EXTENSION DIMENSION OF INVERSE LIMITS. CORRECTION OF A PROOF

Sibe Mardešić
University of Zagreb, Croatia

Abstract

The erroneous proof of a lemma in a previous paper of the author on extension dimension of inverse limits is replaced by a correct one.

Recently I. Ivanšić and L. Rubin discovered an error in the proof of Lemma 4 of the author's paper [2]. In that proof, for a simplicial complex K, its geometric realization $|K|$ (endowed with the weak topology), a mapping $\phi: V \rightarrow I=[0,1]$ of a space V and two contiguous mappings $g, h: V \rightarrow|K|$, the author considered the function $k: V \rightarrow|K|$, defined by putting $k(x)=\phi(x) g(x)+(1-\phi(x)) h(x)$, for $x \in V$. Then he erroneously assumed that k is continuous, which is not always the case (see [1]). The purpose of this note is to give a correct proof of Lemma 4.

Lemma 4. Let X be a normal space and K a simplicial complex. Let $A \subseteq X$ be a closed set and let $V, U \subseteq X$ be open sets such that $A \subseteq V \subseteq$ $\bar{V} \subseteq U$. If $h: U \rightarrow|K|$ and $g: V \rightarrow|K|$ are mappings such that $h \mid V$ and g are contiguous mappings, then there exists a mapping $k: U \rightarrow|K|$, which is contiguous to h and is such that

$$
\begin{align*}
k \mid A & =g \mid A, \tag{1}\\
k \mid U \backslash V & =h \mid U \backslash V \tag{2}
\end{align*}
$$

In the proof we will use the following Lemma.
Lemma 4'. Let V be a topological space, K a simplicial complex and let $h, g: V \rightarrow|K|$ be contiguous mappings. Then there exists a homotopy

[^0]$\phi: V \times I \rightarrow|K|$ such that $\phi(x, 0)=h(x)$ and $\phi(x, 1)=g(x)$, for $x \in V$. Moreover, if for an $x \in V, g(x)$ and $h(x)$ belong to a simplex $\sigma \in K$, then $\phi(x \times I) \subseteq \sigma$.

Proof of Lemma 4. By normality of X, there exist an open set $H, A \subseteq$ $H \subseteq \bar{H} \subseteq V$ and a mapping $\alpha: X \rightarrow I$ such that $\alpha \mid A=1$ and $\alpha \mid(X \backslash H)=0$. By Lemma 4^{\prime}, there is a homotopy $\phi: V \times I \rightarrow|K|$ such that $\phi(x, 0)=h(x)$ and $\phi(x, 1)=g(x)$, for $x \in V$. Moreover, if for an $x \in V, g(x)$ and $h(x)$ belong to a simplex $\sigma \in K$, then $\phi(x \times I) \subseteq \sigma$. We define a mapping $k: U \rightarrow|K|$ by putting

$$
k(x)= \begin{cases}\phi(x, \alpha(x)) & x \in V, \tag{3}\\ h(x), & x \in U \backslash \bar{H}\end{cases}
$$

Note that V and $U \backslash \bar{H}$ are open subsets of U, which cover U. Moreover, since $U \backslash \bar{H} \subseteq X \backslash \bar{H}$, we see that, for $x \in V \cap(U \backslash \bar{H}), \alpha(x)=0$, and thus, the first line of (3) yields the value $k(x)=\phi(x, 0)=h(x)$. Therefore, k is indeed a well-defined mapping $k: U \rightarrow|K|$. If $x \in A$, then $\alpha(x)=1$. Since $x \in V$, we conclude that $k(x)=\phi(x, 1)=g(x)$. If $x \in U \backslash V$, then $x \in U \backslash \bar{H}$ and thus, $k(x)=h(x)$. Finally, every $x \in V$ admits a simplex $\sigma \in K$ such that $h(x), g(x) \in \sigma$. Let us show that also $k(x) \in \sigma$. Indeed, by Lemma $4^{\prime}, \phi(x, t) \subseteq \sigma$, for every $t \in I$. In particular, $k(x)=\phi(x, \alpha(x)) \in \sigma$. If $x \in U \backslash V$, then by definition (3), $k(x)=h(x)$. All this proves that h and k are contiguous mappings.

Proof of Lemma 4 ${ }^{\prime}$. Let $|K|_{m}$ denote the geometric realization of the complex K, endowed with the metric topology (see [3], Appendix 1.3). It is well known that the identity function $i:|K| \rightarrow|K|_{m}$ is continuous (see [3], Appendix 1.3, Corollary 5). Therefore, the mappings $h, g: V \rightarrow|K|$ can also be viewed as mappings $h, g: V \rightarrow|K|_{m}$. Since the mappings h and g are contiguous, the following formula defines a function $\psi: V \times I \rightarrow|K|_{m}$.

$$
\begin{equation*}
\psi(x, t)=(1-t) h(x)+\operatorname{tg}(x), \quad(x, t) \in V \times I \tag{4}
\end{equation*}
$$

Moreover, if for an $x \in V$, both points $h(x)$ and $g(x)$ belong to a simplex $\sigma \in K$, then also $\psi(x \times I) \subseteq \sigma$. By Theorem 8 of Appendix 1.3 of [3], $\psi: V \times I \rightarrow|K|_{m}$ is continuous and thus, it is a homotopy which connects h to g.

There exists a mapping $j:|K|_{m} \rightarrow|K|$ and a homotopy $J:|K| \times I \rightarrow|K|$, which connects the identity $1_{|K|}$ to $j i$. Moreover, for each simplex $\sigma \in K$, $J(\sigma \times I) \subseteq \sigma$ (see [3], Appendix 1.3, the proof of Theorem 10 and Remark 1 or Lemma 2.3 of [4]). We now define $\phi: V \times I \rightarrow|K|$ as the juxtaposition of three homotopies $J h, j \psi$ and the reverse of $J g$, i.e., for $(x, t) \in V \times I$, we put

$$
\phi(x, t)= \begin{cases}J(h(x), 3 t) & t \in[0,1 / 3], \tag{5}\\ j \psi(x, 3 t-1), & t \in[1 / 3,2 / 3], \\ J(g(x),-3 t+3), & t \in[2 / 3,1] .\end{cases}
$$

The mapping ϕ is well defined, because for $t=1 / 3$, the first and the second row in (5) yield the same value $\phi(x, 1 / 3)=j h(x)$ and for $t=2 / 3$, the second and the third row in (5) yield the same value $\phi(x, 2 / 3)=j h(x)$. Furthermore, $\phi(x, 0)=J(h(x), 0)=h(x)$ and $\phi(x, 1)=J(g(x), 0)=g(x)$. Finally, let us show that whenever $g(x)$ and $h(x)$ belong to a simplex $\sigma \in K$, then $\phi(x \times I) \subseteq \sigma$. Indeed, $J(\sigma \times I) \subseteq \sigma$ and thus, the first and third row of (5) imply that $\phi(x, t) \in \sigma$, for $t \in[0,1 / 3] \cup[2 / 3,1]$. Moreover, by (4), $\psi(x \times I) \subseteq \sigma$. Since $j(\sigma)=J(\sigma \times 1) \subseteq J(\sigma \times I) \subseteq \sigma$, we conclude that also $j \psi(x \times I) \subseteq \sigma$. Consequently, by the second row in (5), $\phi(x, t) \in \sigma$, for $t \in[1 / 3,2 / 3]$.

References

[1] S. Kakutani and V. Klee, The finite topology of a linear space, Arch.-Math. 14 (1963), 55-58.
[2] S. Mardešić, Extension dimension of inverse limits, Glasnik Mat. 35 (2000), 339-354.
[3] S. Mardešić, J. Segal, Shape theory, North-Holland, Amsterdam, 1982.
[4] R. Millspaugh, L. Rubin and P. Schapiro, Irreducible representations of metrizable spaces and strongly countable-dimensional spaces, Fund. Math. 148 (1995), 223-256.
S. Mardešić

Department of Mathematics University of Zagreb
P.O.Box 335, 10002 Zagreb

Croatia
E-mail: smardes@math.hr
Received: 18.10.2003.

[^0]: 2000 Mathematics Subject Classification. 57Q05, 54B35, 54F45.
 Key words and phrases. Polyhedron, inverse limit, extension dimension.

