EXTENSION DIMENSION OF INVERSE LIMITS. CORRECTION OF A PROOF

SIBE MARDEŠIĆ University of Zagreb, Croatia

ABSTRACT. The erroneous proof of a lemma in a previous paper of the author on extension dimension of inverse limits is replaced by a correct one.

Recently I. Ivanšić and L. Rubin discovered an error in the proof of Lemma 4 of the author's paper [2]. In that proof, for a simplicial complex K, its geometric realization |K| (endowed with the weak topology), a mapping $\phi\colon V\to I=[0,1]$ of a space V and two contiguous mappings $g,h\colon V\to |K|$, the author considered the function $k\colon V\to |K|$, defined by putting $k(x)=\phi(x)g(x)+(1-\phi(x))h(x)$, for $x\in V$. Then he erroneously assumed that k is continuous, which is not always the case (see [1]). The purpose of this note is to give a correct proof of Lemma 4.

Lemma 4. Let X be a normal space and K a simplicial complex. Let $\underline{A} \subseteq X$ be a closed set and let $V, U \subseteq X$ be open sets such that $A \subseteq V \subseteq \overline{V} \subseteq U$. If $h: U \to |K|$ and $g: V \to |K|$ are mappings such that h|V and g are contiguous mappings, then there exists a mapping $k: U \to |K|$, which is contiguous to h and is such that

$$(1) k|A = g|A,$$

$$(2) k|U\backslash V = h|U\backslash V.$$

In the proof we will use the following Lemma.

Lemma 4'. Let V be a topological space, K a simplicial complex and let $h,g\colon V\to |K|$ be contiguous mappings. Then there exists a homotopy

²⁰⁰⁰ Mathematics Subject Classification. 57Q05, 54B35, 54F45. Key words and phrases. Polyhedron, inverse limit, extension dimension.

 $\phi \colon V \times I \to |K|$ such that $\phi(x,0) = h(x)$ and $\phi(x,1) = g(x)$, for $x \in V$. Moreover, if for an $x \in V$, g(x) and h(x) belong to a simplex $\sigma \in K$, then $\phi(x \times I) \subseteq \sigma$.

PROOF OF LEMMA 4. By normality of X, there exist an open set $H, A \subseteq H \subseteq \overline{H} \subseteq V$ and a mapping $\alpha \colon X \to I$ such that $\alpha | A = 1$ and $\alpha | (X \setminus H) = 0$. By Lemma 4', there is a homotopy $\phi \colon V \times I \to |K|$ such that $\phi(x,0) = h(x)$ and $\phi(x,1) = g(x)$, for $x \in V$. Moreover, if for an $x \in V$, g(x) and h(x) belong to a simplex $\sigma \in K$, then $\phi(x \times I) \subseteq \sigma$. We define a mapping $k \colon U \to |K|$ by putting

(3)
$$k(x) = \begin{cases} \phi(x, \alpha(x)) & x \in V, \\ h(x), & x \in U \backslash \overline{H}. \end{cases}$$

Note that V and $U\backslash \overline{H}$ are open subsets of U, which cover U. Moreover, since $U\backslash \overline{H}\subseteq X\backslash \overline{H}$, we see that, for $x\in V\cap (U\backslash \overline{H})$, $\alpha(x)=0$, and thus, the first line of (3) yields the value $k(x)=\phi(x,0)=h(x)$. Therefore, k is indeed a well-defined mapping $k\colon U\to |K|$. If $x\in A$, then $\alpha(x)=1$. Since $x\in V$, we conclude that $k(x)=\phi(x,1)=g(x)$. If $x\in U\backslash V$, then $x\in U\backslash \overline{H}$ and thus, k(x)=h(x). Finally, every $x\in V$ admits a simplex $\sigma\in K$ such that $h(x),g(x)\in \sigma$. Let us show that also $k(x)\in \sigma$. Indeed, by Lemma $A', \phi(x,t)\subseteq \sigma$, for every $t\in I$. In particular, $k(x)=\phi(x,\alpha(x))\in \sigma$. If $x\in U\backslash V$, then by definition (3), k(x)=h(x). All this proves that h and k are contiguous mappings.

PROOF OF LEMMA 4'. Let $|K|_m$ denote the geometric realization of the complex K, endowed with the metric topology (see [3], Appendix 1.3). It is well known that the identity function $i \colon |K| \to |K|_m$ is continuous (see [3], Appendix 1.3, Corollary 5). Therefore, the mappings $h,g \colon V \to |K|$ can also be viewed as mappings $h,g \colon V \to |K|_m$. Since the mappings h and g are contiguous, the following formula defines a function $\psi \colon V \times I \to |K|_m$.

(4)
$$\psi(x,t) = (1-t)h(x) + tg(x), \ (x,t) \in V \times I.$$

Moreover, if for an $x \in V$, both points h(x) and g(x) belong to a simplex $\sigma \in K$, then also $\psi(x \times I) \subseteq \sigma$. By Theorem 8 of Appendix 1.3 of [3], $\psi: V \times I \to |K|_m$ is continuous and thus, it is a homotopy which connects h to g.

There exists a mapping $j\colon |K|_m\to |K|$ and a homotopy $J\colon |K|\times I\to |K|$, which connects the identity $1_{|K|}$ to ji. Moreover, for each simplex $\sigma\in K$, $J(\sigma\times I)\subseteq\sigma$ (see [3], Appendix 1.3, the proof of Theorem 10 and Remark 1 or Lemma 2.3 of [4]). We now define $\phi\colon V\times I\to |K|$ as the juxtaposition of three homotopies Jh, $j\psi$ and the reverse of Jg, i.e., for $(x,t)\in V\times I$, we put

(5)
$$\phi(x,t) = \begin{cases} J(h(x),3t) & t \in [0,1/3], \\ j\psi(x,3t-1), & t \in [1/3,2/3], \\ J(g(x),-3t+3), & t \in [2/3,1]. \end{cases}$$

The mapping ϕ is well defined, because for t=1/3, the first and the second row in (5) yield the same value $\phi(x,1/3)=jh(x)$ and for t=2/3, the second and the third row in (5) yield the same value $\phi(x,2/3)=jh(x)$. Furthermore, $\phi(x,0)=J(h(x),0)=h(x)$ and $\phi(x,1)=J(g(x),0)=g(x)$. Finally, let us show that whenever g(x) and h(x) belong to a simplex $\sigma\in K$, then $\phi(x\times I)\subseteq \sigma$. Indeed, $J(\sigma\times I)\subseteq \sigma$ and thus, the first and third row of (5) imply that $\phi(x,t)\in \sigma$, for $t\in [0,1/3]\cup [2/3,1]$. Moreover, by (4), $\psi(x\times I)\subseteq \sigma$. Since $j(\sigma)=J(\sigma\times 1)\subseteq J(\sigma\times I)\subseteq \sigma$, we conclude that also $j\psi(x\times I)\subseteq \sigma$. Consequently, by the second row in (5), $\phi(x,t)\in \sigma$, for $t\in [1/3,2/3]$.

References

- S. Kakutani and V. Klee, The finite topology of a linear space, Arch.-Math. 14 (1963), 55–58
- [2] S. Mardešić, Extension dimension of inverse limits, Glasnik Mat. 35 (2000), 339–354.
- [3] S. Mardešić, J. Segal, Shape theory, North-Holland, Amsterdam, 1982.
- [4] R. Millspaugh, L. Rubin and P. Schapiro, Irreducible representations of metrizable spaces and strongly countable-dimensional spaces, Fund. Math. 148 (1995), 223–256.

S. Mardešić Department of Mathematics University of Zagreb P.O.Box 335, 10 002 Zagreb Croatia

E-mail: smardes@math.hr Received: 18.10.2003.