis in the posterior circulation, 1 case of proximal PICA
occlusion, and 1 case of proximal PICA stenosis. In 8 pa-
tients with BA occlusion, the site of occlusion was prox-
imal in 3, distal in 1, proximal and middle in 2, and mid-

Table 2. Clinical symptoms of vertebrobasilar ischemia

<table>
<thead>
<tr>
<th>Symptom</th>
<th>n/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertigo</td>
<td>12/19</td>
</tr>
<tr>
<td>Headache</td>
<td>8/19</td>
</tr>
<tr>
<td>Nausea and vomiting</td>
<td>6/19</td>
</tr>
<tr>
<td>Diplopia</td>
<td>4/19</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>3/19</td>
</tr>
<tr>
<td>Ataxia</td>
<td>3/19</td>
</tr>
<tr>
<td>Astasia-abasia</td>
<td>2/19</td>
</tr>
<tr>
<td>Dysarthria</td>
<td>2/19</td>
</tr>
<tr>
<td>Dysphasia</td>
<td>1/19</td>
</tr>
<tr>
<td>Psychoorganic changes</td>
<td>2/19</td>
</tr>
<tr>
<td>Coma</td>
<td>2/19</td>
</tr>
<tr>
<td>Respiratory insufficiency</td>
<td>1/19</td>
</tr>
<tr>
<td>Singultus</td>
<td>1/19</td>
</tr>
</tbody>
</table>

dle and distal in 2 cases. Long and short BAO was found
in 4 cases each. Results are summarized in Table 1.

In 18 of 19 study patients, the onset of symptoms
was sudden (one patient had been hospitalized at an-
other institution for a month and was transferred to our
hospital for neuroradiologic diagnostic procedures),
whereas one patient had intermittent symptoms. The
stroke pattern observed in 19 patients with stroke in
the vertebrobasilar circulation included vertigo (n=12),
headache (n=8), nausea and vomiting (n=6), diplopia
(n=4) and nystagmus (n=3), ataxia (n=3), astasia-abas-
 gia (n=2), dysarthria (n=2) and dysphasia (n=1), psy-
choorganic changes (n=2), coma (n=2), respiratory in-
sufficiency (n=1), and singultus (n=1). Results are
summarized in Table 2. One patient presented with the
locked-in syndrome and multiple transient ischemic
attacks (TIAs) preceding infarction each.

All patients were monitored and treated at the in-
tensive care unit according to the Recommendations for
Stroke Management issued by the Croatian Society for
Neurovascular Disorders of the Croatian Medical Asso-
ciation and the Croatian Stroke Society2. One patient
died, one patient was discharged from the hospital with
severe disability, while 17 patients regained complete
or partial recovery with moderate or minor disability.

Discussion

BAO is a life-threatening event, therefore it is cru-

and commence life-saving treatment through the early involvement of a number of disciplines including neurology, radiology and intensive care. This condition usually has poor outcome and is associated with high mortality rates of 75% to 86% without thrombolysis, and a survival rate of approximately 50% with thrombolytic therapy. The most common causes of BAO are thrombosis on atherosclerotic lesion, cranial embolism, and traumatic dissection or arteriosclerosis at the origin and intracranial segment of the vertebral arteries; proximal and middle BAO tend to be atherothrombotic, whereas distal BAO tends to be embolic.

The initial clinical condition, etiology, time of onset, age, location and length of occlusion on angiography, presence or absence of recanalization, and degree of collateral circulation have been reported as factors related to favorable outcome. According to Devuyst et al., four clinical features present on patient admission, i.e. consciousness disorders, dysarthria, pupillary disorders and bulbar symptoms, are highly significantly associated with poor outcome. Poor prognosis has been reported in patients aged 75 years and older, regardless of whether or not the occlusion was recanalized, mostly because of the reduction of cerebral recoverability because of aging.

Intra-arterial digital subtraction angiography (DSA) is an invasive radiologic method, whereas transcranial color-coded duplex sonography (TCCD) and transcranial Doppler ultrasound (TCD), CT and CTA, and MRI and MRA are noninvasive radiologic methods that can be used in the assessment of acute ischemia in the posterior circulation, with their advantages and limitations. While the validity of DSA for the diagnosis and exclusion of BAO is beyond question, in many centers it has been replaced by noninvasive techniques; the main reasons are its invasiveness, hazards, limited availability, high costs, time consumption, and request for good cooperation of the patient or general anesthesia. Doppler sonography (DS) has become a standard vascular assessment tool. Unfortunately, certain technical problems, e.g., technically insufficient visualization of the distal parts of the BA or adipose necks, limit the validity of DS for the diagnosis and exclusion of BAO. However, the ability of DS to provide information on flow dynamics, its usefulness as a bedside tool applicable in unstable patients and for repeat flow monitoring are advantages that may be used for therapy and follow-up.

In vertebrobasilar territory, primarily a disturbance of the brainstem function threatens life, thus relatively smaller volumes of ischemic brainstem tissue can cause

Fig. 4. A 24-year-old female patient, previously healthy, with sudden weakness and visual field defects on the left eye, bilateral temporal headache, nausea, vomiting; on the day before the symptom onset excessively consumed alcohol, tobacco and cannabis: (a) transverse diffusion-weighted image, and (b) sagittal TWI image: right occipital subacute ischemia;
death; in contrast to the middle cerebral artery territory, CT is not suited to show early ischemic edema in the brainstem because of its technical limitations. Compared to CT, MRI has a greater sensitivity for the detection of ischemic lesions in the vertebrobasilar circulation, but in most institutions CT is available around the clock, whereas MRI is not, therefore CT with CTA still plays a major role in the emergency work-up.

DWI, PWI and MRA, as new MRI techniques, can reliably identify the clinically relevant lesion in the acute stroke setting, increase diagnostic confidence, lead to a more focused evaluation of the underlying cause of
stroke, and may alter patient management. Acute ischemic tissue injury is currently best identified with DWI that delineates the extent of irreversible tissue damage fairly accurately. Identification of potentially salvageable tissue at risk surrounding the irreversibly damaged ischemic core requires PWI in addition to DWI. DWI, PWI and MRA lead to improvements in patient selection for intravenous or local intra-arterial thrombolysis. Stenosis or occlusion in the vertebrobasilar territory can easily be demonstrated by MRA: the reported sensitivity and specificity of MRA in outlining high grade stenoses range between 86% and 100%. MRA is used to visualize vessel dissections, stenoses based on vascular anatomy, which can be time-consuming; (5) the cost of MRI techniques including PWI require substantial postprocessing, which can be time-consuming; (6) specially trained, and furthermore, some of the techniques including PWI require substantial postprocessing, which can be time-consuming; (5) the cost of MRI currently still exceeds the cost of CT. In our hospital, there is only an emergency access to CT scanner for currently admitted and currently is only possible in specialized centers; (2) for acute stroke management, emergency access to these scanners is needed and currently is only possible in specialized centers; (3) exclusion of contraindications for MRI, e.g., cardiac pacemakers, and metal implants, is occasionally difficult, especially in unaccompanied aphasic or unconscious patients; (4) staff performing the scanning need to be specially trained, and furthermore, some of the techniques including PWI require substantial postprocessing, which can be time-consuming; (5) the cost of MRI currently still exceeds the cost of CT. In our hospital, there is only an emergency access to CT scanner for acute stroke management.

Angiographically, the site and length of occlusion and collateral status have been shown to have an important impact on prognosis. In several studies, the tops of basilar occlusions were associated with the most favorable outcome because of preservation of flow into the cerebellar arteries and the arteries penetrating the brainstem, whereas short occlusions and good collateral flow may restrict the hypoperfused tissue volume in the brainstem and enable survival. To limit hemorrhagic transformation of infarction, it is a standard practice in the anterior circulation to restrict intravenous thrombolysis to the first 3 hours and intra-arterial thrombolysis to the first 6 hours of the symptom onset, however, in case of BAO the time window for therapeutic intra-arterial thrombolysis is prolonged and exceeds 6 hours. It is explained by the preserved collateral flow and the possibility that the brainstem is tolerant to longer periods of ischemia than the cerebral cortex.

In five of 11 patients examined by emergency head CT at admission, CT finding was positive, while all 19 patients had signs of ischemia in the posterior circulation on MRI. Using MRA, we identified 11 cases of occluded and 5 cases of stenosed artery in the posterior circulation, with 2 cases of vasculitis and 1 case of atherosclerotic changes as well. In case of BAO, the proximal and middle segment of BA were pathologically changed, with generally favorable outcome.

Patients with BAO have a poor prognosis when recanalization does not occur. It can be achieved using intravenous or local intra-arterial thrombolysis. Intravenous thrombolysis has been criticized as being a “shotgun approach” because it ignores specificity, whereas LIT was found to enhance the recanalization rate giving the patient with recanalization a fair chance of favorable outcome and significantly reducing mortality. However, there are no randomized trials comparing intravenous thrombolysis with LIT. According to indirect comparison of intravenous and intra-arterial thrombolysis, a cautious statement would be that LIT is at least as effective and safe as intravenous thrombolysis with tPA and can be applied with a longer time window. The risk of symptomatic intracranial hemorrhage does not seem to increase or at least not as much as in systemic thrombolysis. Currently, there are no established guidelines for selecting patients with suspected basilar occlusion for intra-arterial thrombolysis based on clinical or MRI criteria. Different studies have shown that patients who benefit from LIT in case of BAO are: (1) young patients (<75 years) without any infarction in brainstem before the start of treatment; (2) patients with low baseline NIHSS on admission and recanalization of BAO after early initiated LIT; and (3) patients with good collateral flow or distal clot location. De Rochemont et al. report that patients with only relatively small or no DWI lesions have a potentially favorable outcome if reperfusion in achieved rapidly with LIT; and that small DWI lesions, even if located in the brainstem, do not exclude a favorable outcome. In Croatia, intravenous thrombolysis with tPA has been approved since September 2004. None of these 19 patients received either intravenous or intra-arterial thrombolysis.

In summary, advanced MRI methods are a preferred investigative mode in the management of patients with ischemic lesion in the vertebrobasilar territory for re-
MRI and MRA in vertebrobasilar ischemic stroke

Peeling or excluding artery occlusion or stenosis noninvasively and showing the extent of severe ischemic tissue injury in critical brain structures. Intravenous thrombolytic therapy is the method of choice in the early treatment of ischemic stroke in the posterior circulation, but at large institutions with an interventional neuroradiological service, LIT should be considered as a method of choice as well.

References

M. Špero et al. MRI and MRA in vertebrobasilar ischemic stroke

Sažetak

MAGNETSKA REZONANCA MOZGA I MAGNETSKA ANGIOGRAFIJA U ZBRINJAVANJU BOLESNIKA S ISHEMIJSKIM MOŽDANIM UDAROM U VERTEBROBAZILARNOJ CIRKULACIJI

M. Špero, M. Kalousek, J. Hat, D. Bedek i M. Marotti

Vertebrobazilarna okluzija je za život opasno stanje koje zahtijeva brzu dijagnostičku obradu i terapiju. Suvremene metode magnetske rezonance (MR) mozga, uključujući difuzijski mjereni slika i magnetsku angiografiju (MRA), imaju visoku osjetljivost u otkrivanju ishemijske lezije moždanog parenhima, te u otkrivanju i lokalizaciji okluzije i stenoze intrakranijskih arterija. U doba trombolitične terapije MR mozga i MRA daju korisne podatke bitne za donošenje odluke o izboru terapije u procjeni ranog stadija ishemijskog moždanog udara. Proveden je retrospektivni pregled bolesnika sa simptomatologijom stražnje cirkulacije koji su na našem Zavodu pregledani u razdoblju od srpnja 2002. do siječnja 2005. godine, 8 žena i 11 muškaraca srednje životne dobi od 54,9 godina. Cilj je bio pokazati mogućnosti MR mozga i MRA u zbrinjavanju bolesnika s ishemijskim moždanim udarom stražnje cirkulacije. U 19 bolesnika s ishemijskim moždanim udarom vertebrobazilarnog sliva, koji je dokazan pomoću MR mozga, MRA je otkrila 8 okluzija bazilarne arterije, 4 stenoze bazilarne arterije, 3 slučaja višestrukih aterosklerotskih stenoza vertebralnih arterija s 2 slučaja istodobne okluzije vertebralne arterije, 2 vaskultita u stražnjoj cirkulaciji, 1 okluziju proksimalnog dijela i 1 stenozu stražnje moždane arterije. Među 8 bolesnika s okluzijom bazilarne arterije mjesto okluzije bilo je proksimalni dio arterije u 3, proksimalni i srednji dio u 2, srednji i distalni dio u 2 slučaja i distalni dio bazilarne arterije u 1 slučaju. MR mozga je moćno sredstvo u otkrivanju ishemijskih promjena neposredno nakon nastupa moždanog udara, dok MRA ima visoku osjetljivost za otkrivanje okluzivne bolesti velikih intrakranijskih arterija. Kod zbrinjavanja akutnog moždanog udara MR mozga i MRA su korisne zbog: 1) brzog i sigurnog otkrivanja ishemijske lezije; 2) sigurnijeg izbora oblika terapije pomažući u tu svrhu; 3) mogućnosti točnog određivanja vaskularnog podrijetla ishemijskog moždanog udara; 4) određivanja neuroloških posljedica moždanog udara. MR mozga je moćno sredstvo u otkrivanju ishemijske lezije, klinički ishod i rizik od krvarenja.

Ključne riječi: Moždani udar – dijagnostika; Cerebrovaskularna cirkulacija – dijagnostika; Moždane arterije – patologija; Išemijski udar – dijagnostika; Prikazivanje magnetskom rezonancijom – metode; Magnetska angiografija