ON A LEMMA OF THOMPSON

Yakov Berkovich
University of Haifa, Israel

Abstract. In Theorem 3 we improve [8, Lemma 5.41] (= Lemma 1, below) omitting one of its conditions. In Lemma 1 the structure of T, a Sylow 2-subgroup of G, is described only. In contrast to that lemma, we describe in detail the structure of the whole group G and embedding of T in G. In Theorem 4 we consider a similar, but more general, situation for groups of odd order.

In the first part [8] of his seminal N-paper Thompson considered, in particular, a number of special situations arising in the subsequent parts of that paper. He proved there the following

Lemma 1 ([8, Lemma 5.41]). Suppose that the following holds:
(a) G is a finite nonnilpotent solvable group.
(b) $O_2(G) = \{1\}$.
(c) G has a proper noncyclic abelian subgroup of order 8.
(d) If K is any proper subgroup of G of index a power of 2, then K has no noncyclic abelian subgroup of order 8.

Let T be a Sylow 2-subgroup of G. Then T is normal in G and one of the following holds:
(i) T is abelian.
(ii) T is an extraspecial group.
(iii) T has a subgroup $T_0 \cong Q_8$ of index 2 and $T = T_0 Z(T)$.
(iv) T is special and $Z(T) \cong E_4$.

In Theorem 3 we eliminate condition (c) from the hypothesis of Lemma 1 and, as a result, we obtain three additional non 2-closed groups; we also describe the structure of G in some detail. Note also that our proof differs

2000 Mathematics Subject Classification. 20C15.
Key words and phrases. Solvable, extraspecial, special and metacyclic p-groups, Blackburn’s theorem, the stabilizer of a chain.
essentially from the original proof of Lemma 1. Theorem 4 is a stronger version of Theorem 3 for groups of odd order. In the proof of Theorem 4 we use \[3, \text{Theorem 4.1(i)}\] (= Lemma 2(e), below), a fairly deep result of finite p-group theory.

In what follows G is a finite group, p is a prime, \(\pi \) is a set of primes and \(\pi' \) is the set of primes not contained in \(\pi \), \(m,n \in \mathbb{N} \) and \(\pi(m) \) is the set of all prime divisors of \(m \). Next, \(C_m \) is the cyclic group of order \(m \); \(E_p^m \) is the elementary abelian group of order \(p^m \); \(SD_{2^n} \) (\(n > 3 \)), \(Q_{2^n} \) and \(D_{2^n} \) are the semidihedral, generalized quaternion group and dihedral groups of order \(2^n \), respectively (these groups exhaust the groups of maximal class and order \(2^n \)); \(\text{A}_4(\text{S}_4) \) are the alternating (symmetric) group of degree 4; \(\text{C}_G(M) \) (\(\text{N}_G(M) \)) is the centralizer (normalizer) of the subset \(M \in G \); \(Z(G) \), \(G' \) and \(\Phi(G) \) is the center, the derived subgroup and the Frattini subgroup of \(G \), respectively; \(\Omega_\pi(G) \) is the product of all normal \(\pi \)-subgroups of \(G \). If \(G \) is a p-group, then \(\Omega_1(G) = \{ x^p = 1 \mid x \in G \} \) and \(\Omega_1(G) = \{ x^p \mid x \in G \} \). By \(A \ast B \) we denote a central product of \(A \) and \(B \).

A p-group \(G \) is said to be special if \(G' = Z(G) = \Phi(G) > \{ 1 \} \) (in that case, \(\exp(G') \leq \exp(G/G') = p \) and \(G' \) is elementary abelian). A p-group \(G \) is said to be extraspecial if it is special with \(|G'| = p \).

Let \(G \) be a 2-group of maximal class. Then, if \(G \nmid Q_8 \), it contains a characteristic cyclic subgroup of index 2. In Lemma 2 we gathered some known facts used in what follows.

Lemma 2. (a) \([1, \text{Proposition 19(a)}]\) Let \(B \) be a nonabelian subgroup of order \(p^3 \) in a p-group \(G \). If \(G \) is not of maximal class, then \(C_G(B) \nsubseteq B \).

(b) Let \(G \) be a p-group generated by two elements. Then \(\pi(|\text{Aut}(G)|) \subseteq \pi(p(p - 1)(p + 1)) \). In particular, \(p \) is the maximal prime divisor of \(|\text{Aut}(G)| \), unless \(p = 2 \). If, in addition, \(G \) has a characteristic subgroup of index \(p \), then \(\pi(|\text{Aut}(G)|) \subseteq \pi(p(p - 1)) \). In particular, if \(G \) is a 2-group of maximal class and \(\text{Aut}(G) \) is not a 2-group, then \(G \cong Q_8 \).

(b1) \(\text{Aut}(Q_8) \cong S_4 \).

(c) Let \(\alpha \) be a \(p' \)-automorphism of a p-group \(G \) acting trivially on \(\Omega_1(G) \). If \(p > 2 \) or \(G \) is abelian, then \(\alpha = \text{id}_G \).

(d) If a p-group \(G \) has no noncyclic abelian subgroup of order \(p^3 \), then one and only one of the following holds: (i) \(G \) is cyclic, (ii) \(G \cong E_{p^2} \), (iii) \(G \) is a 2-group of maximal class, (iv) \(G \) is nonabelian of order \(p^3 \), \(p > 2 \).

(e) \([3, \text{Theorem 4.1(i)}]\) Let \(G \) be a p-group, \(p > 2 \). Suppose that \(G \) has no elementary abelian subgroup of order \(p^3 \). Then one of the following holds: (i) \(G \) is metacyclic, (ii) \(G \) is an irregular 3-group of maximal class, (iii) \(G = EC \), where \(E = \Omega_1(G) \) is nonabelian of order \(p^3 \) and exponent \(p \) and \(C \) is cyclic.
(f) Let A be a π'-group acting on a π-group G. Let $C: G = G_0 > G_1 > \cdots > G_n = \{1\}$ be a chain of A-invariant normal subgroups of G. If A centralizes all factors G_i/G_{i+1} of the chain C (i.e., A stabilizes C), then A centralizes G.

(g) (Transfer Theorem) Suppose that a Sylow p-subgroup of a group G is abelian. If p divides $|Z(G)|$, then G has a normal subgroup of index p.

According to Hall-Burnside, if α is a p'-automorphism of a p-group G inducing identity on $G/\Phi(G)$, then $\alpha = \text{id}_G$. Indeed, assuming, without loss of generality, that $o(\alpha) = q$, a prime, we see that α fixes an element of every coset $x\Phi(G)$. Since these fixed elements generate G, our claim follows.

If d is a minimal number of generators of a p-group G, then (Hall) $|\text{Aut}(G)|$ divides the number $(p^d-1)(p^d-p) \cdots (p^d-p^{d-1})|\Phi(G)|^d$ (indeed, that number is the cardinality of the set \mathcal{B} of minimal bases of G, and G has no fixed points on the set \mathcal{B}), and this justifies the main assertion of Lemma 2(b). If a two-generator p-group G has a characteristic subgroup H of index p and $\alpha \in \text{Aut}(G)$ has prime order $q \notin \pi(p(p-1))$, then α stabilizes the chain $\{1\} < H/\Phi(G) < G/\Phi(G)$ so $\alpha = \text{id}_G$, by the previous paragraph and (f), a contradiction. In (c), the partial holomorph $(\alpha) \cdot G$ has no minimal nonnilpotent subgroup so it is nilpotent, by Frobenius’ Normal p-Complement Theorem [5, Theorem 9.18] (here we use the structure of minimal nonnilpotent groups; see [4, Satz 3.5.2]). Lemma 2(d) follows from Roquette’s Lemma [4, Satz 3.7.6], in which the p-groups without normal abelian subgroups of type (p,p) are classified. Lemma 2(g) follows from Wielandt’s Theorem [4, Satz 4.8.1] and Fitting’s Lemma [2, Corollary 1.18]. As to Lemma 2(f), assume that A does not centralize G and $|AG|$ is as small as possible. Then AG is minimal nonnilpotent. Since all nilpotent images of AG must be π'-groups, we get a contradiction with hypothesis.

Recall that there are two representation groups of the symmetric group S_4, their orders are equal to 48, Sylow 2-subgroups of these groups are generalized quaternion and semidihedral, respectively; see [7, Theorem 3.2.21].

Now we are ready to prove our main results.

Theorem 3. Suppose that the following holds:

(a) G is a nonnilpotent solvable group with a Sylow 2-subgroup T and $2'$-Hall subgroup H.

(b) $O_2(G) = \{1\}$.

(c) Whenever K is a proper subgroup of G such that $|G:K|$ is a power of 2, then K has no noncyclic abelian subgroup of order 8 (or, what is the same, every maximal subgroup of G containing H, has no noncyclic abelian subgroup of order 8).

Then one and only one of the following assertions is true:

A. If T is not normal in G, then either $G \cong S_4$ or G is one of two representation groups of S_4.
B If T is normal in G, then one of the following holds:

(B1) If T is abelian, then $T \in \{E_{2m}, C_4 \times C_4\}$.

(B1.1) If $T \cong C_4 \times C_4$, then G is a Frobenius group with $|G:T|=3$.

(B1.2) Let $T \cong E_{2m}$ be not a minimal normal subgroup of G. Then either $G \in \{A_4 \times C_2, A_4 \times A_4\}$ or $m=4$ and G is a Frobenius group with $|G:T|=3$.

(B2) T is extraspecial of order 2^{2m+1}, $m \geq 1$. If $m=1$, then $G \cong SL(2,3)$. Next assume that $m > 1$.

(B2.1) If $m > 2$, then $T/Z(T)$ is a minimal normal subgroup of $G/Z(T)$.

(B2.2) If $T/Z(T)$ is not a minimal normal subgroup of $G/Z(T)$, then $T = U \ast V$, where $U \cong V \cong Q_8$, $U \lhd G$; in that case, $G/T \cong H$ is isomorphic to a subgroup of E_{2^m}. Moreover, if $H \cong E_2$, then $G = A \times B$, where $A \cong B \cong SL(2,3)$, and $A \cap B = Z(A) = Z(B)$. If $|H|=3$, then $UH \cong SL(2,3) \cong VH$.

(B3) T has a G-invariant subgroup $T_0 \cong Q_8$ of index 2 and $T = T_0 Z(T)$. In that case, $G/T' \cong A_4 \times C_2$, $G' = T_0$ and, if $D/T_0 < G/T_0$ is of order 3, then $D \cong SL(2,3)$.

(B4) T is special with $Z(T) = Z(G) \cong E_4$ and $T/Z(T)$ is a minimal normal subgroup of $G/Z(T)$.

Proof. The solvable group G contains a $2'$-Hall subgroup H. Since $O_{2'}(G) = \{1\}$, $T \in \text{Syl}_2(G)$ is noncyclic (Lemma 2(b)), $C_G(O_{2'}(G)) \leq O_2(G)$ (Hall-Higman) so, if T is abelian, it is normal in G.

Suppose that T is abelian and $\exp(T) > 2$. Then $\Omega_1(T)$ is normal in G since $T \lhd G$. Next, $|G : \Omega_1(T)H| > 1$ is a power of 2 so $\Omega_1(T) \cong E_4$ since T is noncyclic. The number $|G : H\Omega_2(T)|$ is a power of 2 and $H\Omega_2(T)$ contains a noncyclic abelian subgroup of order 8, so we get $\Omega_2(T)H = G$ and $\exp(T) = 4$. Since G has no normal 2-complement, T is abelian of type (4, 4) (Lemma 2(b)). Then $\Omega_1(T)H$ is a Frobenius group (otherwise, by Lemma 2(c), $\{1\} < H \lhd G$) so $|H|=3$; in that case, G is also a Frobenius group.

Now suppose that $T \cong E_{2m}$; then $m > 1$. If $m = 2$, then $G \cong A_4$. Now we let $m > 2$ and suppose that T is not a minimal normal subgroup of G. Then $T = R \times R_1$, where $R, R_1 > \{1\}$, are normal in G (Maschke) and, since $|G : RH| > 1$ and $|G : R_1 H| > 1$ are powers of 2, we conclude that $|R| \leq 4$, $|R_1| \leq 4$ so $m \in \{3, 4\}$. If $m=3$, then $G \cong A_4 \times C_2$. If $m=4$, then G is either a Frobenius group with kernel $T \cong E_{24}$, of index 3 in G or $G \cong A_4 \times A_4$. Indeed, assume that G is not a Frobenius group; then $|H| > 3$. Setting $Z = C_H(R)$, $Z_1 = C_H(R_1)$, we have $|H : Z| = 3 = |H : Z_1|$ and $Z \cap Z_1 \leq O_{2'}(G) = \{1\}$ so $H = Z_1 \times Z_2$, $RZ_1 \cong A_4 \cong R_1 Z$ and $G = (RZ_1) \times (R_1 Z)$.

In what follows we assume that T is nonabelian.

A. Suppose that T is normal in G.

(i) Suppose that T has no noncyclic abelian subgroup of order 8. Then, by Lemma 2(d), T is of maximal class, and, by Lemma 2(b), $T \cong Q_8$, which is extraspecial (in that case, $G \cong SL(2,3)$).

In what follows we assume that T has a noncyclic abelian subgroup of order 8 so T is not of maximal class; then $|T| > 8$.

(ii) Suppose that $K < G$ and $|G : K| = 2$; then K has no noncyclic abelian subgroup of order 8, by hypothesis. We get $O_{2'}(K) \leq O_{2'}(G) = \{1\}$ so $T \cap K$ is noncyclic and is not of maximal class and order > 8, by Lemma 2(b). It follows from Lemma 2(d), that $T \cap K \cong Q_8$ and, since T is not of maximal class, $T = (T \cap K)C_T(K \cap T) = (T \cap K)Z(T)$ since $|T| = 16$ (Lemma 2(a)). The subgroup $T \cap K < G$. Then, in view of Lemma 2(b1) and (a) (see the theorem), we conclude that

$$|H| = |G : T| = 3, \ (T \cap K)H \cong SL(2,3), \ G' = T \cap K, \ G/G' \cong C_6$$

and so G is as in part (B3).

Next we assume that G has no subgroup of index 2; then $T \leq G'$.

(iii) Let R be a G-invariant subgroup of T such that T/R is a minimal normal subgroup of G/R; then $R > \{1\}$ since T is nonabelian. Since $|G : RH| > 1$ is a power of 2, R has no noncyclic abelian subgroup of order 8, by hypothesis (see (c)), so we have for R the following possibilities listed in Lemma 2(d): either $R \leq 4$ or $R \cong Q_8$ (here we also use Lemma 2(b)).

(iv) Suppose that H centralizes R. Then $G/C_G(R)$ is a 2-group, so $C_G(R) = G$, by (ii). Thus, $R \leq Z(G)$. By hypothesis (see (a)), $Z(G)$ is a 2-subgroup and, in view of the maximal choice of R, we get $Z(T) = R = Z(G)$. Assume that $T' < R$; then $|R/T'| = 2$. In that case, by Lemma 2(g), applied to the pair $T/T' < G/T'$, the group G/T' has a normal subgroup of index 2, contrary to (ii). Thus, $T' = R = \Phi(T)$ so T is special since $\exp(T') \leq \exp(T/T') = 2$, and $R \in \{C_2, E_4\}$. Therefore, we are done if $|R| = 2$.

(v) Suppose that T is extraspecial of order 2^{2m+1}, $m > 1$, and $|R| > 2$; then, by (iv), H does not centralize R. If $|R| = 4$, then $|T : C_T(R)| = 2$ and $C_T(R)H$ has index 2 in G, contrary to (ii) (note that $C_T(R)$ is normal in G since T and R are). Thus, $|R| > 4$ so $R \cong Q_8$ (Lemma 2(d,b)). Let $R_1 = C_T(R)$; then $R_1 \cong R \cong Q_8$, by what has just been said. In that case, $T = R \ast R_1$ is extraspecial of order 2^5. Suppose that $|H|$ is not a prime. Setting $C_H(R) = Z$ and $C_H(R_1) = Z_1$, we get, by Lemma 2(h1), $|H/Z| = 3 = |H/Z_1|$, $Z \cap Z_1 = \{1\}$ and so $H = Z \times Z_1$, $RZ_1 \cong SL(2,3) \cong R_1Z$, and we conclude that $G = (RZ_1) \ast (R_1Z)$ with $(RZ_1) \cap R_1Z = Z(RZ_1)$. If $|H|$ is a prime, then $|G : T| = 3$ and, as above, $RH \cong SL(2,3) \cong R_1H$. Thus, G as in part (B2).

In what follows we assume that T is not extraspecial.

(vi) Suppose that T has a maximal G-invariant cyclic subgroup Z of order ≥ 4. One may choose R so that it contains Z. Then H centralizes Z (Lemma
2(b)) so, by (iv), \(Z \leq Z(G) \). By Lemma 2(d), \(R \) must be cyclic, contrary to (iv).

Thus, \(T \) has no \(G \)-invariant cyclic subgroup of order 4 and so \(R \) is noncyclic. Therefore, by (iii), \(R \in \{ E_4, Q_8 \} \).

(vii) Let \(R \cong E_4 \). In that case, \(C_T(R) \) is normal in \(G \) and \(|T : C_T(R)| \leq 2 \). Since \(|T : C_T(R)H| \leq 2 \), we get \(C_T(R) = T \), by (ii). Since \(T \) is nonabelian, we get \(R = Z(T) \), by the maximal choice of \(R \). As in (iv), we get \(T' = R \) so \(\Phi(T) = R \) and \(T \) is special since, by the above, \(R = Z(G) \).

(viii) Now let \(R \cong Q_8 \). By (iv), \(|R, H| > \{1 \} \). By Lemma 2(b1), \(G/C_T(R) \) is a subgroup of \(S_4 \) containing a subgroup isomorphic to \(R/Z(R) \cong E_4 \) (Lemma 2(b1)). Since \(T \) is normal in \(G \), we get \(G/C_T(R) \not\cong S_4 \). Thus, \(|T : C_T(R)| = 4 = |R : Z(R)| \) so \(|H| = 3 \) and \(T = R \ast C_T(R) \), by the product formula. Thus, \(T/C_T(R) \cong E_4 \). By (ii), \(|T : R| > 2 \) so \(C_T(R) \) is noncyclic of order > 4. Then, by Lemma 2(d), \(C_T(R) \cong Q_8 \) so \(T \cong Q_8 \ast Q_8 \) is extraspecial of order \(2^5 \).

The case where \(T \) is normal in \(G \), is complete.

B. Now suppose that \(T \) is not normal in \(G \). Then \(T_0 = O_2(G) \notin \{1\} \) since \(O_2(G) = \{1\} \) and \(G \) is solvable. Since \(|G : T_0H| > 1 \) is a power of \(2 \), \(T_0 \) is a group of Lemma 2(d). It follows from \(C_G(T_0) \leq T_0 \) that \(T_0 \) is noncyclic and, if \(T_0 \) is of maximal class, then \(T_0 \cong Q_8 \) (Lemma 2(b2)). If \(T_0 \cong E_4 \), then \(G \cong S_4 \) since \(\text{Aut}(E_4) \cong S_3 \). Now let \(T_0 \cong Q_8 \). Since \(\text{Aut}(T_0) \cong S_4 \) (Lemma 2(b1)), we conclude that \(G/Z(T_0) \) is isomorphic to a nonnilpotent subgroup of \(S_4 \) containing the subgroup \(T_0/Z(T_0) \cong E_4 \) of even index (by assumption, \(T_0 < T \)). We conclude that \(C_T(T_0) < T_0 \) so \(T \) is of maximal class, namely, \(T \) is generalized quaternion of semidihedral of order 16 (Lemma 2(a)). It follows that \(G/Z(T_0) \cong S_4 \) so \(G \) is a representation group of \(S_4 \).

Since all groups listed in the conclusion of the theorem, satisfy the hypothesis, the proof is complete. \(\square \)

Next we expand Theorem 3 to groups of odd order.

Theorem 4. Let \(G \) be a non-nilpotent group and let \(p > 2 \) be the least prime divisor of \(|G| \). Suppose that the following holds:

(a) \(O_p'(G) = \{1\} \).
(b) Whenever \(K \) is a proper subgroup of \(G \) such that \(|G : K| \) is a power of \(p \), then \(K \) has no elementary abelian subgroup of order \(p^3 \).

Let \(T \) be a Sylow \(p \)-subgroup of \(G \). Then \(T \) is normal in \(G \) and one and only one of the following assertions takes place:

A \(T \) is a minimal normal subgroup of \(G \), \(d(T) > 2 \).
B \(T \) is special of exponent \(p \) with \(Z(T) = Z(G) \) is of order at most \(p^2 \), \(T/Z(T) \) is a minimal normal subgroup of \(G/Z(T) \).
PROOF. Since \(G \) has odd order, it is solvable hence, in view of (a), \(C_G(O_p(G)) \leq O_p(G) \) and so, if \(T \) is abelian, it is normal in \(G \). By Lemma 2(b), \(O_p(G) \) is not two-generator. Let \(H \) be a \(p' \)-Hall subgroup of \(G \).

(\ast) Let \(M < T \) be \(G \)-invariant. We contend that \(H \) centralizes \(M \). Indeed, since \(|G : MH| > 1 \) is a power of \(p \), \(M \) is a group of Lemma 2(e), by hypothesis (see (b)). Then, by Lemma 2(b), \(H \) centralizes \(M \) if \(d(M) \leq 2 \). Now let \(d(M) > 2 \). Then, by Lemma 2(e), \(M = \Omega_1(M)C \), where \(\Omega_1(M) \) is nonabelian of order \(p^3 \) and exponent \(p \) and \(C \) is cyclic. Note, that \(\Omega_1(M) \) is normal in \(G \).

By Lemma 2(b), \(H \) centralizes \(\Omega_1(M) \) so \(H \) centralizes \(M \), by Lemma 2(c).

1. Let \(T \) be normal in \(G \).

(i) Assume that \(T \) is a group of Lemma 2(e). Then, as in (\ast), \(H \) centralizes \(T \) so \(H \) is normal in \(G \), which is a contradiction. Thus, \(T \) possesses a subgroup \(\cong E_{p^3} \); then, by Lemma 2(e), \(T \) has a normal subgroup \(\cong E_{p^3} \).

(ii) Suppose that \(T \) is abelian. Since \(|G : H\Omega_1(T)| \) is a power of \(p \) and, by (i), \(\Omega_1(T) \) has a subgroup \(\cong E_{p^3} \), we get \(T = \Omega_1(T) \) so \(T \) is elementary abelian. Assume that \(T = V_1 \times V_2 \), where \(V_1 \) is normal in \(G \).

Then, by (\ast), \(H \) centralizes \(V_i \), \(i = 1, 2 \) (Lemma 2(b)) so \(H \) centralizes \(T \), which is not the case. Thus, \(T \) is a minimal normal subgroup of \(G \) (Maschke).

Next we assume that \(T \) is nonabelian; then \(|T| \geq p^4 \), by (i).

(iii) Assume that \(p \) divides \(|G : G'| \). Then, by (\ast), \(H \) stabilizes the chain \(1 < T \cap G' < T \) so \(H \) is normal in \(G \) (Lemma 2(f)), a contradiction. Thus, \(p \) does not divide \(|G : G'| \).

(iv) Let \(A < T \) be a \(G \)-invariant subgroup. We claim that \(A \leq Z(T) \). Assume that this is false. Since \(H \) centralizes \(A \), by (\ast), \(C_G(A) \) is normal in \(G \) and \(G/C_G(A) \) is a \(p \)-group > \(\{1\} \), contrary to (iii). Thus, \(A \leq Z(T) \); moreover, \(A \leq Z(G) \).

(v) Let \(R < T \) be \(G \)-invariant and such that \(T/R \) is minimal normal in \(G/R \). Then, by (iv), \(R \leq Z(T) \); moreover, \(R = Z(T) \), by the maximal choice of \(R \). It follows that the class of \(T \) equals 2 so, since \(p > 2 \), we get \(\exp(\Omega_1(T)) = p \). By (i), \(T \) possesses a subgroup \(E \cong E_{p^3} \). Since \(E \leq \Omega_1(T) \) and \(|G : H\Omega_1(T)| \) is a power of \(p \), we get \(G = H\Omega_1(T) \) so \(T = \Omega_1(T) \) is of exponent \(p \). It remains to show that \(T \) is special. Since \(|G : RH| > 1 \) is a power of \(p \), \(R \) is elementary abelian of order at most \(p^2 \). If \(T' < R \), then, by Lemma 2(g), applied to the pair \(T/M < G/M \), the group \(G/M \) has a normal subgroup of index \(p \), contrary to (iii). Thus, \(T' = R \). Since \(T \) is of exponent \(p \), we have \(T' = \Phi(T) \). Thus, \(Z(G) = R = T' = \Phi(T) \) so \(T \) is special.

We see that if \(T \) is nonabelian, it is special of exponent \(p \) with \(R = T' = Z(T) = \Phi(T) \) of order \(\leq p^2 \). By the maximal choice of \(R \), \(T/R \) is a minimal normal subgroup of \(G/R \) so the case where \(T \) is normal in \(G \), is complete.

It remains to show that \(T \) is normal in \(G \) always.

2. Now assume that \(T \) is not normal in \(G \). Since \(O_{p'}(G) = \{1\} \) and \(G \) is solvable, we get \(T > T_0 = O_p(G) \). Therefore, we have \(C_G(T_0) \leq T_0 \) so \(H \) acts faithfully on \(T_0 \). Since \(|G : T_0H| > 1 \) is a power of \(p \), \(T_0 \) has no
elementary abelian subgroup of order p^3. It follows that T_0 is a group of Lemma 2(e). However, as shows the argument in (i), H centralizes T_0, a final contradiction.

Since groups from parts A and B satisfy the hypothesis, the proof is complete. \[\Box\]

Note that if G is a 2-group without normal elementary abelian subgroup of order 8, then it possesses a normal metacyclic subgroup M such that G/M is isomorphic to a subgroup of D_8 [6]. Therefore, it is natural to classify the non-nilpotent solvable groups G, satisfying (i) $O_{2^k}(G) = \{1\}$ and (ii) if $K < G$ is such that $|G : K|$ is a power of 2, then K has no elementary abelian subgroup of order 8. However, the proof of such result would be very long since the groups appearing in [6] are not so small as groups of Lemma 2(e).

Theorem 4 also holds for each odd prime divisor p of $|G|$ such that $|G|$ and $p^2 - 1$ are coprime (in that case, $|G|$ is odd so solvable). To prove this, we have to repeat, word for word, the proof of Theorem 4.

References

Y. Berkovich
Department of Mathematics
University of Haifa
Haifa 31995
Israel
E-mail: berkov@mathcs2.haifa.ac.il
Received: 24.12.2003.