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Abstract. Let n be a nonzero integer and a1 < a2 < · · · < am

positive integers such that aiaj +n is a perfect square for all 1 ≤ i < j ≤ m.
It is known that m ≤ 5 for n = 1. In this paper we prove that m ≤ 31 for
|n| ≤ 400 and m < 15.476 log |n| for |n| > 400.

1. Introduction

Let n be a nonzero integer. A set of m positive integers {a1, a2, . . . , am}
is called a D(n)-m-tuple (or a Diophantine m-tuple with the property D(n))
if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m.

Diophantus himself found the D(256)-quadruple {1, 33, 68, 105}, while
the first D(1)-quadruple, the set {1, 3, 8, 120}, was found by Fermat (see
[4, 5]). In 1969, Baker and Davenport [1] proved that this Fermat’s set cannot
be extended to a D(1)-quintuple, and in 1998, Dujella and Pethő [10] proved
that even the Diophantine pair {1, 3} cannot be extended to aD(1)-quintuple.
A famous conjecture is that there does not exist a D(1)-quintuple. We proved
recently that there does not exist a D(1)-sextuple and that there are only
finitely many, effectively computable, D(1)-quintuples (see [7, 9]).

The question is what can be said about the size of sets with the property
D(n) for n 6= 1. Let us mention that Gibbs [12] found several examples
of Diophantine sextuples, e.g. {99, 315, 9920, 32768, 44460, 19534284} is a
D(2985984)-sextuple.

Define

Mn = sup{|S| : S has the property D(n)}.

2000 Mathematics Subject Classification. 11D45, 11D09, 11N36.
Key words and phrases. Diophantine m-tuples, property D(n), large sieve.

199



200 A. DUJELLA

Considering congruences modulo 4, it is easy to prove that Mn = 3 if n ≡ 2
(mod 4) (see [3, 13, 15]). On the other hand, if n 6≡ 2(mod 4) and n 6∈
{−4, −3, −1, 3, 5, 8, 12, 20}, then Mn ≥ 4 (see [6]).

In [8], we proved that Mn ≤ 32 for |n| ≤ 400 and

Mn < 267.81 log |n| (log log |n|)2 for |n| > 400.

The purpose of the present paper is to improve this bound for Mn, specially
in the case |n| > 400. We will remove the factor (log log |n|)2, and also the
constants will be considerably smaller.

The above mentioned bounds for Mn were obtained in [8] by considering
separately three types (large, small and very small) of elements in a D(n)-m-
tuple. More precisely, let

An = sup{|S ∩ [|n|3,+∞〉| : S has the property D(n)},
Bn = sup{|S ∩ 〈n2, |n|3〉| : S has the property D(n)},
Cn = sup{|S ∩ [1, n2]| : S has the property D(n)}.

In [8], it was proved that An ≤ 21 and Bn < 0.65 log |n| + 2.24 for all
nonzero integers n, while Cn < 265.55 log |n| (log log |n|)2 +9.01 log log |n| for
|n| > 400 and Cn ≤ 5 for |n| ≤ 400. The combination of these estimates gave
the bound for Mn.

In the estimate for An, a theorem of Bennett [2] on simultaneous approx-
imations of algebraic numbers was used in combination with a gap principle,
while a variant of the gap principle gave the estimate for Bn. The bound
for Cn (number of ”very small” elements) was obtained using the Gallagher’s
large sieve method [11] and an estimate for sums of characters.

In the present paper, we will significantly improve the bound for Cn using
a result of Vinogradov on double sums of Legendre’s symbols. Let us mention
that Vinogradov’s result, in a slightly weaker form, was used recently, in
similar context, by Gyarmati [14] and Sárközy & Stewart [17]. We will prove
the following estimates for Cn.

Proposition 1.1. If |n| > 400, then Cn < 11.006 log |n|. If |n| ≥ 10100,
then Cn < 8.37 log |n|.

More detailed analysis of the gap principle used in [8] will lead us to the
slightly improved bounds for Bn.

Proposition 1.2. For all nonzero integers n it holds Bn < 0.6114 log |n|+
2.158. If |n| > 400, then Bn < 0.6071 log |n|+ 2.152.

By combining Propositions 1.1 and 1.2 with the above mentioned estimate
for An, we obtain immediately the following estimates for Mn.

Theorem 1.3. If |n| ≤ 400, then Mn ≤ 31. If |n| > 400, then Mn <
15.476 log |n|. If |n| ≥ 10100, then Mn < 9.078 log |n|.
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2. Three lemmas

Lemma 2.1 (Vinogradov). Let p be an odd prime and gcd(n, p) = 1. If
A,B ⊆ {0, 1, . . . , p− 1} and

T =
∑

x∈A

∑

y∈B

(xy + n

p

)
,

then |T | <
√
p|A| · |B|.

Proof. See [18, Problem V.8.c)].

Lemma 2.2 (Gallagher). If all but g(p) residue classes mod p are removed
for each prime p in a finite set S, then the number of integers which remain
in any interval of length N is at most

(2.1)
(∑

p∈S
log p− logN

)/(∑

p∈S

log p

g(p)
− logN

)

provided the denominator is positive.

Proof. See [11].

Lemma 2.3. If {a, b, c} is a Diophantine triple with the property D(n)
and ab+ n = r2, ac+ n = s2, bc+ n = t2, then there exist integers e, x, y, z
such that

ae+ n2 = x2, be+ n2 = y2, ce+ n2 = z2

and

c = a+ b+
e

n
+

2

n2
(abe+ rxy).

Proof. See [8, Lemma 3].

3. Proof of Proposition 1.1

Let N ≥ n2 be a positive integer. Since |n| > 400, we have N > 1.6 · 105.
Let D = {a1, a2, . . . , am} ⊆ {1, 2, . . . , N} be a Diophantine m-tuple with the
property D(n). We would like to find an upper bound for m in term of N .
We will use the Gallagher’s sieve (Lemma 2.2). Let

S = {p : p is prime, gcd(n, p) = 1 and p ≤ Q},

where Q is sufficiently large. For a prime p ∈ S, let C denotes the set of
integers b such that b ∈ {0, 1, 2, . . . , p − 1} and there is at least one a ∈ D
such that b ≡ a(mod p). Then

(
xy+n

p

)
∈ {0, 1} for all distinct x, y ∈ C. Here

(
.
p

)
denotes the Legendre symbol. If 0 ∈ C, then

(
n
p

)
= 1. For a given
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x ∈ C \ {0}, we have
(

xy0+n
p

)
= 0 for at most one y0 ∈ C. If y 6= x, y0, then

(
xy+n

p

)
= 1. Therefore,

T =
∑

x,y∈C

(xy + n

p

)
=
∑

x∈C

(∑

y∈C

(xy + n

p

))

≥
∑

x∈C

(|C| − 3) ≥ |C|(|C| − 3).

On the other hand, Lemma 2.1 implies

T < |C| · √p.

Thus, |C| < √p+ 3 and we may apply Lemma 2.2 with

g(p) = min{b√pc+ 3, p}.

Let us denote the numerator and denominator from (2.1) by E and F ,
respectively. By [16, Theorem 9], we have

E =
∑

p∈S
log p− logN < θ(Q) < 1.01624Q.

The function f(x) = log x
min{√x+3,x} is strictly decreasing for x > 25. Also, if

Q ≥ 118, then f(p) ≥ f(Q) for all p ≤ Q.
For p ∈ S it holds gcd(n, p) = 1. This condition comes from the assump-

tions of Lemma 2.1. However, we will show later that n can be divisible only
by a small proportion of the primes ≤ Q. Assume that n is divisible by at
most 5% of primes ≤ Q. Then, for Q ≥ 118, we have

F ≥
∑

p∈S
f(p)− logN ≥ logQ√

Q+ 3
· |S| − logN

≥ logQ√
Q+ 3

· 19

20
π(Q)− logN >

0.95Q√
Q+ 3

− logN.(3.1)

Since F has to be positive in the applications of Lemma 2.2, we will choose
Q of the form

Q = c1 · log2N.

We have to check whether our assumption on the proportion of primes
which divide n is correct. Suppose that n is divisible by at least 5% of the
primes ≤ Q. Then |n| ≥ p1p2 · · · pdπ(Q)/20e, where pi denotes the i-th prime.
By [16, 3.5 and 3.12], we have pdπ(Q)/20e > R, where

R =
1

20

Q

logQ
log
( 1

20

Q

logQ

)
.
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Assume that c1 ≥ 6. Then Q > 860 and R > 11.77. From [16, 3.16], it follows
that

(3.2) log |n| >
∑

p≤R

log p > R
(
1− 1.136

logR

)
.

Furthermore, 1
20

Q
log Q > Q0.273 and R > 0.0136Q. Hence, (3.2) implies

logR > 7.793 and therefore

logN ≥ 2 log |n| > 0.01466Q≥ 0.08796 log2N,

contradicting the assumption that N > 1.6 · 105.
Therefore, we have that n is divisible by at most 5% of the primes ≤ Q,

and hence we have justified the estimate (3.1).
Under the assumption that c1 ≥ 6, the inequality (3.1) implies

F > 0.861
√
Q− logN = (0.861

√
c1 − 1) logN

and
E

F
<

1.017 c1
0.861

√
c1 − 1

· logN.

For c1 = 6 we obtain

(3.3)
E

F
< 5.503 logN.

Assume now that N ≥ 10200 and c1 ≥ 4. Then Q > 848303 and we can
prove in the same manner as above that n is divisible by at most 1% of the
primes ≤ Q. This fact implies

E

F
<

1.017c1
0.986

√
c1 − 1

· logN.

For c1 = 4.11 we obtain

(3.4)
E

F
< 4.185 logN.

Setting N = n2 in (3.3) and (3.4), we obtain the statements of Proposition
1.1.

4. Proof of Proposition 1.2

We may assume that |n| > 1. Let {a, b, c, d} be a D(n)-quadruple such
that n2 < a < b < c < d. We apply Lemma 2.3 on the triple {b, c, d}.
Since b > n2 and be + n2 ≥ 0, we have that e ≥ 0. If e = 0, then d =
b + c + 2

√
bc+ n < 2c + 2

√
c(c− 1) + n < 4c, contradicting the fact that

d > 4.89 c (see [8, Lemma 5]).
Hence e ≥ 1 and

(4.1) d > b+ c+
2bc

n2
+

2t
√
bc

n2
.
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Lemma 2.3 also implies

(4.2) c ≥ a+ b+ 2r.

From r2 ≥ ab − 4
√
ab and ab ≥ 30 it follows that r > 0.96 a, and (4.2)

implies c > 3.92 a. Similarly, bc ≥ 42 implies t > 0.969
√
bc and, by (4.1),

d > b+ c+ 3.938 bc
n2 > 4.938 c+ b.

Assume now that {a1, a2, . . . , am} is a D(n)-m-tuple and n2 < a1 < a2 <
· · · < am < |n|3. We have

a3 > 3.92 a1, ai > 4.938 ai−1 + ai−2, for i = 4, 5, . . . ,m.

Therefore, am > αma1, where the sequence (αk) is defined by

αk = 4.938αk−1 + αk−2, α2 = 1, α3 = 3.92.(4.3)

Solving the recurrence (4.3), we obtain αk ≈ βγk−3, with β ≈ 3.964355,
γ ≈ 5.132825. More precisely,

|αk − βγk−3| < 1

βγk−3
.

From |n|3 − 1 ≥ am > αma1 ≥ αm(n2 + 1), it follows αm ≤ |n| − 1
|n| and

βγm−3 < |n|. Hence,

(4.4) m <
1

log γ
log |n|+ 3− logβ

log γ
.

For the above values of β and γ we obtain

m < 0.6114 log |n|+ 2.158.

Assume now that |n| > 400. Then bc > ab > 4004, which implies c >
3.999999 a and d > 4.999999 c+ b. Therefore, in this case the relation (4.4)
holds with β ≈ 4.042648, γ ≈ 5.192581, and we obtain

m < 0.6071 log |n|+ 2.152.

Remark 4.1. The constants in Theorem 1.3 can be improved, for large
|n|, by using formula (2.26) from [16] in the estimate for the sum

∑
p∈S f(p).

In that way, it can be proved that for every ε > 0, F > (2 − ε)√Q − logN
holds for sufficiently large Q.

Also, in the proof of Proposition 1.2, for sufficiently large |n| we have c >

(4− ε)a and d > (5− ε)c+ b, which leads to Bn <

(
1

log( 5+
√

29
2 )

+ ε

)
log |n|.

These results imply that for every ε > 0 there exists n(ε) such that for
|n| > n(ε) it holds

Mn <

(
2 +

1

log( 5+
√

29
2 )

+ ε

)
log |n|.
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