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Abstract. In this paper we shall present some new oscillation criteria
for difference equations of the form

∆mx(n) + q(n)f(x[n − τ ]) = 0

and
∆mx(n) = q(t)f(x[n − τ ]) + p(n)F (x[n + σ])

via comparison with some difference equations of lower order whose oscil-

latory behavior are known.

1. Introduction

In this paper we are concerned with the oscillatory behavior of solutions
of higher order difference equations

(1.1) ∆mx(n) + q(n)f(x[n− τ ]) = 0

and

(1.2) ∆mx(n) = q(n)f(x[n− τ ]) + p(n)F (x[n + σ]),

where m ≥ 2,∆ is the forward difference operator defined as follows:

∆0x(n) = x(n), ∆mx(n) =

m∑

j=0

(−1)m−j

(
m

j

)
x(n+ j), m ≥ 1.

Further, in what follows it is assumed that

(i) p, q : N(n0) = {n0, n0 + 1, · · · } → R+ = (0,∞) for some n0 ∈ N =
{0, 1, · · · },

(ii) τ and σ ≥ 0,
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(iii) f, F : R = (−∞,∞) → R are continuous functions satisfying xf(x) >
0 and xF (x) > 0 for x 6= 0 and both f and F are nondecreasing.

For r ∈ R and s a nonnegative integer, the factorial expression is defined
as

(r)(s) =
s−1∏

i=0

(r − i) with (r)(0) = 1.

By a solution of equation (1.1) (or (1.2)), we mean a nontrivial sequence
{x(n)} satisfying equation (1.1) (or (1.2)) respectively for all n ∈ N(n0), where
n0 is some nonnegative integer. A solution {x(n)} is said to be oscillatory
if it is neither eventually positive nor eventually negative and it is nonoscil-
latory otherwise. An equation is said to be oscillatory if all its solutions are
oscillatory.

In recent years, the oscillation of equations (1.1) and (1.2) when m ≥ 1
has been studied extensively. For recent contributions, we refer the reader to
the monographs of Agarwal et. al. [1,2,6] and Györi et. al. [8], also the papers
[4,5,7,9–11] and the references cited therein.

The purpose of this paper is to study the oscillatory behavior of all solu-
tions of equations (1.1) and (1.2). The main results are new and independent
of the analogous ones known for difference equations (see, for example, [1,2,4–
7,10,11] and the references contained therein).

To obtain our results we need the following lemmas in which the first is
the discrete analog of the well–known Kiguradze’s lemma.

Lemma 1.1. Let x(n) be defined on N(n0), x(n) > 0 and ∆mx(n) be
eventually of one sign on N(n0). Then there exist an integer ` and n1 ∈
N(n0), 0 ≤ ` ≤ m with m + ` odd for ∆mx(n) ≤ 0 eventually, or m+ ` even
for ∆mx(n) ≥ 0 eventually such that
(1.3){

` ≤ m− 1 implies (−1)`+k∆kx(n) > 0 for all n ∈ N(n1), ` ≤ k ≤ m− 1
` ≥ 1 implies ∆kx(n) > 0 for all n ∈ N(n1), 1 ≤ k ≤ `− 1.

Lemma 1.2. Let q, τ and f be as in (i), (ii) and (iii) respectively. If the
inequality

(1.4)
{
∆2x(n) + q(n)f(x[n − τ ])

}
sgn x[n− τ ] ≤ 0

has a nonoscillatory solution, then so does the equation

(1.5) ∆2x(n) + q(n)f(x[n− τ ]) = 0.

Lemma 1.3. Let (i) – (iii) hold. If the inequality

(1.6) {∆x(n) + q(n)f(x[n− τ ])} sgn x[n− τ ] ≤ 0

has a nonoscillatory solution, then so does the equation

(1.7) ∆x(n) + q(n)f(x[n− τ ]) = 0.
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Also, if the inequality

(1.8) {∆x(n) − p(n)F (x[n+ σ])} sgn x[n+ σ] ≥ 0

has a nonoscillatory solution, then so does the equation

∆x(n) − p(n)F (x[n+ σ]) = 0.

The proof of Lemmas 1.2 and 1.3 may be found in [6,8,10]. Also, these
are discrete analog of the results established in [3].

We shall assume that

(1.9) −f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0,

(1.10) −F (−xy) ≥ F (xy) ≥ F (x)F (y) for xy > 0

and

(1.11)

∞∑
(n− τ)(m−j)f

(
(n− τ)(j−1)

)
q(n) =∞, j = 1, 2, · · · ,m.

For simplicity, we put for all sufficiently large n,

Qj(n) =
∞∑

r=n

(r−n+m−j−2)(m−j−2)

(m− j − 2)!
q(r)f

(
(r−τ−m+ j−1)(j−1)

j!

)
,

j = 1, 2, · · · ,m− 2,

Qm−1(n) = q(n)f

(
(n− τ − 2)(m−2)

(m− 1)!

)
,

Q0(n) = q(n)f

(
n−τ∑

r=n−τ

(r − n+ τ +m− 2)(m−2)

(m− 2)!

)
,

for some τ > 0 with τ > τ ,

Qj(n) =

n∑

r=n1+τ

(r − n1 +m− j − 1)(m−j−1)

(m− j − 1)!
q(n)

f

(
(r − τ −m+ j − 1)(j−1)

j!

)
,

j = 1, 2, · · · ,m− 1 and some n1 ≥ n0,

Q∗
j (n) =

∞∑

r=n

(r − n+m− `− 1)(m−`−1)

(m− `− 1)!
q(r)f

(
(r−τ−m+ `− 1)(`−1)

`!

)
,

j = 1, 2, · · · ,m− 1,

Qm(n) = q(n)F

(
(σ − σ)(m−1)

(m− 1)!

)
for some σ > 0 with σ > σ.
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2. Oscillation of Equation (1.1)

In this section we shall present some oscillation results for equation (1.1).

Theorem 2.1. Let m be even, conditions (i) – (iii), (1.9) and (1.11)
hold. If for sufficiently large n all second order difference equations

(2.1; j) ∆2z(n) +Qj(n)f(z[n− τ ]) = 0, j = 1, 3, · · · ,m− 1

are oscillatory, then equation (1.1) is oscillatory.

Theorem 2.2. Let m be odd, conditions (i) – (iii), (1.9) and (1.11) hold.
If for all sufficiently large n all second order difference equations (2.1; j), j =
2, 4, · · · ,m− 1 are oscillatory, then every solution {x(n)} of equation (1.1) is
either oscillatory, or limn→∞ ∆ix(n) = 0 monotonically for i = 0, 1, · · · ,m−
1. In addition, if there exists a positive integer τ with τ < τ such that the first
order difference equation

(2.2) ∆u(n) +Q0(n)f(u[n− τ ]) = 0

is oscillatory, then equation (1.1) is oscillatory.

Proofs of Theorems 2.1 and 2.2. Assume that equation (1.1) has a
nonoscillatory solution {x(n)}, say, x(n) > 0 for n ≥ n0 ≥ 0. By Lemma 1.1,
x(n) satisfies (1.3) for some ` ∈ {0, 1, 2, · · · ,m−1} with `+m odd for n ≥ n1,
for some n1 ≥ n0.

From the discrete Taylor’s formula, it follows that x satisfies the equality

(2.3)

∆`x(n) =

k−1∑

j=`

(s− n+ j−`−1)(j−`)

(j − `)! (−1)j−`∆jx(s)

+(−1)k−`
s−1∑

r=n

(r − n+ k−`−1)(k−`−1)

(k − `− 1)!
∆kx(r)

for s ≥ n ≥ n1, 0 ≤ ` ≤ m− 1 and 0 ≤ k ≤ m. Now, we consider the following
three cases:

(I) ` ∈ {1, 2, · · · ,m− 2},
(II) ` = m− 1,

(III) ` = 0.

Case (I). Let ` ∈ {1, 2, · · · ,m− 2}. From (2.3) with ` and k replaced by
`+ 1 and m respectively, we have

(2.4)

−∆`+1x(n) =
m−1∑

j=`+1

(s− n+ j − `− 2)(j−`−1)

(j − `− 1)!
(−1)j−`∆jx(s)

+(−1)m−`
s−1∑

r=n

(r − n+m− `− 2)(m−`−2)

(m− `− 2)!
∆mx(r).
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Using (1.3) and equation (1.1) in (2.4), we obtain

(2.5) −∆`+1x(n) ≥
s−1∑

r=n

(r − n+m− `− 2)(m−`−2)

(m− `− 2)!
q(r)f(x[r − τ ]).

Letting s→∞ in (2.5), we get

(2.6) −∆`+1x(n) ≥
∞∑

r=n

(r − n+m− `− 2)(m−`−2)

(m− `− 2)!
q(r)f(x[r − τ ]).

Next, from the equality

m−1∑

j=i

(−1)j

(j − i)! (n−m+ j)(j−i)∆jx(n)

=

m−1∑

j=i

(−1)j

(j − i)! (n1)
(j−i)∆jx(n1 +m− j − 1)

+
(−1)m−1

(m− i− 1)!

n−1∑

s=n1

s(m−i−1)∆mx(s)

and condition (1.11), one can proceed as in [7] to obtain

(2.7) x(n) ≥ (n−m+ `− 1)(`−1)

`!
∆`−1x(n), n ≥ n1.

There exists an n2 ∈ N(n1 + τ) such that

(2.8) x[n− τ ] ≥ (n− τ −m+ `− 1)(`−1)

`!
∆`−1x[n− τ ], n ≥ n2.

Using condition (1.9) and inequality (2.7) in inequality (2.6), we have

(2.9)

−∆`+1x(n) ≥
∞∑

r=n

(r − n+m− `− 2)(m−`−2)

(m− `− 2)!
q(r)

f

(
(r − τ −m+ `− 1)(`−1)

`!

)
f
(
∆`−1x[n− τ ]

)

for n ≥ n2. Set y(n) = ∆`−1x(n) > 0 for n ≥ n2, and we see that {y(n)}
satisfies

∆2y(n) +Q`(n)f(y[n− τ ]) ≤ 0.

Lemma 1.2 now implies that the equation

∆2y(n) +Q`(n)f(y[n− τ ]) = 0

has an eventually positive solution. But this contradicts our assumption.

Case (II). Let ` = m− 1. It follows from (2.8) that

(2.10) x[n− τ ] ≥ (n− τ − 2)(m−2)

(m− 1)!
∆m−2x[n− τ ] for n ≥ n2.
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Using condition (1.9) and (2.10) in equation (1.1), we have

−∆mx(n) = q(n)f(x[n− τ ])

≥ q(n)f

(
(n− τ − 2)(m−2)

(m− 1)!

)
f
(
∆m−2x[n− τ ]

)

= Qm−1(n)f
(
∆m−2x[n− τ ]

)
for n ≥ n2.

The rest of the proof is similar to that of Case (I) and hence omitted.

Case (III). Let ` = 0. This is the case when m is odd. As in [7] one
can easily see that condition (1.11) implies that limn→∞ x(n) = 0. Therefore,
limn→∞ ∆ix(n) = 0 monotonically for i = 0, 1, · · · ,m− 1.

It follows from (2.3) with ` = 0 and k = m− 1 that for s ≥ n ≥ n1

x(n) ≥
s−1∑

r=n

(r − n+m− 2)(m−2)

(m− 2)!
∆m−1x(r).

By the hypothesis there exists n1 ≥ n1 such that

(2.11) x[n− τ ] ≥
(

n−τ∑

r=n−τ

(r − n+ τ +m− 2)(m−2)

(m− 2)!

)
∆m−1x[n− τ ].

Using (1.9) and (2.11) in equation (1.1), we obtain

−∆mx(n) = q(n)f(x[n− τ ])

≥ q(n)f

(
n−τ∑

r=n−τ

(r − n+ τ +m− 2)(m−2)

(m− 2)!

)
f
(
∆m−1x[n− τ ]

)
,

or

∆y(n) +Q0(n)f(y[n− τ ]) ≤ 0,

where y(n) = ∆m−1x(n) > 0 for n ≥ n1. Lemma 1.3 now implies that the
equation

∆y(n) +Q0(n)f(y[n− τ ]) = 0

has an eventually positive solution. But this contradicts our assumption and
completes the proofs of Theorems 2.1 and 2.2.

Next, we present the following oscillation criteria for equation (1.1).

Theorem 2.3. Let m be even, conditions (i) – (iii), (1.9) and (1.11)
hold. If for some n1 ≥ n0

(2.12; j) lim
n→∞

Qj(n) =∞, j = 1, 3, · · · ,m− 1

then equation (1.1) is oscillatory.
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Theorem 2.4. Let m be odd, conditions (i) – (iii), (1.9) and (1.11) hold.
If for some n1 ≥ n0 condition (2.12; j) holds with j = 2, 4, · · · ,m−1 then every
solution {x(n)} of equation (1.1) is either oscillatory, or limn→∞ ∆ix(n) = 0
monotonically for i = 0, 1, · · · ,m − 1. In addition, if there exists a positive
integer τ with τ < τ such that either

(2.13)
f(x)

x
≥ 1 for x 6= 0 and lim inf

n→∞

n−1∑

s=n−τ

Q0(s) >

(
τ

τ + 1

)τ+1

,

or

(2.14)

∫

±0

du

f(u)
<∞ and

∞∑
Q0(s) =∞,

then equation (1.1) is oscillatory.

Proofs of Theorems 2.3 and 2.4. Assume that equation (1.1) has a
nonoscillatory solution {x(n)}, say x(n) > 0 for n ≥ n0 ≥ 0. By Lemma
1.1, x(n) satisfies (1.2) for some ` ∈ {0, 1, 2, · · · ,m − 1} with ` +m odd for
n ≥ n1 ≥ n0.

Next, we shall consider the following two cases:

(I) ` ∈ {1, 2, · · · ,m− 1},
(II) ` = 0.

The proof of Case (II) is similar to that of Case (III) in Theorems 2.1
and 2.2 except that we apply known result in [8,9] to equation (2.2). Thus,
we shall consider Case (I).

Case (I). Let ` ∈ {1, 2, · · · ,m− 1}. From equality (2.3) with k = m and
n = n1 one can easily find for s > n1,

(2.15) ∞ > ∆`x(n1) ≥
s−1∑

r=n1

(r − n1 +m− `− 1)(m−`−1)

(m− `− 1)!
q(r)f(x[r − τ ]).

As in the proof of Theorems 2.1 and 2.2, we obtain (2.7) for n ≥ n2. Since
∆`−1x(n) is increasing for n ≥ n1, there exist n3 ≥ n1 and a constant c > 0
such that

(2.16) ∆`−1x[r − τ ] ≥ c for r ≥ n3.

Using (1.9), (2.7) and (2.16) in (2.15), we have

∞ > ∆`x(n1) ≥
s−1∑

r=n1+τ

(r − n1 +m− `− 1)(m−`−1)

(m− `− 1)!
q(r)f(c)

f
(

(r−τ−m+`−1)(`−1)

`!

)

= Q`(s)f(c)→∞ as s→∞,
which contradicts condition (2.12). This completes the proof.
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Now, we present the following comparison theorems.

Theorem 2.5. Let m be even, conditions (i) – (iii), (1.9) and (1.11) hold.
If for all sufficiently large n, all the first order delay difference equations

(2.17; j) ∆z(n) +Q∗
j (n)f(z[n− τ ]) = 0, j = 1, 3, · · · ,m− 1

are oscillatory, then equation (1.1) is oscillatory.

Theorem 2.6. Let m be odd, conditions (i) – (iii), (1.9) and (1.11) hold.
If there exists a positive integer τ with τ < τ such that for all large n all the
equations (2.17; j), j = 2, 4, · · · ,m−1 and (2.2) are oscillatory, then equation
(1.1) is oscillatory.

Proof. Assume that equation (1.1) has a nonoscillatory solution {x(n)},
say, x(n) > 0 for n ≥ n0 ≥ 0. As in the proof of Theorems 2.1 and 2.2, we
consider two cases:

(I) ` ∈ {1, 2, · · · ,m− 1},
(II) ` = 0.

The proof of Case (II) is similar to that of Case (III) of Theorems 2.1 and
2.2 and hence will be omitted. Thus, we consider Case (I).

Case (I). Let ` ∈ {1, 2, · · · ,m− 1}. It follows from (2.3) that

(2.18) ∆`x(n) ≥
∞∑

r=n

(r − n+m− `− 1)(m−`−1)

(m− `− 1)!
q(r)f(x[r − τ ]).

As in the proof of Theorems 2.1 and (2.2), we obtain (2.8). Using (1.9), (2.8)
in (2.18), we have

∆`x(n) ≥
∞∑

r=n

(r − n+m− `− 1)(m−`−1)

(m− `− 1)!
q(r)

f

(
(r − τ −m+ `− 1)(`−1)

`!

)
f
(
∆`−1x[n− τ ]

)
,

or

∆y(n) +Q∗
` (n)f(y[n− τ ]) ≤ 0 for n ≥ n1 ≥ n0.

Lemma 1.3 now implies that the equation

∆y(n) +Q∗
` (n)f(y[n− τ ]) = 0

has an eventually positive solution. But this contradicts our assumption and
completes the proof.

The following results are immediate.

Corollary 2.7. Let m be even, conditions (i) – (iii), (1.9) and (1.11)
hold. Equation (1.1) is oscillatory if either one of the following conditions
holds:
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(e1) f(x)/x ≥ 1 for x 6= 0 and

(2.19; j) lim inf
n→∞

n−1∑

s=n−τ

Q∗
j (s) >

(
τ

τ + 1

)τ+1

, j = 1, 3, · · · ,m− 1

or

(e2)
∫
±0 du/f(u) <∞ and

(2.20; j)

∞∑
Q∗

j (s) =∞, j = 1, 3, · · · ,m− 1.

Corollary 2.8. Let m be odd, conditions (i) – (iii), (1.9) and (1.11)
hold. Equation (1.1) is oscillatory if either one of the following conditions is
satisfied:

(o1) condition (2.19; j), j = 2, 4, · · · ,m− 1 and condition (2.13), or
(o2) condition (2.20; j), j = 2, 4, · · · ,m− 1 and condition (2.14).

3. Oscillation of Equation (1.2)

In this section we shall study the oscillatory behavior of equation (1.2). If
equation (1.2) has a nonoscillatory solution {x(n)}, say, x(n) > 0 for n ≥ n0 ≥
0, then by Lemma 1.1 there exist an integer n1 ≥ n0 and ` ∈ {0, 1, · · · ,m}
with `+m even such that (1.3) holds for n ≥ n1. Next, we shall consider the
inequalities

(3.1) ∆mx(n) ≥ q(n)f(x[n− τ ]) when ` ∈ {0, 1, · · · ,m− 1}

and

(3.2) ∆mx(n) ≥ p(n)F (x[n + σ]) when ` = n

and obtain the following oscillation results for equation (1.2).

Theorem 3.1. Let m be even, conditions (i) – (iii), (1.9) – (1.11)
hold. If for all sufficiently large n, all the second order equations (2.1; j), j =
2, 4, · · · ,m − 2 are oscillatory and there exist positive integers τ and σ with
τ < τ and σ < σ such that the first order delay equation (2.2) and the first
order advanced equation

(3.3) ∆y(n) +Qm(n)F (y[n+ σ]) = 0

are oscillatory, then equation (1.2) is oscillatory.

Theorem 3.2. Let m be odd, conditions (i) – (iii), (1.9) – (1.11) hold.
If for all sufficiently large n, all the second order equations (2.1; j), j =
1, 3, · · · ,m− 2 are oscillatory and there exists a positive integer σ with σ < σ
such that equation (3.3) is oscillatory, then equation (1.2) is oscillatory.
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Proofs of Theorems 3.1 and 3.2. Assume that equation (1.2) has a
nonoscillatory solution {x(n)}, say, x(n) > 0 for n ≥ n0 ≥ 0. By Lemma 1.1,
x(n) satisfies (1.3) for some ` ∈ {0, 1, · · · ,m} with `+m even for n ≥ n1 for
some n1 ≥ n0. Now, we distinguish the following four cases:

(I) ` ∈ {1, 2, · · · ,m− 2},
(II) ` = m− 1,

(III) ` = 0,
(IV) ` = m.

The proofs of the Cases (I), (II) and (III) are exactly the same as in
Section 2 and hence omitted. It remains to consider the Case (IV).

Case (IV). Let ` = m. From (2.3), one can easily see that

x(n) = x(s) +

m−1∑

j=1

(n− s)(j)
j!

∆jx(s) +

n−m∑

r=s

(n− r − 1)(m−1)

(m− 1)!
∆mx(r)

and hence

x(n) ≥ (n− s)(m−1)

(m− 1)!
∆m−1x(s) for n ≥ s ≥ n1.

There exists an n2 ≥ n1 such that

(3.4) x[n+ σ] ≥ (σ − σ)(m−1)

(m− 1)!
∆m−1x[n+ σ] for n ≥ n2.

Using (1.10) and (3.4) in inequality (3.2), we have

∆mx(n) ≥ q(n)F (x[n+ σ]) ≥ q(n)F

(
(σ − σ)(m−1)

(m− 1)!

)
F
(
∆m−1x[n+ σ]

)
,

or

∆v(n) ≥ Qm(n)F (v[n+ σ]) for n ≥ n2,

where v(n) = ∆m−1x(n), n ≥ n2. Lemma 1.3 now implies that the equation

∆v(n)−Qm(n)F (v[n+ σ]) = 0

has an eventually positive solution. But this contradicts our assumption and
completes the proof.

Next, we have the following immediate results.

Theorem 3.3. Let m be even, conditions (i) – (iii), and (1.9) – (1.11)
hold. If for some n1 ≥ n0, τ > 0 with τ < τ and some σ > 0 with σ < σ,
condition (2.12; j), j = 2, 4, · · · ,m−2, condition (2.13) (or (2.14)) and either

(3.5)
F (x)

x
≥ 1 for x 6= 0 and lim inf

n→∞

n+σ−1∑

j=n

Qm(j) >

(
σ − 1

σ

)σ

,
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or

(3.6)

∫ ±∞ du

F (u)
<∞,

then equation (1.2) is oscillatory.

Theorem 3.4. Let m be odd, conditions (i) – (iii), and (1.9) – (1.11)
hold. If for some n1 ≥ n0 and some σ > 0 with σ < σ, condition (2.12; j), j =
1, 3, · · · ,m − 2 and condition (3.5) (or (3.6)) hold, then equation (1.2) is
oscillatory.

Here, we note that condition (1.11) implies that

(3.7)

∞∑
q(j) =∞,

which is required to ensure oscillation of the advanced superlinear equation
(3.3) and hence omitted.

When F ≡ 0, i.e., equation (1.2) is reduced to the equation

(3.8) ∆mx(n) = q(n)f(x[n− τ ]),
one can easily obtain the following oscillatory and asymptotic behavior results.

Theorem 3.5. Let m be even, conditions (i) – (iii), (1.9) and (1.11)
hold. If for some τ > 0 with τ < τ and all large n, all equations (2.17; j), j =
2, 4, · · · ,m−2 and (2.2) are oscillatory, then every solution {x(n)} of equation
(3.8) is either oscillatory or |∆ix(n)| → ∞ monotonically as n → ∞, i =
0, 1, · · · ,m− 1.

Theorem 3.6. Let m be odd, conditions (i) – (iii), (1.9) and (1.11)
hold. If for all large n, all the equations (2.17; j), j = 1, 3, · · · ,m − 2 are
oscillatory, then every solution {x(n)} of equation (3.8) is either oscillatory,
or |∆ix(n)| → ∞ monotonically as n→∞, i = 0, 1, · · · ,m− 1.

As an illustrative example, we consider the mixed type of difference equa-
tion

(3.9) ∆mx(n) = q|x[n− 2m]|αsgn x[n− 2m] + p|x[n+ 2m]|βsgn x[n+ 2m],

where m ≥ 2, p, q, α and β are positive constants with 0 < α ≤ 1 and β ≥ 1.
Here, we take τ = 2m,σ = 2m and hence choose τ = m,σ = m. Now, for
appropriate choices of the constants involved, one can easily see that equation
(3.9) is oscillatory by Theorems 3.3 and 3.4.

We note that none of the known results which have appeared in the lit-
erature can be applied to describe the oscillatory behavior of equation (3.9).

Finally, we see that the results of this paper can be extended to more
general equations of the form

(3.10) ∆mx(n) + q(n)f(x[g(n)]) = 0,
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(3.11) ∆mx(n) = q(n)f(x[g(n)]) + p(n)F (x[h(n)])

where p(n), q(n), f and F are as in equations (1.1) and (1.2), g, h ∈ G = {g, h :
N(n0) → N for some n0 ∈ N : limn→∞ g(n) = ∞ and limn→∞ h(n) = ∞},
{g(n)} and {h(n)} are nondecreasing sequences, g(n) ≤ n and h(n) ≥ n.

Also, we can extend our results to equations of the form

(3.12) ∆
(
∆m−1x(n)

)α
+ q(n)f(x[g(n)]) = 0

and

(3.13) ∆
(
∆m−1x(n)

)α
= q(n)f(x[g(n)]) + p(n)F (x[h(n)]),

where α is the ratio of positive odd integers, p(n), q(n), g(n), h(n), f and F
are as in equations (3.10) and (3.11).

The statements and formulation of results are left to the reader.
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