
Krutii Y.                                                                     Analysis of longitudinal oscillations for systems with continuous variable parameters using force integration method 

 

ISSN 1846-6168 
UDK 534.131:511.34 

 
 
 

ANALYSIS OF LONGITUDINAL OSCILLATIONS FOR SYSTEMS WITH CONTINUOUS 
VARIABLE PARAMETERS USING FORCE INTEGRATION METHOD 

  

ANALYSIS OF LONGITUDINAL OSCILLATIONS FOR SYSTEMS WITH CONTINUOUS 
VARIABLE PARAMETERS USING FORCE INTEGRATION METHOD 

 
Yurii Krutii 

 

Pregledni rad 

Abstract: Force integration method for systems with continuous variable parameters analysis is described. The method 

is based on analytical solutions of according differential equations. Method substance is shown on the problem of free 

longitudinal vibrations of straight rod with random continuous variable of longitudinal stiffness and mass per unit length 

taking into account resistance. Equations for rod condition dynamic parameters and the efficient way of its numerical 

realization are shown. Free lateral vibrations of cantilever wedge are researched. 

 

Keywords: analytical solutions, vibrations of cantilever wedge, force integration method, rod longitudinal vibrations, 

oscillation frequencies, vibrations factors. 

 

Review article 

Sažetak: U članku je opisana metoda integracija sile za analizu sustava s kontinuirano varijabilnim parametrima. Metoda 

se temelji na analitičkim rješenjima odgovarajućih diferencijalnih jednadžbi. Suština metode prikazana je na problemu 

slobodnih uzdužne vibracija ravnog štapa sa slučajnim kontinuiranim varijablama uzdužne krutosti i jedinične linijske 

mase, uzimajući u obzir čvrstoću. Prikazane su jednadžbe za dinamičke parametre stanja štapa i učinkovit način njihovog 

rješavanja. Istražene su slobodne uzdužne vibracije konzolnog klina. 

 

Ključne riječi: analitičko rješenje, vibracije konzolnog klina, metoda integracije sile, uzdužne vibracije štapova, 

frekvencije titranja, faktori vibracije. 

 

 

1. INTRODUCTION 
 

Systems with variable parameters occur in different 

branches of industry and agriculture. It is primarily rods 

with variable cross-section, which are applied as structural 

components or spatial patterns. Multipurpose steel poles, 

which are widely applied in municipal engineering, power 

engineering (power transmission lines supports, windmill 

towers, wind-powered generators supports), television, 

radio and astronautics (antennas of different structures), 

etc., are examples of such structures. Beam type structure 

elements should be particularly mentioned, whose 

stiffness, mass per unit length, parameters of elastic 

foundation (at it existence), loads or other parameters vary 

on length by some rule. 

Systems with variable parameters occur at plate 

bending with thickness, which vary in the direction of one 

or both coordinates, or plates with variable stiffness laying 

on elastic foundation that can be described by Winkler 

model or by two elastic parameters. In construction, there 

are many objects with variable stiffness, such as 

chimneys, stacks, water towers, cooling towers etc. 

From the mathematic point of view, problem of 

strength, rigidity, vibrations analysis of mentioned above 

systems lead to differential equations with variables 

factors. As a rule, if there is a general integral of equation 

found, initial problem has its solution too. In such cases, it 

is often said that the problem is solved by force integration 

method. This article is devoted problem of free vibrations 

of straight rod with random continuous variable lateral 

stiffness and random continuous variable muss per unit 

length taking into account resistance. 

 

 

2. MAIN SECTION 
 

2.1. Analysis of recent researches and 
publications 

 
There are many papers devoted to the problem of rod 

vibrations. It means that it is an actual and applied 

problem. Among recent publications works [1-13] should 

be noted. Most attention is paid to vibrations of rods with 

continuous variable parameters [6, 8, 9, 12, 13]. Despite 

the fact that the analytical solutions have undoubtedly the 

advantage, they occur only for a few kinds of rods. In fact, 

it is about cases where the factors of the corresponding 

differential equations change by binomial rules [2, 6, 12]. 

In that cases solution is expressed through Bessel 

functions. For the general case it is stated, that analytical 

solutions are unknown [12] or noted that they cannot be 
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found [9]. That is why researches are mainly based on 

approximate methods. 

In papers [14-16] for the first time analytical solutions 

for general differential equation of structural mechanic 

with random variable parameters are formed. The essence 

of applied integration method is described detailed in [16]. 

In the author's view, the existence of such method opens 

up new perspectives how to solve a variety of the above-

mentioned technical problems and, in the first place, the 

problems of calculating systems with continuous variable 

parameters. 

 

2.2. Free longitudinal vibrations of rod 
 

The general scheme of vibrations is shown in figure 1. 

 

 
Figure 1. Rod design model on longitudinal vibrations 

 

It is known [8, 12, 17], that differential equation of free 

longitudinal vibrations of rod, taking into account the 

resistance forces, generally looks as follows: 
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where E(x)F(x) - longitudinal stiffness at the point x; 

E(x) – rod material's modulus of elaticity; m(x)=p(x)F(x) 

– mass per unit length intensity at the point x; p(x) – rod 

material's density; p(x,t) – external resistance forces 

intensity; r(x,t) – inner resistance forces intensity; u(x,t) – 

unknown function – longitudinal displacement of rod 

cross-section with coordinate x at the time of t. 

This equation is right for the model, which is not taking 

into account inertial forces, which appears because of 

transverse strains. 

There are many hypotheses to take into account 

resistance forces. Let the external resistance forces are 

proportional to the rod mass and velocity [17]. Inner 

friction will be taken into account by Kelvin-Voigt 

hypothesis [12, 17], corresponding to which the inner 

resistance force is proportional to the first velocity of 

deformation. In this case, equation (1) takes the form: 
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where α, β – factors of external and inner friction 

properly. 

Applying the Fourier method, solution of equation (2) 

will be in form: 

 

( , ) ( ) ( )u x t v x T t  (3) 

 

where v(x) – peak value of longitudinal displacement, 

T(t) – unknown function of time. Expression for 

longitudinal force we will get by known equation [12]. 
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where N(x) = E(x)I(x)v’(x) – peak value of longitudinal 

force. Dividing variables in equations (2), we will get two 

independent equations: 

 

;0)()(2)( 2 


tTtThtT   (5) 

2( ( ) ( ) ( )) ( ) ( ) 0E x F x v x m x v x    (6) 

 

where 2h = α + βω2; ω2 – Fourier method constant. 

It is not difficult to write down general solution of 

equation (5). Expressed through parameters of initial 

conditions of movement )0(),0(


TT , it has form 

)~sin()(    tAetT th , where 
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This solutions indicates that free lateral vibrations of 

rod with taking into account resistance forces are taken 

place in time by damping harmonic rule with frequency 

~  and that introduced constant value   represents 

frequency of free vibrations without taking into account 

resistances (case 0  ). 

It is important to express peak functions ( ), ( )v x N x  

by dimensionless fundamental solutions. Because of this 

let us take for initial variable parameters expressions

0( ) ( )F x F x , 
0 1( ) ( )E x E x , 

0 2( ) ( )x x   , where 

0 0 0, ,F E   - constants, properly area of cross-section, 

modulus of elasticity and density of material in some point 

of rod; 
1 2( ), ( ), ( )x x x    - dimensionless functions. 

Then 
0 0( ) ( ) ( )E x F x E F A x , 

0( ) ( )m x m B x , where 

0 0 0m F ; 
1 2( ) ( ) ( ), ( ) ( ) ( )A x x x B x x x      - 

dimensionless functions, which properly define rules of 

variation of stiffness and mass per unit length along the 

rod. This approach allows us to get analytical forms for 

vibrations frequency and operate only with dimensionless 

values at calculations. 

Fundamental form of vibrations is defined as a solution 

of equation (6). General integral of this equation and peak 

function for longitudinal force, expressed through initial 

parameters, are formulated in [18]. Here we show them as: 
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where ( ) ( 1,2)nX x n   - fundamental functions of 

equation (6), which are defined by absolutely and uniform 

convergent serieses: 

 
2 4

,0 ,1 ,2

6

,3

( ) ( ) ( ) ( )

( ) ...

n n n n

n

X x x K x K x

K x

  



   

 
 (10) 

0

0

K l
E


  (11) 

 

Let call functions 
,0 ( ) ( 1,2)n x n   as initial and 

functions 
, ( ) ( 1,2) ( 1,2,3,...)n k x n k    as generating. 

They define in following way: 
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Here are two formulas for generating functions for 

clarity – recurrent and detailed. Number of integrals in 

recent equation without integrals, which could have initial 

function, is 2k. 

For fundamental functions in equations (9) it is valid 

equation: 
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where 

 

, ,( ) ( ) ( ) ( 1,2) ( 0,1,2,...)n k n kx lA x x n k     (16) 

 

It is important that unknown parameter K and 

functions (12), (14), (16) are dimensionless [18]. Because 

of this fundamental functions (10), (15) are dimensionless 

too. As a result, dimensions of constant factors at 

dimensionless functions in right parts of equations (8), (9) 

are the same with dimensions of corresponding left parts. 

Directly from equation (11) we get analytical form of 

free vibrations frequency without taking into account 

resistances: 
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


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where k – unknown dimensionless vibration factor. Due 

to this formula, the problem of determining of frequency 

is going to determining the vibration factor. Equations for 

peak vibrations of rod ( ), ( )v x N x  exactly depend on 

vibration factor. That is why frequency equations will be 

used for its determining. These equations will be found 

after realization of specified initial boundary conditions. 

There are cases when initial and generating functions 

are calculated in explicit form and, as a result, 

fundamental solutions transforms into primitive or special 

functions. However, such cases are rare. Therefore, in 

terms of generality of results it is important to indicate an 

effective way of numerical implementation of the above 

formulas for initial and generating functions, which would 

be suitable for any continuous variable stiffness and 

random continuous variable mass per unit length. 

It is known that one of the methods of numerical 

integration is based on replacing the integrand by its 

approximating polynomial. This idea is useful in our case, 

because it avoids multiple numerical integration, which is 

prescribed by formulas (12), (13), (14). This is especially 

important for ease of software implementation of the 

method. 
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Then we easily get from equations (12), (16) forms of 

initial functions by polynomials: 
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It is more difficult to get generating functions. It is 

clear from equation (14) that at conditions (18), (18) 

generating functions could be expressed as polynomials. 

However, calculating of factors of these polynomials is 

complicated problem. Required formulas were get in work 

[18] and have the form: 
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Coefficients of these polynomials are calculated by 

formulas: 
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)(

,1
n

rkc  . It means that formula (22) is 

recurrent ratio on which every next value of 
)(

,
n
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calculated by previous values. Initial parameters are given 

by formulas: 

 

(1) (2)

0,0 0,1;    ( 0,1,..., )
1

j

j

A
c c j s

j
  


            (23) 

 

Formula (22) can be written in detailed form: 
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Expressed in analytical form formulas for dynamics 

parameters with indication of its numerical way of 

realization allows to define free dynamic vibrations y(x,t) 

and dynamic inner forces N(x,t) for the rod with random 

continuous variable stiffness and random continuous 

variable mass per unit length at any possible boundary 

conditions. 

 

2.2. Example 
 

Let consider uniform rod with a wedge form with 

constant thickness d and heights of bases ,  (0 )a b a b 

. Let the minor base of wedge is in point x=0 (free end), 

and major – in point x = l (fixed end) (Figure 2). 

 

 
Figure 2. Cantilever wedge 

 

Since the cross-section height in point x will be 

( )
b a

h x a x
l


  , for the area of this cross-section we 

can write down ( ) (1 )
x

F x db
l

  
 
 

   , where 

(0 1) a
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    . Than, with a glance to accepted above 
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x

l
F bd      . 

Consequently ( ) ( ) (1 )
x

A x B x
l

     . 

It is obvious that at 0   wedge will be gabled, at 

0 1   it will be truncated wedge and at 1   

wedge degenerates into a rod with a constant cross-

section. 

This case corresponds to dynamic boundary 

conditions: (0, ) 0;   ( , ) 0N t u l t  . Taking into account 

that they have to be performed for any time and using 

equations (3), (4), we get the equivalent boundary 

conditions in peak form: (0) 0;   ( ) 0N l  . 

Realizing boundary conditions by formula (7), we get 

the frequency equation 
1( ) 0X l  , or 

 
2 4 6

1,0 1,1 1,2 1,3( ) ( ) ( ) ( ) 0l l K l K l K         (25) 

 

Left part of this equation is convergent series that is 

guaranteed by uniform convergence of series that defines 

fundamental functions. Its solutions can be found with any 

prescribed accuracy by the method of root comparison, 

which corresponds to different number of held series 

members. 

For roots ( 1,2,3,...)jK j   of equation (25) according 

to formula (16) frequencies of free vibrations without 

taking into account resistances will correspond: 
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For this frequencies will correspond frequencies with 

resistances taken into account: 
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Free vibrations forms, corresponding to frequencies 

(26), on the base of (8) let formulate as 
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   - dimension-

less function that defines the rule of general vibration 

form. 

As can be seen a key role is played here by generating 

functions 
1, ( ) ( 1,2,3,...)k x k  . In particular, when the 

wedge is gabled, this functions can be calculated in 

explicit form: 
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Then 
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where 0J  is Bessel's function with zero index [19]. 

Frequency equation and the rule of general vibration form 

of rod will be expressed by Bessel's function: 

 

0 0 ( ) 0;    ( 1,2,3...)  j j

x x

l l
J K V J K j   

   
   
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Here we come to the well-known conlusion [12] that 

vibration factors of gabled cantilever wedge are zeros of 

Bessel's functions that are well-known. First three zeros of 

this function are shown in table 1. 

When the rod has a form of truncated wedge, 

generating functions 
1, ( ) ( 1,2,3,...)k x k   cannot be 

calculated in explicit form. For its software calculation 

quadrature formula (19) will be applied. It should only be 

noted that in this example function ( )B x  is initially 

expressed by polinominal (19), where 

0 11,   ,   1p B B     . Therefore it is not required to 

build for it approximation. 

There are results of calculation of first three vibration 

factors of truncated cantilever wedge for every value of 

parameter   with increment of 0.1. 

 

Table 1. Vibration factors of truncated cantilever wedge  
 Parameter γ 

0 0.1 0.2 0.3 0.4 

K1 2.4048 2.2085 2.0594 1.9500 1.8640 

K2 5.5201 5.3009 4.9873 4.8959 4.8399 

K3 8.6537 8.1179 8.0307 7.9719 7.9334 

 
Parameter γ 

0.5 0.6 0.7 0.8 0.9 1 

K1 2.4048 2.2085 2.0594 1.9500 1.8640 
2


 

K2 5.5201 5.3009 4.9873 4.8959 4.8399 
3

2


 

K3 8.6537 8.1179 8.0307 7.9719 7.9334 
5

2


 

 

Let stop at case 0,5  . First three frequencies of free 

longitudinal vibrations of cantilever wedge without taking 

into account resistance corresponds to this case: 

 

1 2

3

1,7940 4,8021
;

7,9089

 ;      E E

l l

E

l

 



 



 



 (29) 

 

Research of longitudinal vibrations of wedge occurs in 

[17]. There are calculated by B.G. Galerkin’s method first 

two frequencies of free vibrations. In the terms of taken 

here designations, calculated there vibrations are: 

 

1 2

1,794 5,033
 ;    

E E

l l 
      (30) 

 

As can be seen, with the full coincidence of the first 

frequency, the relative error between the second is about 

4.6%. 

Graphs of rules of free vibrations forms, which 

corresponds to frequencies (24) are shown in figure 3. 

 

 
Figure 3. Graphs of rules of free vibrations form 

 

Finally, the simplest situation arises when 1  . 

Then: 

 
2

1, 1

1
( ) ,   ( ) cos

(2 )!
 

k

k

x x
K

l l
x X x

k
  

 
 

               (31) 

 

Hence we have frequency equation cos 0K   and the 

rule for general forms of free vibrations of rod 

cos   ( 1,2,3...)j j

x x

l l
V K j 

 
 

  . 

 

3. CONCLUSION 
 

The method of force integration, which can be used for 

calculation of systems with continuous variable 

parameters, was suggested. There are adduced all required 

formulas in analytical form for research of free lateral 

vibrations of rod with random continuous variable 

longitudinal stiffness and random continuous variable 

mass per unit length at any possible boundary conditions. 

Frequencies are calculated and formulas for main 

vibration forms of uniform cantilever wedge are found. 
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