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We describe a methodology to endow a set of chemical interest with a topology. This proce-

dure starts with the definition of the chemical set as a group of elements plus their neighbor-

hood relationships. A graphical representation of these two conditions is a dendrogram (tree).

Next, we show a mathematical procedure to build up a basis for a topology with which we can

calculate several topological properties, such as: closures and boundaries of sets of chemical

interest. We show four practical examples of this methodology: 72 chemical elements, 31 ste-

roids, 250 benzimidazoles and 20 amino acids.

Keywords

chemotopology

mathematical chemistry

topology

cluster analysis

dendrograms

consensus trees

* Dedicated to Dr. Edward C. Kirby on the ocassion of his 70th birthday.

** Author to whom correspondence should be addressed. (E-mail: grestrepo@unipamplona.edu.co)

INTRODUCTION

There are several chemical systems which are character-

ized for the relationships among their elements, for ex-

ample: the chemical elements, acids, bases and families

of organic compounds, among others. These relationships

are interpreted as similarity relationships.1 It means, two

elements of a set of chemical interest are strongly related

if they are very similar. Thus, the study of similarity is

essential in this respect. One way to quantify the similarity

starts with the definition of every chemical object (ele-

ment, compound) in mathematical terms;2 normally as a

vector of its attributes or properties.3 In other words, the

similarity studies start with the transformation of the

chemical object into a mathematical one. Once the che-

mical object is defined mathematically, then the similar-

ity among all vectors is calculated by means of a simi-

larity function, commonly related to the distance among

themselves.2,3 A methodology that has shown important

results trying to find similarities in chemistry is the clus-

ter analysis, which, taking advantage of several grouping

methodologies, finally shows clusters of elements that

share common features. These groups or clusters can be

interpreted as groups of similar objects. Normally, a way

to visualize such clusters, independent of the dimension

of the space, or the number of features that determine

every chemical object, is a two-dimensional graphical re-

presentation called a dendrogram or tree, in mathemati-

cal terms. Generally, cluster analysis finishes with the

obtention of the dendrogram and its respective analysis

and interpretation. But as we showed,3–8 it is possible to

interpret a dendrogram and its clusters as a map of neigh-

borhoods of elements and extracting the notion of neigh-

borhood from these clusters in terms of similarity. It

means, if an object belongs to a particular cluster, then

this one and the rest of the objects in the same cluster

are neighbors of it, due to the fact that they are similar

by construction.
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Since it is possible to define a neighborhood for ev-

ery element of the set, we can approach this interpretation

and apply the mathematical theory in charge of studying

neighborhood relationships, which is the Topology. With

this tool it is possible to define topologies within the set

and to study some topological properties in the set, as clo-

sures and boundaries, among others.8 We called this me-

thodology »chemotopology« due to the fact that it com-

bines cluster analysis that takes part of chemometrics or

chemoinformatics and topology. But, what is a topology?

A topology of a set is the set itself and a collection of the

neighborhoods of its elements.9–11 Taking advantage of

this definition and knowing the nature of chemical sets,

we can say that this sort of uses of general topology can

have further application in chemistry since one of the main

characteristics of the chemical sets is the relationship

among their elements.12 Recently,3–7 we showed through

this chemotopological procedure that the mathematical

boundary of metals in the set of chemical elements is the

set of semimetals. Then, taking a topological advantage

of a dendrogram, or in general a tree, it is possible to find

out some well-known relationships or in other cases new

relationships. But, as we mentioned above, there are seve-

ral chemical systems of interest built up using similarities

of their elements. Besides, there are some works, reported

in literature, using cluster analysis of some chemical sets,

such as: benzimidazoles,13 amino acids,14 steroids15 and

chemical elements.3–7 Our aim in this paper is to show the

chemotopological methodology and apply it to the study

of those chemical sets.

METHODOLOGY

The general procedure of cluster analysis can be divided in

two steps: measurements of similarities and grouping metho-

dologies. The first step includes the selection of one measure

of similarity, normally a metric one,2,16–18 which is applied

to calculate the similarity relationships among all chemical

objects. The second step of cluster analysis is the selection

of a grouping methodology17,18 that in mathematical terms

implies the selection of a way to calculate the distance be-

tween one point and a set. The final product of these two

steps is a hierarchical classification of the set that can be

represented in a graphical way. The most common graphi-

cal representation is a dendrogram that shows the clusters

obtained through the two steps mentioned above. Normally,

cluster analysis studies use only one similarity function and

only one grouping methodology to finally obtain only one

dendrogram (Figure 1a), but there is an arbitrariness in the

choice of a particular similarity function and a grouping

methodology; then as we showed recently,3,4,7 it is recom-

mendable to obtain consensus trees to search for those fea-

tures common to several of the employed methods (similar-

ity function and grouping methodology). A hypothetical

consensus tree appears in Figure 1b. Thus, we can have two

different representations of similarity relationships: dendro-

grams and consensus trees (Figure 1). However, they can

be interpreted, in general, as trees (acyclic and connected

graphs), and in this way we can talk indistinctively about

dendrograms and consensus trees.

Definition 1. – A tree is a graph showing the clusters of a

set of objects, with the following classes of vertices:

1. vertices of degree 1, corresponding to objects;

2. vertices of degree greater than 3, called nodes;

3. only one vertex of degree 2, called root node.

We show in Figure 1 the different vertices in a dendro-

gram and in a consensus tree.

With the aim of providing the set of chemical interest

with a topology we introduce the following definitions (some

basic concepts of topology appear in Appendix A1–A2).

Definition 2. – A subgraph G of a tree T is called subtree if:

1. G does not contain the root node;

2. There is a node p of T with degree greater than 1

such that G corresponds to one of the connected subgraphs

obtained subtracting p from D.

Definition 3. – Let an n-subtree be a subtree of cardinality

less than or equal to n.

Definition 4. – A maximal n-subtree is an n-subtree such

that there is no other n-subtree containing it.

We build up a basis for a topology by means of the fol-

lowing theorem, whose proof appears in Appendix (A3).

Theorem 1. – Let Q be a set of chemical interest and

Bn B Q� �{ be formed by the elements of some maximal

n-subtree�. Then, Bn is a basis for a topology in Q.

Thus, it happens that for every n, different topologies

may appear. When n = 1 we have a basis which is a collec-

tion of all objects (Appendix A4). This means that the ne-

ighborhood of every object is itself and not any other; on

the other hand, if we have n = �Q�, where �Q� is the cardinal-

ity or number of elements of the set Q, then the basis is a

collection of only one set, the whole set (Appendix A5).

For this reason we should select 1<n<�Q� and as we showed

for the set of 72 chemical elements,3–7 a selection of n = 5

produces a basis which generates a topology that reprodu-

ces some of the intuitive ideas about the chemical elements,

such as: the classification of metals, non metals and semi-

metals.
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Figure 1. a) A dendrogram; b) A consensus tree and their vertices.



The methodology developed to endow a set of chemi-

cal objects with a topology is based on the selection of

»branches« of the tree to build a basis for the topology. Be-

sides, every choice of n determines the size of branches on

the tree that we select as neighborhoods of the objects on

the tree. In Figure 2, we show a graphic representation of

this methodology.

Once we have endowed the set X with a topology �n we

can study some topological properties of the set X such as

those that appear in Appendix A6.

Now we can apply this methodology to sets of chemi-

cal interest.

SOME CHEMICAL EXAMPLES

We show four examples of this methodology applied to

chemical systems in the following.

Chemical Elements

Making use of this procedure we build up a topology on

the set of 72 chemical elements (Z = 1–86, omitting

58–71) every one defined by 31 physico-chemical prop-

erties and found that alkali metals and noble gases are

subsets which are not related to other elements.3–6 It

means that in the space of chemical elements these two

groups are disjuncts. On the other hand we found that

the boundary of metal and non-metals is the same subset

of elements, the set of semimetals.

Benzimidazoles

A classification of 238 benzimidazoles making use of

graph theoretical and quantum mechanical calculations

was made by Niño, Daza, and Tello.13 In this work the

authors developed a dendrogram using Euclidean dis-

tance as similarity measure and nearest linkage as grou-

ping methodology. We do not show the dendrogram due

to its size, but it may be requested from the authors.

In this set of substances it is possible to classify

compounds according to their pharmacological activity;

thus we have 5 classes: Angiotensin II (A), Antivirals

(AV), Cardiotonics (C) and Antihelmintics (H). Cardinali-

ties of every class were: �A�=158, �AV�=15, �C�=32, �H�=33.

Now, taking advantage of the dendrogram shown in that

work, we build up a topology �15 on the set of benzimi-

dazoles. Topological properties to these subsets are the

following:

A A� � { }h31

b( )A �
�a8a, a6a, a18, a12, a16, a13, a15, a5, a11, a4, a3, a14, a10, h31, a0�

AV AV� � { }h42

b AV
h av av av av av av

av av av
( )

, , , , , , ,

, ,
� 42 12 10 14 15 11 9

8 7 5, , , , ,av av av av av4 6 3 2 1

�
�
	



�
�

C C�

b( )C � Æ

H �

H �
av av av av av av av av av av av12 10 14 15 11 9 8 7 5 4 6, , , , , , , , , , , , ,

, , , , , , , , , ,

av av

av a a a a a a a a a aa a

3 2
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�
�
	



�
�
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3 2

1 8 6 18 12 16 13 15 5 11 4
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, , , , , , , , , , , 3 14 10 0, , ,a a a

�
�
	



�
�

From this we can say that the classification of ben-

zimidazoles in 4 classes does not give 4 disjunct subsets

according to the five graph-theoretical and seven quan-

tum descriptors used. We conclude this, due to the pres-

ence of some benzimidazoles h and av in several sets.
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branches.



But, it is correct to say that the set of cardiotonics is a

well-defined group because its closure is itself and its

boundary is empty; this result shows that this set is dis-

junct in the space of benzimidazoles, such as occurs in

the set of chemical elements with alkali metals and no-

ble gases.3–7 On the other hand, according to our results

it is possible to speculate and say that those substances

that are in the boundary of two subsets can have inter-

mediate properties between two subsets.8 In this way it

would be of special interest to develop studies related to

the properties of h31, h42 and those elements that belong

to b(H).

Steroids

Recently, Bultinck and Carbó-Dorca15 developed a classi-

fication of 31 steroids using molecular quantum similar-

ity and cluster analysis. The chemical structures of this

substances appear in Figure 3.

With the aim of studying the results of these authors,

we developed a chemical classification of the set of ste-

roids in 5 molecular classes: those able to form the tau- tomer enol (E); those without multiple bond endocyclic

(W); those aromatics (A); those with a doble bond en-

docyclic (C-5-C-6 of the system cyclopentane-perhydro-

-phenantrenum) (D) and those conjugated systems not

able to form the tautomer enol (C). Once we applied our

methodology, we found that to the topology built up for

every one of the 3 dendrograms developed by the au-

thors, the topological properties are the same in the den-

drogram obtained using the Carbó similarity index and

the dendrogram obtained by means of the stochastic

transform and Euclidean distance. We show the informa-

tion of this dendrogram in Figure 4. All five subsets re-

sult to be themselves their own closure; ergo, their boun-

daries were empty. These results indicate that this classi-

fication of steroids according to chemical knowledge on

structure and reactivity gives disjunct sets, or in other

words, robust groups.

Amino Acids

A recent work related to the behavior of the amino acids

within two different environments were reported by Cár-

denas et al.14 In this work a set of 20 genetically encoded

amino acids (and five of their conformers) were studied

with the aim to predict the peptidic properties resulting

from the exchange of two amino acids in a proteic chain.

The peptidic chain was emulated using two capping mo-

dels to simulate the effect of its nearest neighbors. These

are OCH-Xaa-NH2 and A-Xaa-A, where Xaa is the con-

former of interest and A is alanine. Thus, defining every

amino acid system as a vector of 40 ab initio quantum

chemical and graph-theoretical indices, the authors de-

veloped principal component analysis and found 8 prin-

cipal components. With these results, they performed

cluster analysis to every capping model using the more
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Figure 3. Steroids studied by Carbó-Dorca and Bultinck.

Figure 4. Dendrogram of 31 steroids.



relevant variables suggested by principal component

analysis. After this, the authors built up a consensus tree

of two dendrograms obtained for every capping model,

where the amino acids are represented by their one-letter

code plus h or b that means their alpha or beta backbone

conformation respectively, plus g+, g– or t for those side

chain conformers gauche+, gauche– and trans respec-

tively. The consensus tree cannot be shown in this paper

due to its size but may be requested from the authors.

Now we build up the basis B7.

B7 �
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In this example we study the common groups of the

classification of amino acids which appear in several

texts of biochemistry;19 they are amino acids with hy-

drophobic side groups (PHO); with hydrophilic side gro-

ups (PHI) and those that are in-between (PP). We study

these three classes of compounds in the following.

These are the topological properties of the set of

amino acids with hydrophobic side groups (PHO):
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The closure of this set has all lysine on the tree.

Thus, lysine is more related to amino acids with hydro-

phobic side groups that those hydrophilic ones, in spite

of its classification as an amino acid with hydrophilic

side groups. Besides, in the closure of amino acids of

this example all threonine and tyrosine amino acids ap-

pears, which are amino acids that are in-between hydro-

phobic and hydrophilic ones.

Regarding the boundary of this set, we have found

that all leucine and isoleucine amino acids appear in the

interior of the set and for this reason they do not appear

within the boundary. They are the only hydrophobic

amino acids that do not appear related to any other amino

acid.

In this boundary the only hydrophilic amino acids

that appear are those of lysine. Those amino acids that

belong to the set of hydrophobic and also appear within

the boundary are methionine, valine and phenylalanine.

Those amino acids that do not belong to either hydro-

phobic or hydrophilic are threonine and tyrosine.

Now we show the topological properties of the set

of amino acids with hydrophilic side groups (PHI):

PHI �
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The closure of this set is built up, besides hydrophi-

lic amino acids, of all methionine amino acids, which

are hydrophobic amino acids. The boundary shows only

lysine and methionine; thus the interior of this set are all

amino acids with hydrophilic side groups except lysine.

The last class of amino acids that we studied was the

set of those that are in-between amino acids with hydro-

phobic and hydrophilic side groups (PP).
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The closure of these amino acids is built up, besides

by themselves, by valine and phenylalanine as hydro-

phobic amino acids. On the other hand, the interior of

this set is made up of all amino acids of this class, ex-

cept threonine and tyrosine which appear as boundary

point joined with valine and phenylalanine, both hydro-

phobic. It is important to remark that this set does not

appear related to hydrophilic amino acids.

CONCLUSIONS

The chemotopological methodology applied in this pa-

per shows that given a set of chemical interest (defined

by means of its properties) it is possible to apply cluster

analysis and topology to evaluate some topological pro-

perties of sets of chemical interest, such as: chemical el-

ements, benzimidazoles, steroids and amino acids.

Regarding the chemical elements we found that the

mathematical boundary of the set of metals and non-me-

tals is made of semimetals. On the other hand, the re-

sults of benzimidazoles show that the classification of

them in 4 classes does not give 4 disjunct subsets, due to

the fact that there are some benzimidazoles h and av

which appear in several sets. But, it is correct to say that

the set of cardiotonics is a well-defined group because

its closure is itself and its boundary is empty; this result

shows that this set is disjunct in the space of benzimi-

dazoles. Now, we can conclude to the set of steroids that

all five subsets result being their own closure themsel-

ves, ergo, therefore their boundaries are empty. These

results indicate that this classification of steroids, accor-

ding to chemical knowledge on structure and reactivity,

gives disjunct sets, or in other words, robust groups. Fi-

nally, we can say, regarding amino acids, that the closure

of the subset of amino acids with hydrophobic side has

all lysines. Thus, lysine is more related to amino acids

with hydrophobic side groups that those hydrophilic ones,

in spite of its classification as an amino acid with hydro-

philic side groups. Besides that, in the closure all threo-

nine and tyrosine amino acids appears, which are amino

acids that are in-between hydrophobic and hydrophilic

ones. Also, it is possible to conclude that the closure of

the subset of amino acids with hydrophilic side groups is

built up, plus hydrophilic amino acids, of all methionine

amino acids, which are hydrophobic amino acids. The

boundary shows only lysine and methionine. The clo-

sure of amino acids that are in-between the two above is

built up, plus themselves, by valine and phenylalanine as

hydrophobic amino acids. It is important to remark that

this subset does not appear related to hydrophilic amino

acids.

We can say that the chemotopological methodology

shown in this paper can be applied not only to the chem-

ical sets shown here but whatever chemical set; in fact,

to whatever set, not only of chemical objects but a set in

general that can be defined according to the properties or

features of its elements.
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APPENDIX

A1. – Let X be a non-empty set and a collection of

subsets of X such that:

1) X � �

2) Ø � �

3) If O1,...,On � �, then Ojj

n
�

�
t

1�

4) If � � I, O
�

� �, then O
I aa

t�
��

Thus, � is a topology, the couple (X, �) is called a

topological space and the elements of � are called open

sets.

A2. – Let B be a collection of subsets of a non-empty

set X, such that:

1) X = B
B�B�

2) If B1, B2 � B, then B1 � B2 is the union of ele-

ments of B, then B is called a basis for the topology �,

where � = { }B F �
�

B
B F� .

A3. – We should prove that Bn satisfies the two con-

ditions of Theorem 1.

1) Each object is part of a 1-subtree, of a 2-subtree

and so on. Then it is part of a n-subtree. If this subtree is

a maximal n-subtree, then the object is already in a max-

imal n-subtree. If not, then there is a maximal n-subtree

that contains it. Thus, each object belongs to some of the

maximal n-subtrees and the first condition is satisfied.

2) Any maximal n-subtrees are disjoint. Then, two

n-subtrees of the same cardinality are disjoint and if an

element belongs to more than one n-subtree of different

cardinality, then only that with the highest cardinality is

maximal one and for this reason is a member of Bn.

Thus, the second condition is satisfied.

A4. – For n = 1 we have B1 = ��E� � E �X�, and

�1 = P(X). This is called the discrete topology, where E

is an object and X is a set of objects.

A5. – For n = �X� we have B�X� = �X� and ��X� =

�X, Ø�. This is called the indiscrete or coarse topology,

where X is a set of objects.

A6. – Some topological properties are the following:

Let A � X and x � X; x is said to be a closure point

of A if and only if for every O ��, such that x �O, then

O � A � �.
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Let A � X; the closure of A is defined as: A = �x �
X � x is closure point of A�.

Let and A � X and x �X; x is said to be a boundary

point of A if and only if for every O ��, such that x �O,

then O � A � � and O � (X – A) � �.

Let A � X; the boundary of A is defined as: b(A) =

�x � X � x is boundary point of A�.
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SA@ETAK

Od stabala (dendograma i stabala usagla{avanja) do topologije

Guillermo Restrepo i Josè L. Villaveces

Opisana je metodologija koja topologiju pridru`uje kemijski zanimljivim skupovima, i to tako da se definiciji

takvih skupova kao grupe elemenata doda još relacija susjedstva, što se grafi~ki opisuje dendogramom (stablom).

Dalje je prikazan topološki postupak koji omogu}ava ra~unanje niza topoloških svojstava, uklju~ivo zatvore-

nost i granice kemijskih skupova, a koji postupak je onda primjenjen na 72 kemijska elementa, 31 steroida, 250

benzimidazola i 20 amino kiselina.
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