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SMOOTH YIELD SURFACES OF ISOTROPIC MATERIALS 

Summary 

Two types of the tensor formulation of the general yield criteria are presented. The first 
one having an invariant form describes smooth yield surfaces such as the von Mises circular 
cylinder. The second type defines multiple yield surfaces and it is convenient for the 
description of a smooth prism, i.e. Tresca’s hexagonal prism. Only the first invariant form has 
been investigated. 

In the case of a general isotropic material having different tensile and compressive yield 
strengths, three independent material constants have to be measured in order to achieve a 
complete description of the yield surface. Usually, these constants are tensile yield strength 
Y.t, compressive yield strength Y.c, and shearing yield strength Y. Furthermore, it has been 
shown that the first stress invariant kk directly influences yielding. If an isotropic material 
exhibits equal tensile and compressive yield strengths, then kk does not influence yielding. In 
that case only one material constant, usually Y.t, suffices for the description of the yield 
surface. 
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1. Introduction 

The yield surface of an isotropic material is given by the equation [1] 
P( , , ) 0ij ijf k   ,  (1) 

where ij  is the stress tensor, P
ij  is the plastic strain tensor, and k is the strain hardening 

parameter. In the six-dimensional stress space, ( ij ji  ) (1) represents a closed 

hypersurface. The state of stress inside a yield surface is elastic. If the state of stress is on the 
yield surface, plastic deformation or yielding commences. Since ij  is a second order tensor, 

the yield function has a tensor character; therefore, it can be represented as a power series of 
ij  such as 

... 0ij ij ijkm ij km ijkmpq ij km pqf C C C C               . (2) 
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Dividing the above expression by C , the following expression is obtained:  

1 ... 0ij ij ijkm ij km ijkmpq ij km pqf C C C           . (3) 

If materials are isotropic, the coordinate axes can be chosen to coincide with the principal 
stress directions without any loss of generality. In that case, the yield function ( )ijf   
represents a closed surface in the three-dimensional space, that is  

1 2 3( , , ) 0f      (4) 

where 1 2 3,  and     are the principal stresses. 
A great number of proposed yield criteria [2-5] contain components of the stress tensor 

raised to the first and the second power so that the proposed tensor equations [6] will contain 
the stress tensor raised to the first and the second power. Thus, the tensor equation of yield 
surfaces will take the form 

1 0ij ij ijkm ij kmf P P      ,  (5) 

1 0ij ij ki kjf Q Q      , (6) 

0.ijkm ij km ij km ijkm ij kmf R R         (7) 

The equation (5) is convenient for the representation of smooth yield surfaces such as the von 
Mises cylindrical surface. On the other hand, the equations (6) and (7) are suitable for the 
representation of piece-wise smooth yield surfaces such as Tresca’s hexagonal prism. 

ijP  and ijkmP  are the plasticity tensors of the first type, while ijR  and ijkmR  are plasticity 
tensors of the second type. In the case of isotropic materials, they must also be isotropic. 
Therefore, they are of the even order, i.e. 2nd, 4th, 6th etc. since there are no isotropic tensors of 
the odd order. Quasi-isotropic tensors ijke , ij kmpe , etc. are isotropic under rotation and they 
are not isotropic under reflection. 

In this paper, only smooth surfaces represented by (5) will be investigated. Due to the 
symmetry of the stress tensor ij  and the structure of (5), the plasticity tensors ijP  and ijkmP  
possess the following symmetry properties: 

ij jiP P ,   ijkm kmijP P  (8) 

ijkm jikm jimk ijmkP P P P   . (9) 

The general isotropic tensors of the second and the fourth order are, respectively 

ij ijI A , (10) 

ijkm ij km ik jm im jkI B C D        . (11) 

Since the tensor ijkmI  does not possess symmetry properties (9) it will be symmetrized as 
follows 

( ) ( )ijkm ij km ik jm im jk ik jm im jkI L M N               (12) 

where 
,  ,   L B M N C M N D     . 
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The first two terms on the right side of (12) have the required symmetry properties and they 
will be retained, while the third term will be omitted. Thus, the fourth order isotropic tensor 
suitable for this purpose is 

( )ijkm ij km ik jm im jkP L M        . (13) 

2. General isotropic materials 

After substituting (13) into (5), it follows that 

( ) 1 2 0ij jj jj kk jk jkf A L M          . (14) 

Three constants, A, L and M that appear in (14) have to be determined experimentally. For 
that, three experiments will be performed:  

1. Simple tension test. 
2. Simple compression test. 
3. Pure shearing test. 

In the first experiment, 11 0  , all other 0ij  , yielding starts when 11  reaches the yield 
point or the yield strength in tension Y.t . In that case (14) becomes 

2 2
Y.t Y.t Y.t1 2 0A L M      . (15) 

In the second test, 11 0  , all other 0ij  , yielding starts when 11 Y.c   , i.e. when 11  
reaches the yield strength in compression. If this is substituted into (14), one gets 

2 2
Y.c Y.c Y.c1 2 0A L M      . (16) 

In the shearing test, 12 21 0   , all other 0ij  . Yielding starts when 12 21 Y    , 
where Y  is the shearing yield strength. Then (14) becomes 

2
Y1 4 0M  . (17) 

Solving simultaneously (15), (16) and (17), one gets 

Y.t Y.c

Y.t Y.c
A  

 


  

2
Y.t Y.c Y

2
Y Y.t Y.c

2
2

L   
  


  (18) 

2
Y

1
4

M


   

After substituting (18) into (14), it follows that 
2 2

Y.c Y.t Y Y.c Y.t T
2

Y.c Y.t Y Y.c Y.t

( ) ( 2 )

2 0.

jj jj kk

kj kj

f         

      

    

  
  (19) 
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Using coordinate axes to coincide with the principal stress directions, the expression (19), in 
the expanded form, reads 

 

 
2 2 2

1 2 3 1 2 3 1 2 2 3 3 1

2 2 2
1 2 3

1 ( ) 2

2 0.

A L

M

           

  

           

   
 (20) 

It represents an ellipsoid of revolution whose axis coincides with the hydrostatic line 
1 2 3    . When the difference between the compressive and the tensile yield strength is 

negligible, the ellipsoid is prolate. However, if the difference is marked, the ellipsoid is oblate 
[7-9]. The ellipsoid is shown in Figure 1a, while its two parts cut by coordinate planes are 
depicted in Figure 1b. Intersections of the hydrostatic line and the ellipsoid are the vertices A 
and B, as shown in Figure 1a. 

 
Fig. 1  Smooth yield surface of an isotropic material in the stress space 

Intersection of the yield surface and the 1 2O   plane is an ellipse whose equation is 

 2 2 2
1 2 1 2 1 21 ( ) ( ) 2 0A L M            . (21) 

The principal axes of the ellipse make an angle of 45 with the 1  and 2  axes. After the 
transformation 

1 1 2

2 1 2

2 ( ),
2
2 ( ),

2

  

  

 

  

 (22) 

the expression (21) takes the following form 
2 2
1 1 2 1 0p q r       (23) 

where 
2( ),

2 ,
2 .

p L M

q A
r M

 




 (24) 
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The equation (23) may be put in the form  
2 2

1 2
2 2

( ) 1m
a b

 
   (25) 

where 

2

2

4
,

2

1 4
2

q p
a

p

q pb
pr







 (26) 

are the major axes of the ellipse, as shown in Figure 2a, and / 2m q p . The intersection of 
the ellipsoid and the plane 1 2   is the ellipse shown in Figure 2b. The plane 1 2   
contains the 3  axis as well as the hydrostatic line 1 2 3    . 

 

Fig. 2  Intersection of an ellipsoid and the planes a) 1 2O   and b) 1 2   

3. Yielding is independent of hydrostatic stress 

When yielding of an isotropic material does not depend on the first stress invariant kk , 
(14) is reduced to 

( ) 1 2 0ij jk jkf M     . (27) 

In this case, it is convenient to use the deviator stress tensor ijs  instead of the stress tensor ij  

1
3ij ij kk ijs    . 
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In that case, (27) becomes 

1 2 0ij ijMs s   (28) 

or in the expanded form 

 2 2 2 2 2 2
11 22 33 12 23 31

12 2s s s s s s
M

       
 

.  

The unknown constant M can be determined in the uniaxial tension test [10]. In that case, 

11 0  , all other 0ij  , i.e. 11 112 / 3s  , 22 33 11 / 3s s    , all other 0ijs  . Yielding 

starts when 11  reaches the yield strength Y . Therefore (28) gives  

2
11

3
4

M


  . (29) 

After substituting (29) back into (28), one obtains  

Y
3
2 ij ijs s  . (30) 

This is the well-known equation of the von Mises cylinder whose axis is the hydrostatic line. 

4. Two examples of general isotropic materials 

The intersections of the general yield surface, i.e. the yield ellipsoid, and the coordinate 
plane 1 2O   are shown in Figures 3a and 3b. The first ellipse refers to the Titanium 

Ti6Al4V, annealed. The difference between its Y.c  and Y.t  is small and the major axis of 
the ellipse lies in the first and the third quadrant. The ellipse in Figure 3b refers to the Gray 
Cast Iron EN-GJL250. Since the difference Y.c Y.t-   is marked in this case [11], the major 
axis of the ellipse lies in the second and the forth quadrant as depicted in Figure 3b. The data 
about the yield strengths for both materials are given in Table 1. 

Table 1  Yield strengths of the considered materials  

Material 
Compress. yield strength 

Y.c /MPa 
Tensile yield strength 

Y.t /MPa 
Shear yield strength 

Y /MPa 

Ti6Al4V, annealed 970 880 550 

EN-GJL250 860 165 334 
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Fig. 3  Intersection of the ellipsoids and the plane 1 2O   for a) Titanium alloy and b) Gray Cast Iron 

5.  Conclusion 

A general yield criterion containing the stress tensor raised to the first and the second 
power can be formulated in two ways, namely in an invariant tensor expression and using the 
tensor expression of the fourth order. The former gives smooth yield surfaces such as the von 
Mises cylinder. The latter gives piece-wise smooth yield surfaces such as Tresca's hexagonal 
prism. In the case of a general isotropic material having different tensile and compressive 
yield strengths, three independent material constants have to be measured in order to achieve 
a complete description of the yield surface. Usually these constants are the tensile yield 
strength Y.t , the compressive yield strength Y.c , and the shearing yield strength Y . 
Furthermore, it has been shown that the first stress invariant kk  directly influences yielding. 
If the compressive and tensile yield strengths do not differ from each other very much, the 
ellipsoid is prolate. However, if the difference between them is marked, the ellipsoid is oblate. 

When an isotropic material exhibits equal tensile and compressive yield strengths, then 
the first stress invariant kk  does not influence yielding. In that case only one material 
constant, usually Y.t , suffices for the description of the yield surface which is the von Mises 
cylinder. 
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