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Abstract. This paper considers the category SET(L) of L-subsets of
sets with a fixed basis L and is a continuation of our previous investigation
of this category. Here we study its general properties (e.g., we derive that
the category is a topological construct) as well as some of its special objects
and morphisms.

1. Introduction

The notion of a fuzzy set introduced in [7] induced many researchers to
study different mathematical structures involving fuzzy sets and their gener-
alization L-fuzzy sets [1] or just L-sets for short. In particular, some authors
considered the category SET(L) of all L-subsets of sets with a fixed basis L.
The aim of our work is further contribution to the study of some intrinsic
properties of the category SET(L). The article is a continuation of our previ-
ous investigation of this category in [5, 6] where we considered some special
objects and morphisms as well as some standard constructions in it. Despite
of being a continuation the article is self-contained and does not require from
the reader to be familiar with the preceding parts.

The paper starts with an introductory section, i.e., Preliminaries, where
we recall the definition of the category SET(L) and discuss some results from
our previous investigation of this category. The next section is devoted to
general properties of the category SET(L). We prove that the category is a
topological construct and consider its relations to topoi theory. We continue
by considering some special morphisms and objects in the category SET(L).
Here we consider some types of monomorphisms (epimorphisms) and derive
that they all are equivalent.
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We use standard terminology accepted in Category theory (see, e.g., [3]).

2. Preliminaries

In this section we will discuss some basic properties of the category
SET(L). Let us start by recalling its definition (see [1]).

Suppose L is a complete lattice (L, 6), i.e., a partially ordered set such
that for every subset A ⊂ L the join

∨
A and the meet

∧
A are defined. In

particular,
∨

L =: 1L and
∧

L =: 0L. We assume that 0L 6= 1L, i.e., L has at
least two elements. Then the category SET(L) can be defined as follows.

The objects of SET(L) are all L-subsets of sets, i.e., mappings X : X̃ → L

where X̃ is an arbitrary set (maybe empty). Henceforth the objects of SET(L)

will be denoted by X , Y or Z and arbitrary sets by X̃ , Ỹ or Z̃. By saying
that an object X ∈ ObjSET(L) is given we will always mean that X is a

mapping X : X̃ → L.
Given two objects X, Y ∈ ObjSET(L), the set of morphisms from X to

Y Mor SET(L)(X, Y ) consists of all mappings f : X̃ → Ỹ such that X(x) 6

Y ◦ f(x) for all x ∈ X̃. Given an object X ∈ ObjSET(L), we denote its
identity morphism by eX .

Now we will list some properties of the category SET(L) which we will
need throughout the article and whose proofs can be found in [5, 6]. All of
them are related to special morphisms and objects in the category SET(L);
also notice that we use ”iff” for ”if and only if”.

A morphism f : X → Y is

(1) a monomorphism iff f is injective;
(2) a regular monomorphism iff f is injective and X = Y ◦ f ;
(3) an epimorphism iff f is surjective;
(4) a regular epimorphism iff f is surjective and Y (y) =

∨{X(x) | f(x) =
y} for every y ∈ Ỹ ;

(5) an isomorphism iff f is bijective and X(x) = Y ◦ f(x) for all x ∈ X̃;
An object X is a final object iff X̃ = {x0} and X(x0) = 1L.

3. On some general properties of the category SET(L)

In this section we will consider some general properties of the category
SET(L). Let us start with a remark concerning its objects.

Suppose we have some X ∈ ObjSET(L). One can consider the map

X : X̃ → L as a structure on the set X̃ . Thus, the object X can be viewed
upon as a pair (X̃, X). This gives rise to considering the following notion
(see [4]).

Suppose we have a category C. Then C is called a construct provided that
its objects are structured sets, i.e., pairs (X̃, ξ) where X̃ is a set and ξ is a
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C-structure on X̃ , and its morphisms f : (X̃, ξ) → (Ỹ , η) are suitable maps

between X̃ and Ỹ whose composition law is the usual composition of maps.
Clearly, one can regard the category SET(L) as a construct. Further, let

us consider the following notion (see [4]).
A construct C is called topological iff it satisfies the following two condi-

tions:

(1) (Existence of initial structures). For any set X̃, any family ((X̃i, ξi))i∈I

of C-objects indexed by a class I and any family (fi : X̃ → X̃i)i∈I of

maps indexed by I there exists a unique C-structure ξ on X̃ which is
initial with respect to (X̃, fi, (X̃i, ξi), I), i.e., such that for every C-
object (Ỹ , η) a map g : (Ỹ , η) → (X̃, ξ) is a C-morphism iff for every
i ∈ I the composite map fi ◦ g : (Ỹ , η)→ (X̃i, ξi) is a C-morphism.

(2) For any set X̃, the class {(Ỹ , η) ∈ ObjC | Ỹ = X̃} of all C-objects with
underlying set X̃ is a set.

Notice that if ξ is the initial structure on X̃ with respect to (X̃, fi, (X̃i, ξi), I)

then fi : (X̃, ξ) → (X̃i, ξi) is a C-morphism for each i ∈ I . (Hint. Let

(Ỹ , η) = (X̃, ξ) and g = idX̃ in (1)).

Theorem 3.1. The category SET(L) is a topological construct.

Proof. Let us prove that both conditions are fulfilled.
Suppose we have some set X̃, a family (Xi)i∈I of SET(L)-objects and

a family (fi : X̃ → X̃i)i∈I of maps. We have to make an L-set of X̃ . Let

the map X : X̃ → L be the following, X(x) =
∧
i∈I

Xi ◦ fi(x) or just 1L

if I = ∅ for x ∈ X̃ . Clearly, X ∈ ObjSET(L). Further, take any map

fi0 : X̃ → X̃i0 , i0 ∈ I . Then for every x0 ∈ X̃ ,
X(x0) =

∧

i∈I

Xi ◦ fi(x0) 6 Xi0 ◦ fi0(x0)

and therefore fi0 ∈ Mor SET(L)(X, Xi0). Let us prove that the structure on X̃

is initial with respect to (X̃, fi, Xi, I).

Suppose we have some Y ∈ ObjSET(L) and a map g : Ỹ → X̃. If
g ∈ Mor SET(L)(Y, X) then obviously fi ◦ g ∈ Mor SET(L)(Y, Xi) for all i ∈ I
since all fi are morphisms. Suppose fi ◦ g ∈ Mor SET(L)(Y, Xi) for all i ∈ I .
We have to prove that g ∈ Mor SET(L)(Y, X). Take any y0 ∈ Ỹ . Then Y (y0) 6
Xi ◦ fi ◦ g(y0) for all i ∈ I and therefore

Y (y0) 6
∧

i∈I

Xi ◦ fi ◦ g(y0) = X ◦ g(y0).

Thus, g is indeed a morphism.
Now we will prove the uniqueness of the structure X . Suppose we have

another map X ′ : X̃ → L which is initial with respect to (X̃, fi, Xi, I). Then
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fi ∈ Mor SET(L)(X
′, Xi) and therefore X

′(x0) 6 Xi ◦ fi(x0) for every x0 ∈ X̃.
Thus, X ′(x0) 6

∧
i∈I

Xi ◦ fi(x0) = X(x0). Now let Y = X and let g = idX̃ .

Since fi ◦ g = fi ∈ Mor SET(L)(X, Xi) for i ∈ I then g ∈ Mor SET(L)(X, X
′)

and therefore X(x0) 6 X ′ ◦ g(x0) = X ′(x0). Thus, X(x) = X ′(x) for every

x ∈ X̃ and the initial structure X on the set X̃ is unique.
One can easily verify that for any set X̃ the class {Y ∈ ObjSET(L)|Ỹ =

X̃} is a set since there is only a set of different maps from X̃ to L.

Notice that in case of an empty class I we get an indiscrete structure on
the set X̃, i.e., X(x) = 1L for x ∈ X̃ .

Since SET(L) is a topological construct it has final structures, i.e., for any

set X̃, any family (Xi)i∈I of SET(L)-objects indexed by some class I and any

family (fi : X̃i → X̃)i∈I of maps indexed by I there exists a unique SET(L)-

structure X on X̃ such that for any Y ∈ ObjSET(L) a map g : X̃ → Ỹ is a

SET(L)-morphism iff for every i ∈ I the composite map g ◦ fi : X̃i → Ỹ is a
SET(L)-morphism.

Indeed, suppose we have some set X̃ . Let X(x) =
∨
i∈I

(
∨
Xi ◦ f−1

i (x)) for

x ∈ X̃ where
∨

∅ := 0L.

Theorem 3.2. The map X is a final structure on the set X̃ with respect
to (Xi, fi, X̃, I).

Proof. Clearly, X ∈ ObjSET(L). Further, take any map fi0 : X̃i0 →
X̃, i0 ∈ I . Then for every x0 ∈ X̃i0 ,

Xi0(x0) 6
∨
Xi0 ◦ f−1

i0
◦ fi0(x0) 6

∨

i∈I

(
∨
Xi ◦ f−1

i ◦ fi0(x)) = X ◦ fi0(x0)

and thus, fi0 ∈ Mor SET(L)(Xi0 , X). Now suppose we have some Y ∈
ObjSET(L) and a map g : X̃ → Ỹ . If g ∈ Mor SET(L)(X, Y ) then obvi-
ously g ◦ fi ∈ Mor SET(L)(Xi, Y ) for all i ∈ I since all fi are morphisms.
Suppose g ◦ fi ∈ Mor SET(L)(Xi, Y ) for i ∈ I . We have to prove that

g ∈ Mor SET(L)(X, Y ). Take any x0 ∈ X̃. If f−1
i (x0) = ∅ for all i ∈ I then

X(x0) = 0L 6 Y ◦g(x0). Suppose we have some i0 ∈ I such that f−1
i0
(x0) 6= ∅.

Then for every y0 ∈ f−1
i0
(x0), Xi0(y0) 6 Y ◦ g ◦ fi0(y0) = Y ◦ g(x0). Thus,∨

Xi0 ◦ f−1
i0
(x0) 6 Y ◦ g(x0) and therefore

X(x0) =
∨

i∈I

(
∨
Xi ◦ f−1

i (x0)) 6 Y ◦ g(x0).

Thus, g is indeed a morphism.
Suppose we have another map X ′ : X̃ → L which is final with respect to

(Xi, fi, X̃, I). Then fi ∈ Mor SET(L)(Xi, X
′) (take Y = X ′ and let g = idX̃).

Further, take some x0 ∈ X̃. For every i ∈ I such that f−1
i (x0) 6= ∅ it
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follows that X ′(x0) = X ′ ◦ fi(y0) > Xi(y0) for all y0 ∈ f−1
i (x0) and therefore

X ′(x0) >
∨
Xi ◦ f−1

i (x0). Thus, X
′(x0) >

∨
i∈I

(
∨
Xi ◦ f−1

i (x0)) = X(x0).

Therefore, X ′(x) > X(x) for all x ∈ X̃ since X(x0) = 0L 6 X ′(x0) for all

x0 ∈ X̃ such that f−1
i (x0) = ∅ for i ∈ I . Now let Y = X and let g = idX̃ .

Since g ◦ fi = fi ∈ Mor SET(L)(Xi, X) for all i ∈ I then g must be a SET(L)-
morphism. Take any x0 ∈ X̃ . Then X(x0) = X ◦ g(x0) > X ′(x0). Thus,

X(x) = X ′(x) for every x ∈ X̃ and therefore the final structure X on the set

X̃ is unique.

Notice that in case of an empty class I we get a discrete structure on the
set X̃, i.e., X(x) = 0L for x ∈ X̃ .

Now we will consider a full subcategory SET(L)
n
of SET(L) consisting of

normed L-sets, i.e.,
∨

x∈X̃

X(x) = 1L for every X ∈ ObjSET(L)
n
.

Proposition 3.3. The category SET(L)n is not a topological construct.

Proof. Suppose X̃ = {x0}, X̃1 = {x1, x2} and X(x1) = 1L, X(x2) =
0L. Clearly, X1 ∈ ObjSET(L)

n
. Let f1(x0) = x2. Then the only map

X : X̃ → L for which f1 is a morphism is X(x0) = 0L and there-

fore X 6∈ ObjSET(L)
n
. Thus, X̃ has no initial structure with respect to

(X̃, f1, X1, {1}) and therefore the category SET(L)n is not a topological
construct.

Now, suppose we have a family (Xi)i∈I of SET(L)-objects indexed by a set

I . Let Ỹ =
∏
i∈I

X̃i = {(xi)i∈I |xi ∈ X̃i} and let Y ((xi)i∈I ) =
∧
i∈I

Xi(xi). For

every i0 ∈ I let πi0 : Ỹ → X̃i0 be the projective map, i.e., πi0((xi)i∈I) = xi0 .
One can easily verify that (Y, (πi)i∈I ) is the product of the family (Xi)i∈I

(for more details see [5] where we considered the case when I = {1, 2}). Thus,
the following theorem holds.

Theorem 3.4. The category SET(L) has products, i.e., for every set I,
each family of SET(L)-objects indexed by I has a SET(L)-product.

Further, let Ỹ =
⋃
i∈I

X̃i×{i} and let Y ((xi, i)) = Xi(xi) for all (xi, i) ∈ Ỹ .

For every i0 ∈ I let qi0 : X̃i0 → Ỹ be the inclusion map, i.e., qi0(x) = (x, i0).
One can easily verify that ((qi)i∈I , Y ) is the coproduct of the family (Xi)i∈I

(for more details see [5] where we considered the case when I = {1, 2}). Thus,
the following theorem holds.

Theorem 3.5. The category SET(L) has coproducts, i.e., for every set
I, each family of SET(L)-objects indexed by I has a SET(L)-coproduct.
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In [6] we have proved that the category SET(L) has both equalizers and
coequalizers. Since every category which has products and equalizers is com-
plete and dually the category which has coproducts and coequalizers is co-
complete, the following theorem holds.

Theorem 3.6. The category SET(L) is both complete and cocomplete.

Now let us consider the following notion (see [2]). Suppose we have a
category C. Then C is said to allow exponentiation provided that every two
C-objects have a product and for every X, Y ∈ ObjC there exist an object
Y X ∈ ObjC and a morphism ev : Y X ×X → Y such that for every Z ∈ ObjC
and every morphism g : Z ×X → Y there exists a unique morphism ĝ : Z →
Y X such that the triangle

Y X ×X

Z ×X

ĝ × eX

6

g
- Y

ev

-

commutes. (Notice that ĝ × eX denotes the product of the morphisms ĝ and
eX .)

Suppose a lattice L′ is infinitely distributive, i.e., for every b ∈ L′ and
every subset A ⊂ L′, b ∧ (∨A) = ∨

a∈A

(b ∧ a). Then the following theorem
holds.

Theorem 3.7. The category SET(L′) allows exponentiation.

Proof. Suppose we have some X, Y ∈ ObjSET(L′). Let Ỹ X be the set

of all maps from X̃ to Ỹ , i.e., Ỹ X = {f | f : X̃ → Ỹ } and let Y X : Ỹ X → L′

be the following, Y X(f) =
∨{a ∈ L′ |X(x) ∧ a 6 Y ◦ f(x), x ∈ X̃}. Take

any x0 ∈ X̃. Then X(x0)∧ Y X(f) = X(x0)∧ (
∨
A) =

∨
a∈A

(X(x0)∧ a). Since
X(x0) ∧ a 6 Y ◦ f(x0) for all a ∈ A then

∨
a∈A

(X(x0) ∧ a) 6 Y ◦ f(x0) and

therefore Y X(f) ∧ X(x0) 6 Y ◦ f(x0). Thus, Y
X(f) ∧ X(x) 6 Y ◦ f(x) for

x ∈ X̃. Further, let ev : ˜Y X ×X → Ỹ be the following, ev(f, x) = f(x) for

(f, x) ∈ ˜Y X ×X . Let us verify that ev ∈ Mor SET(L′)(Y
X ×X, Y ). Indeed,

suppose we have some (f0, x0) ∈ ˜Y X ×X. Then Y ◦ev(f0, x0) = Y ◦f0(x0) >
Y X(f0) ∧X(x0) = Y X ×X(f0, x0). Thus, ev is indeed a morphism.

Suppose we have some Z ∈ ObjSET(L′) and some g ∈ Mor SET(L′)(Z ×
X, Y ). Let ĝ : Z̃ → Ỹ X be the following, ĝ(z) = g(z, ). Let us verify that

ĝ ∈ Mor SET(L′)(Z, Y
X). Suppose we have some z0 ∈ Z̃. Then Y X ◦ ĝ(z0) =
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Y X(g(z0, )). Since g ∈ Mor SET(L′)(Z×X, Y ), Y ◦g(z0, x) > Z×X(z0, x) =
Z(z0) ∧ X(x) for all x ∈ X̃. Thus, Y X(g(z0, )) =

∨{a ∈ L′ |X(x) ∧ a 6
Y ◦ g(z0, x), x ∈ X̃} > Z(z0) and therefore ĝ is indeed a morphism.

Now, we have a morphism ĝ × eX ∈ Mor SET(L′)(Z ×X, Y X ×X). From
our investigation of the category SET(L) in [5] it follows that ĝ× eX( , ) =
(ĝ( ) , eX( )). Thus ĝ × eX(z, x) = (ĝ(z), eX(x)) = (g(z, ), x) for (z, x) ∈
Z̃ ×X. One can easily see that the above-mentioned diagram commutes and
the morphism ĝ is unique.

The next proposition shows one essential property of the category
SET(L).

Proposition 3.8. The category SET(L) is not a topos.

Proof. Suppose the category SET(L) is a topos. Then it has a subobject
classifier (see [2]), i.e., a pair (t, Ω) with the following properties:

(1) t ∈ Mor SET(L)(F, Ω) where F is a final object in the category SET(L);
(2) (Ω-axiom.) For every two objectsX, Y ∈ ObjSET(L) and every mono-

morphism f ∈ Mor SET(L)(X, Y ) there exists a unique morphism χf ∈
Mor SET(L)(Y, Ω) such that the square

X
f - Y

F

h

?

t
- Ω

χf

?

is a pullback square. (Notice that h is the unique morphism from the
set Mor SET(L)(X, F ).)

Since F is a final object then F̃ = {w0} and F (w0) = 1L. Further, suppose

X̃ = {x0}, X(x0) = 0L and Ỹ = {y0}, Y (y0) = 1L. Let f(x0) = y0. Obvi-
ously, f ∈ Mor SET(L)(X, Y ) and is injective. Thus, f is a monomorphism.
Suppose we have some χf ∈ Mor SET(L)(Y, Ω) such that the above-mentioned

diagram is a pullback square. Let Z̃ = {z0}, Z(z0) = 1L and let g1(z0) =
w0, g2(z0) = y0. Clearly, g1 ∈ Mor SET(L)(Z, F ), g2 ∈ Mor SET(L)(Z, Y ) and
t ◦ g1(z0) = t ◦h(x0) = χf ◦ f(x0) = χf ◦ g2(z0). Since Mor SET(L)(Z, X) = ∅,
the above-mentioned diagram is not a pullback square that contradicts our
former assumption. Thus, the category SET(L) has no subobject classifier
and therefore is not a topos.

The following theorem shows that though the category SET(L) has no
subobject classifier, it has something rather similar to it.
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Theorem 3.9. There exists a triple (Ω1, t, Ω2), where Ω1, Ω2 ∈
ObjSET(L) and t ∈ Mor SET(L)(Ω1, Ω2) such that for every two objects
X, Y ∈ ObjSET(L) and every monomorphism f ∈ Mor SET(L)(X, Y ) there
exists a morphism g ∈ Mor SET(L)(X, Ω1) with the following property:

(i) there exists a unique morphism χf ∈ Mor SET(L)(Y, Ω2) such that the
square

X
f - Y

Ω1

g

?

t
- Ω2

χf

?

is a pullback square.

Proof. We will construct the objects Ω1 and Ω2 first. Let Ω̃1 = L,
Ω1(ω) = ω for all ω ∈ Ω̃1 and let Ω̃2 = L

⋃{a∗}, a∗ 6∈ L, Ω2(ω) = 1L for all

ω ∈ Ω̃2. Further, let t : Ω1 → Ω2 be the inclusion map, i.e., t(ω) = ω for all

ω ∈ Ω̃1. Clearly, t ∈ Mor SET(L)(Ω1, Ω2).
Suppose we have some X, Y ∈ ObjSET(L) and a monomorphism f ∈

Mor SET(L)(X, Y ). Let g : X̃ → Ω̃1 be the following, g(x) = X(x) for x ∈ X̃.
Since Ω1 ◦ g(x) = g(x) = X(x) > X(x) then g ∈ Mor SET(L)(X, Ω1). Further,

let χf : Ỹ → Ω̃2 be the following,

χf (y) =

{
X ◦ f−1(y), y ∈ f(X̃)
a∗, y 6∈ f(X̃).

Since f is a monomorphism, the map χf is defined correctly. Clearly, χf ∈
Mor SET(L)(Y, Ω2). Let us prove that the above-mentioned square is a pullback
square. First of all we have to verify that the diagram commutes. Indeed,
for every x0 ∈ X̃, t ◦ g(x0) = X(x0) and χf ◦ f(x0) = X ◦ f−1 ◦ f(x0) =
X(x0). Now suppose we have some Z ∈ ObjSET(L) and two morphisms
g1 ∈ Mor SET(L)(Z, Y ) and g2 ∈ Mor SET(L)(Z, Ω1) such that χf ◦ g1 = t ◦ g2.
We have to prove that there exists a unique morphism m ∈ Mor SET(L)(Z, X)

such that g1 = f ◦ m and g2 = g ◦ m. Let m : Z̃ → X̃ be the following,
m(z) = f−1 ◦ g1(z) for z ∈ Z̃. Since χf ◦ g1 = t ◦ g2 then g1(Z̃) ⊂ f(X̃)
and therefore m is defined correctly. Further, f ◦ m = f ◦ f−1 ◦ g1 = g1
and g2 = t ◦ g2 = χf ◦ g1 = X ◦ f−1 ◦ g1 = g ◦ m. Now let us verify that
m ∈ Mor SET(L)(Z, X). Indeed, for every z0 ∈ Z̃, X ◦m(z0) = g ◦ m(z0) =
g2(z0) = Ω1 ◦ g2(z0) > Z(z0) since g2 is a morphism. Lastly, let us verify that
the morphism m is unique. Suppose we have another m′ : Z → X such that
f ◦ m′ = g1. Then m

′ = f−1 ◦ g1 = m and therefore the above-mentioned
square is indeed a pullback square.
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Suppose we have another morphism χf
′. Since χf

′ ◦ f = t ◦ g then for
every y0 = f(x0) ∈ f(X̃) we have t◦g(x0) = X(x0) = χf

′◦f(x0) and therefore
χf

′(y0) = X ◦ f−1(y0). Thus, χf |f(X̃) = χf
′|f(X̃). Suppose χf

′(y0) = b0 6= a∗

for some y0 ∈ Ỹ \f(X̃). Then let Z̃ = {z0}, Z(z0) = 0L, g1(z0) = y0 and
g2(z0) = b0. Clearly, g1 ∈ Mor SET(L)(Z, Y ), g2 ∈ Mor SET(L)(Z, Ω1) and
t ◦ g2(z0) = b0 = χf

′(y0) = χf
′ ◦ g1(z0). One can easily see that for all maps

m : Z̃ → X̃, f ◦ m(z0) 6= y0 = g1(z0). Thus, the square is not a pullback
square that contradicts out former assumption. Therefore, χf is the unique
morphism with the required property.

The next theorem shows one property of the triple (Ω1, t, Ω2).

Theorem 3.10. For every two subobjects (X, f), (Z, h) of Y , (X, f) ≈
(Z, h) iff there exists such gf ∈ Mor SET(L)(X, Ω1) and gh ∈ Mor SET(L)(Z, Ω1)
defined in the previous theorem that χf = χh.

Proof. We will prove the necessity first and therefore assume that
(X, f) ≈ (Z, h). Then there exists a unique isomorphism k : Z → X such
that the triangle

Z

X

k

?

f
- Y

h

-

commutes. In order to prove that χf = χh we will show that the square

Z
h - Y

Ω1

gh

?

t
- Ω2

χf

?

is a pullback square. From the uniqueness of χh it will immediately follow
that χf = χh.

First of all we have to verify that the square commutes. Indeed, since
χf ◦ f = t ◦ gf then t ◦ gf ◦ k = χf ◦ f ◦ k = χf ◦ h. Further, since k
is an isomorphism then X ◦ k(z0) = Z(z0) for every z0 ∈ Z̃ and therefore
gf ◦ k(z0) = X ◦ k(z0) = Z(z0) = gh(z0). Thus, gf ◦ k = gh and therefore
t ◦ gh = χf ◦ h.

For everyW ∈ ObjSET(L) and every morphisms h1 ∈ Mor SET(L)(W, Ω1)
and h2 ∈ Mor SET(L)(W, Y ) such that t ◦ h1 = χf ◦ h2 there exists a unique
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morphism m ∈ Mor SET(L)(W, X) such that the diagram

W

X
f

-

m

-

Y

h
2

-

Ω1

gf

?

t
-

h
1

-

Ω2

χf

?

commutes. Since k is an isomorphism, k−1 must be also and therefore k−1 ◦
m = n ∈ Mor SET(L)(W, Z). Since f ◦ k = h then f = h ◦ k−1 and therefore

h ◦ k−1 ◦m = f ◦ m = h2. Further, since gf ◦ k = gh then gf = gh ◦ k−1.
The last equality gives us the following, gh ◦ k−1 ◦m = gf ◦m = h1. Thus,
gh ◦ n = h1 and h ◦ n = h2. Suppose we have another morphism n′ :W → Z.
Then h2 = h ◦ n′ = f ◦ k ◦ n′ and h1 = gh ◦ n′ = gf ◦ k ◦ n′. Thus, k ◦ n′ = m
and n′ = k−1 ◦m = n.

Now we will prove the sufficiency and therefore assume that χf = χh for
some gf and gh. Then the following diagram can be created.

Z

X
f

- Y

h

-

Ω1

gf

?

t
-

g
h

-

Ω2

χf = χh

?

Since χf ◦ h = χh ◦ h = t ◦ gh there exists some k ∈ Mor SET(L)(Z, X) such
that f ◦ k = h. The same way we can get a morphism k′ ∈ Mor SET(L)(X, Z)
such that h ◦ k′ = f . Thus, (X, f) ≈ (Z, h).

4. Factorization of morphisms in the category SET(L)

Suppose we have two objects X, Y ∈ ObjSET(L) and some morphism

f ∈ Mor SET(L)(X, Y ). The map f : X̃ → Ỹ defines an equivalence relation

Qf on the set X̃, i.e., for all x, y ∈ X̃, (x, y) ∈ Qf iff f(x) = f(y). Let
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Z̃ = X̃/Qf = {[x] |x ∈ X̃} where [x] denotes the equivalence class generated
by x and let Z([x]) =

∨{X(u) |u ∈ [x]} (notice that we regard the elements
of Z̃ as subsets of the set X̃). Let f̃ : X̃ → Z̃ be the following, f(x) = [x] for

x ∈ X̃.
Proposition 4.1. f̃ ∈ Mor SET(L)(X, Z).

Proof. Take any x0 ∈ X̃. Then
Z ◦ f̃(x0) = Z([x0]) =

∨
{X(u) |u ∈ [x0]} > X(x0).

Let f : Z̃ → Ỹ be the following, f([x]) = f(x) for [x] ∈ Z̃.
Proposition 4.2. f ∈ Mor SET(L)(X, Z).

Proof. Take any [x0] ∈ Z̃. Then Y ◦ f([x0]) = Y ◦ f(x0). For every
u ∈ [x0], f(u) = f(x0) and therefore Y ◦ f(x0) = Y ◦ f(u) > X(u) since f is
a morphism. Thus, Y ◦ f(x0) >

∨{X(u) |u ∈ [x0]} = Z([x0]) and f is indeed
a morphism.

One can easily see that the triangle

X
f - Y

Z

f

-

˜f
-

commutes and therefore f factors through Z.

Proposition 4.3. The morphism f is an isomorphism iff the following
conditions are fulfilled:

(1) f is surjective;

(2) Y (y) =
∨{X(x) | f(x) = y} for all y ∈ Ỹ .

Proof. Let us prove the necessity first and therefore assume that f is
an isomorphism. Clearly, f is surjective. Let us prove that the second con-
dition also holds. Suppose we have some y0 ∈ Ỹ . Take any x0 ∈ f−1(y0)
(notice that f−1(y0) 6= ∅ since f is surjective). Then Y ◦ f([x0]) = Z([x0]).

Further, Y ◦ f([x0]) = Y ◦ f(x0) = Y (y0) and Z([x0]) =
∨{X(u) |u ∈ [x0]} =∨{X(u) | f(u) = f(x0) = y0}. Thus, Y (y0) =

∨{X(x) | f(x) = y0}.
Now we will prove the sufficiency and therefore assume that all conditions

of the proposition are fulfilled. Clearly, f is bijective. The only thing we have
to prove is Y ◦f([x]) = Z([x]) for all [x] ∈ Z̃. Suppose we have some [x0] ∈ Z̃.
Then Y ◦ f([x0]) = Y ◦ f(x0) =

∨{X(x) | f(x) = f(x0)} =
∨{X(x) |x ∈

[x0]} = Z([x0]) and therefore f is indeed an isomorphism.
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5. Special morphisms

This section is devoted to special morphisms in the category SET(L). To
begin with, we will consider some kinds of monomorphisms.

Suppose we have some morphism f ∈ Mor SET(L)(X, Y ). Then f is called
an extremal monomorphism provided that it satisfies the following two con-
ditions:

(1) f is a monomorphism.
(2) (Extremal condition): If f = h ◦m, where m is an epimorphism, then

m must be an isomorphism.

The following theorem shows the necessary and sufficient conditions for
a morphism to be an extremal monomorphism.

Theorem 5.1. A morphism f : X → Y is an extremal monomorphism
iff the following conditions are fulfilled:

(1) f is injective;

(2) X(x) = Y ◦ f(x) for all x ∈ X̃.

Proof. Let us prove the necessity first and therefore assume that f is an
extremal monomorphism. Since f is a monomorphism, f is injective. Further,
let Z̃ = f(X̃). For every z ∈ Z̃ let Z(z) = Y (z). Suppose m : X̃ → Z̃ is

the restriction of the map f to f(X̃). Clearly, m ∈ Mor SET(L)(X, Z) and is

surjective. Thus, m is an epimorphism. Suppose h : Z̃ → Ỹ is the inclusion
map, i.e., h(z) = z for every z ∈ Z̃. Clearly, h ∈ Mor SET(L)(Z, Y ) and
f = h ◦ m. Thus, m is an isomorphism that implies, Z ◦ m(x) = X(x) for

x ∈ X̃. Take some x0 ∈ X̃. Then Y ◦ f(x0) = Y ◦ h ◦m(x0) = Y ◦m(x0) =
Z ◦m(x0) = X(x0).

Now we will prove the sufficiency and therefore assume that all con-
ditions of the theorem are fulfilled. Since f is injective, f is a monomor-
phism. Suppose we have some object Z ∈ ObjSET(L) and two morphisms
m : X → Z and h : Z → Y such that f = h ◦ m and m is an epimor-
phism. Let us prove that m is an isomorphism. Since f is injective m must
be also and therefore m is bijective. The only thing we have to verify is
Z ◦ m(x) = X(x) for every x ∈ X̃. Suppose we have some x0 ∈ X̃. Then
Z ◦m(x0) > X(x0) since m is a morphism. Further, since h is a morphism
thenX(x0) = Y ◦f(x0) = Y ◦h◦m(x0) > Z◦m(x0). Thus, Z◦m(x0) = X(x0).

Now we will consider strict monomorphisms in the category SET(L), i.e.,
such morphisms f ∈ Mor SET(L)(X, Y ) that the following condition is fulfilled:
whenever h is a morphism with the property that for all morphisms r and s,
r ◦ f = s ◦ f implies that r ◦ h = s ◦ h then there exists a unique morphism k
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such that the triangle

X
f - Y

Z

h

-
�

k

commutes. (Notice that the definition implies, f is a monomorphism.)

Theorem 5.2. A morphism f : X → Y is a strict monomorphism iff the
following conditions are fulfilled:

(1) f is injective;

(2) X(x) = Y ◦ f(x) for all x ∈ X̃.

Proof. We will prove the necessity first and therefore assume that f
is a strict monomorphism. Then f is a monomorphism and therefore injec-
tive. Further, suppose we have some x0 ∈ X̃. Since f is a morphism then
X(x0) 6 Y ◦ f(x0). Let Z̃ = X̃, Z(z) = Y ◦ f(z) and h = f . Clearly,
h ∈ Mor SET(L)(Z, Y ) and r ◦ h = s ◦ h whenever r ◦ f = s ◦ f . Thus,
there exists a morphism k ∈ Mor SET(L)(Z, X) such that f ◦ k = h. Clearly,
k = idX̃ . Thus, X ◦ k(x0) = X(x0) > Z(x0) = Y ◦ f(x0) and therefore
X(x0) = Y ◦ f(x0).

Now we will prove the sufficiency and therefore assume that all conditions
of the theorem are fulfilled. Suppose we have some h ∈ Mor SET(L)(Z, Y ) such

that r ◦ h = s ◦ h whenever r ◦ f = s ◦ f . Let us verify that h(Z̃) ⊂ f(X̃).

Indeed, suppose there exists some y0 ∈ Ỹ such that y0 ∈ h(Z̃) and y0 6∈ f(X̃).
Let W̃ = {w0, w1}, W ≡ 1L and r(Ỹ \{y0}) = s(Ỹ ) = {w0} but r(y0) = w1.

Clearly, r ◦ f = s ◦ f but r ◦ h 6= s ◦ h. Now let k : Z̃ → X̃ be the following,
k(z) = f−1 ◦h(z) for z ∈ Z̃. Since f is injective k is defined correctly. Clearly,
f ◦k = f ◦f−1 ◦h = h and for all other maps k′ such that f ◦k′ = h it follows
that k = k′. Let us verify that k ∈ Mor SET(L)(Z, X). Suppose we have some

z0 ∈ Z̃. Since h is a morphism then Y ◦ h(z0) = Y ◦ f ◦ k(z0) = X ◦ k(z0) >
Z(z0). Thus, k is indeed a morphism.

Lastly, let us consider one more type of monomorphisms, i.e., strong
monomorphisms in the category SET(L). Recall that a morphism f : X → Y
is said to be a strong monomorphism provided that the following two condi-
tions are fulfilled:

(1) f is a monomorphism;
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(2) whenever g◦m = f◦k withm an epimorphism, there exists a morphism
h such that the diagram

Z
m - W

X

k

?

f
-

�

h

Y

g

?

commutes.

Theorem 5.3. A morphism f : X → Y is a strong monomorphism iff
the following conditions are fulfilled:

(1) f is injective;

(2) X(x) = Y ◦ f(x) for all x ∈ X̃.

Proof. We will prove the necessity first and therefore assume that f is
a strong monomorphism. Then f is a monomorphism and therefore injective.
Further, suppose we have some x0 ∈ X̃. Then, since f is a morphism,X(x0) 6

Y ◦ f(x0). Let Z = X , W̃ = f(X̃), W (w) = Y (w) for w ∈ W̃ and let m be

the restriction of f to f(X̃). Clearly, m ∈ Mor SET(L)(Z, W ) and is surjective,
therefore, m is an epimorphism. Let k = idX̃ and let g be the inclusion

map, i.e., g(w) = w for w ∈ W̃ . Clearly, both k and g are morphisms and
f ◦ k = g ◦ m. Thus, there exists a morphism h ∈ Mor SET(L)(W, X) such

that f ◦ h = g. Take f(x0) ∈ W̃ . Then f ◦ h ◦ f(x0) = g ◦ f(x0) = f(x0)
and therefore h ◦ f(x0) = x0 since f is injective. Since h is a morphism then
X ◦ h ◦ f(x0) = X(x0) >W ◦ f(x0) = Y ◦ f(x0). Thus, X(x0) = Y ◦ f(x0).

Now we will prove the sufficiency and therefore assume that all condi-
tions of the theorem are fulfilled. Since f is injective, f is a monomorphism.
Further, suppose we have some morphisms k, m and g such that the square

Z
m - W

X

k

?

f
- Y

g

?

commutes and m is an epimorphism. Let us verify that g(W̃ ) ⊂ f(X̃).

Suppose we have some y0 ∈ g(W̃ ) such that y0 6∈ f(X̃). Then there ex-

ists some w0 ∈ W̃ such that g(w0) = y0. Since m is an epimorphism

and therefore surjective, there exists some z0 ∈ Z̃ such that m(z0) = w0.
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Since y0 = g ◦ m(z0) = f ◦ k(z0) we have, f−1(y0) 6= ∅ that contra-

dicts our former assumption. Now, let h : W̃ → X̃ be the following,
h(w) = f−1 ◦ g(w) for w ∈ W̃ . Since f is injective h is defined correctly.
Clearly, f ◦ h = f ◦ f−1 ◦ g = g. Further, f ◦ k = g ◦ m and therefore
k = f−1 ◦ g ◦ m. Thus, h ◦ m = f−1 ◦ g ◦ m = k. Let us verify that
h ∈ Mor SET(L)(W, X). Suppose we have some w0 ∈ W̃ . Since g is a mor-
phism then Y ◦ g(w0) = Y ◦ f ◦ h(w0) = X ◦ h(w0) > W (w0). Thus, h is
indeed a morphism.

The last three theorems imply the following result.

Theorem 5.4. For every morphism f ∈ MorSET(L) the following are
equivalent:

(1) f is a regular monomorphism;
(2) f is an extremal monomorphism;
(3) f is a strict monomorphism;
(4) f is a strong monomorphism.

Now let us consider the dual of monomorphisms, i.e., epimorphisms in
the category SET(L). By analogy with monomorphisms we will start by
considering extremal epimorphisms.

Suppose we have some morphism f ∈ Mor SET(L)(X, Y ). Then f is called
an extremal epimorphism provided that it satisfies the following two condi-
tions:

(1) f is a epimorphism.
(2) (Extremal condition): If f = m◦h, where m is a monomorphism, then

m must be an isomorphism.

The following theorem shows the necessary and sufficient conditions for
a morphism to be an extremal epimorphism.

Theorem 5.5. A morphism f : X → Y is an extremal epimorphism iff
the following conditions are fulfilled:

(1) f is surjective;

(2) Y (y) =
∨{X(x) | f(x) = y} for all y ∈ Ỹ .

Proof. Let us prove the necessity first and therefore assume that f is
an extremal epimorphism. Since f is an epimorphism, f is surjective. Let us
take the object Z defined in the previous section. Then f factors through Z.
Clearly, f is a monomorphism and therefore an isomorphism. The proposi-
tion 4.3 implies that all conditions of the theorem are fulfilled.

Now we will prove the sufficiency and therefore assume that all conditions
of the theorem are fulfilled. Since f is surjective then f is an epimorphism.
Suppose we have some object Z ∈ ObjSET(L) and two morphism h : X → Z
and m : Z → Y such that m ◦h = f and m is a monomorphism. Let us prove
that m is an isomorphism. Since f is surjective m must be also and therefore



16 S.A. SOLOVYOV

m is bijective. The only thing we have to verify is Y ◦m(z) = Z(z) for all

z ∈ Z̃. Suppose we have some z0 ∈ Z̃. Then Z(z0) 6 Y ◦m(z0) since m is
a morphism. Further, suppose x0 ∈ f−1 ◦m(z0). Then Z ◦ h(x0) > X(x0)
since h is a morphism. Since f(x0) = m ◦ h(x0) = m(z0) and m is injective
then h(x0) = z0 and therefore Z ◦ h(x0) = Z(z0) > X(x0). Thus, Z(z0) >∨{X(x) | f(x) = m(z0)} = Y ◦m(z0) and therefore Y ◦m(z0) = Z(z0).

Now we will consider strict epimorphisms in the category SET(L), i.e.,
such morphisms f ∈ Mor SET(L)(X, Y ) that the following condition is fulfilled:
whenever h is a morphism with the property that for all morphisms r and s,
f ◦ r = f ◦ s implies that h ◦ r = h ◦ s then there exists a unique morphism k
such that the triangle

X
f - Y

Z
�

kh
-

commutes. (Notice that the definition implies, f is an epimorphism.)

Theorem 5.6. A morphism f : X → Y is a strict epimorphism iff the
following conditions are fulfilled:

(1) f is surjective;

(2) Y (y) =
∨{X(x) | f(x) = y} for all y ∈ Ỹ .

Proof. We will prove the necessity first and therefore assume that f is
a strict epimorphism. Then f is an epimorphism and therefore surjective.
Further, suppose we have some y0 ∈ Ỹ . Since f is a morphism, Y (y0) >∨{X(x) | f(x) = y0}. Let Z̃ = Ỹ , Z(z) =

∨{X(x) | f(x) = y} and let h = f .
Clearly, h ∈ Mor SET(L)(X, Z) and h ◦ r = h ◦ s whenever f ◦ r = f ◦ s. Thus,
there exists a morphism k ∈ Mor SET(L)(Y, Z) such that k ◦ f = h. Clearly,
k = idỸ . Thus, Z ◦ k(y0) = Z(y0) =

∨{X(x) | f(x) = y0} > Y (y0) and
therefore Y (y0) =

∨{X(x) | f(x) = y0}.
Now we will prove the sufficiency and therefore assume that all conditions

of the theorem are fulfilled. Suppose we have some h ∈ Mor SET(L)(X, Z) such
that h ◦ r = h ◦ s whenever f ◦ r = f ◦ s. Let us verify that f(x1) = f(x2)

implies h(x1) = h(x2) for all x1, x2 ∈ X̃. Indeed, suppose h(x1) 6= h(x2)

for some x1, x2 ∈ X̃. Then let W̃ = {w0}, W (w0) = 0L and let r(w0) =
x1, s(w0) = x2. Since f ◦ r(w0) = f(x1) = f(x2) = f ◦ s(w0) then h(x1) =
h ◦ r(w0) = h ◦ s(w0) = h(x2) that contradicts our former assumption. Now,

let k : Ỹ → Z̃ be the following, k(y) = h(x), x ∈ f−1(y). Since f is surjective

the map k is defined correctly. Clearly, k ◦ f(x) = h(x) for all x ∈ X̃. For
all other maps k′ such that k′ ◦ f = h we have, k′ = k. Let us verify that
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k ∈ Mor SET(L)(Y, Z). Suppose we have some y0 ∈ Ỹ . Since f(x1) = f(x2)
implies h(x1) = h(x2) then Z ◦ k(y0) >

∨{X(x) | f(x) = y0} = Y (y0). Thus,
k is indeed a morphism.

Lastly, let us consider strong epimorphisms in the category SET(L). By
analogy with strong monomorphisms a morphism f ∈ Mor SET(L)(X, Y ) is
said to be a strong epimorphism provided that the following two conditions
are fulfilled:

(1) f is an epimorphism;
(2) whenever g ◦ f = m ◦ k with m a monomorphism, there exists a mor-

phism h such that the diagram

Z
m - W

X

k

6

f
- Y

g

6
�

h

commutes.

Theorem 5.7. A morphism f : X → Y is a strong epimorphism iff the
following conditions are fulfilled:

(1) f is surjective;

(2) Y (y) =
∨{X(x) | f(x) = y} for all y ∈ Ỹ .

Proof. We will prove the necessity first and therefore assume that f is
a strong epimorphism. Then f is an epimorphism and therefore surjective.
Further, suppose we have some y0 ∈ Ỹ . Since f is a morphism, Y (y0) >∨{X(x) | f(x) = y0}. Let W = Y and let g = eY . Further, let us take the

object Z defined in the previous section and let k = f̃ and m = f . Clearly,
g ◦ f = m ◦ k and therefore there exists a morphism h ∈ Mor SET(L)(Y, Z)

such that k = h ◦ f . Let us take any x0 ∈ X̃ such that f(x0) = y0. Then
h ◦ f(x0) = h(y0) = k(x0) = [x0]. Since h is a morphism then Z ◦ h(y0) =
Z([x0]) =

∨{X(u) |u ∈ [x0]} =
∨{X(x) | f(x) = y0} > Y (y0) and therefore

Y (y0) =
∨{X(x) | f(x) = y0}.

Now we will prove the sufficiency and therefore assume that all condi-
tions of the theorem are fulfilled. Since f is surjective, f is an epimorphism.
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Further, suppose we have some morphism k, m and g such that the square

Z
m - W

X

k

6

f
- Y

g

6

commutes and m is a monomorphism. Let us verify that g(Ỹ ) ⊂ m(Z̃).

Indeed, suppose we have some w0 ∈ W̃ such that w0 ∈ g(Ỹ ) and w0 6∈ m(Z̃).
Then there exists some y0 ∈ Ỹ such that g(y0) = w0. Since f is surjective

there exists some x0 ∈ X̃ such that f(x0) = y0. Thus, w0 = g ◦ f(x0) =
m◦k(x0) and thereforem

−1(w0) 6= ∅ that contradicts our former assumption.
Now, let h : Ỹ → Z̃ be the following, h(y) = m−1 ◦ g(y) for y ∈ Ỹ . Since m
is injective, the map h is defined correctly. Clearly, m ◦ h = m ◦m−1 ◦ g = g.
Further,m◦k = g◦f and therefore k = m−1◦g◦f . Thus, h◦f = m−1◦g◦f = k.
Let us verify that h ∈ Mor SET(L)(Y, Z). Suppose we have some y0 ∈ Ỹ .
Since g ◦ f = m ◦ k and m is a monomorphism then f(x1) = f(x2) implies

k(x1) = k(x2) for all x1, x2 ∈ X̃ . Take any x0 ∈ X̃ such that f(x0) = y0.
Then h ◦ f(x0) = h(y0) = k(x0). Thus, since k is a morphism, Z ◦ k(x0) =
Z ◦ h(y0) >

∨{X(x) | k(x) = h(y0)} >
∨{X(x) | f(x) = y0} = Y (y0). Thus,

h is a morphism.

The last three theorems imply the following result.

Theorem 5.8. For every morphism f ∈ MorSET(L) the following are
equivalent:

(1) f is a regular epimorphism;
(2) f is an extremal epimorphism;
(3) f is a strict epimorphism;
(4) f is a strong epimorphism.

6. Special objects

This section is devoted to some special objects in the category SET(L).
Let us recall some definitions first.

Let C be a category which has products and letM be a class of monomor-
phisms in C. A C-objectD is called anM-separator of C provided that each C-
object is anM-subobject of suitable power DI of D. In particular: (extremal
monomorphism)-coseparators are called extremal coseparators and (regular
monomorphism)-coseparators are called regular coseparators.

Proposition 6.1. An object W ∈ ObjSET(L), where W̃ = {0, 1}, W ≡
1L is an M-coseparator in SET(L).
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Proof. Suppose we have some X ∈ ObjSET(L). Let us consider the

objectW X̃ . From the properties of product of objects in the category SET(L)

it follows that W̃ X̃ =
∏

x∈X̃

W̃x, W̃x = W̃ and W X̃((wx)x∈X̃) =
∧

x∈X̃

W (wx).

Let f(x0) = (wx)x∈X̃ , where wx0 = 1 and wx = 0 for x 6= x0. Clearly,

f is injective. Since W X̃ ◦ f(x0) = 1L > X(x0) for all x0 ∈ X̃ then f ∈
Mor SET(L)(X, W

X̃).

From the theorem 5.4 we derive the following result.

Proposition 6.2. For an arbitrary object W ∈ ObjSET(L) the following
are equivalent:

(1) W is an extremal coseparator;
(2) W is a regular coseparator.

Now let us consider the dual of coseparators, i.e., separators in the cate-
gory SET(L).

Let C be a category which has coproducts and let E be a class of epi-
morphisms in C. A C-object D is called an E-separator of C provided that
each C-object is an E-quotient object of suitable copower ID of D. In partic-
ular: (extremal epimorphism)-separators are called extremal separators and
(regular epimorphism)-separators are called regular separators.

For convenience sake we will consider a subcategory SET(L)∗ of the cat-

egory SET(L) where X̃ 6= ∅ for all X ∈ ObjSET(L)
∗
.

Proposition 6.3. An object W ∈ ObjSET(L)∗, where W̃ = {w0},
W (w0) = 0L is an E-separator in the category SET(L)

∗
.

Proof. Suppose we have some X ∈ ObjSET(L)
∗
. Let us consider the

object X̃W . From the properties of coproduct of objects in the category

SET(L) it follows that
˜̃XW =

⋃
x∈X̃

(w0, x) and X̃W (w0, x) = W (w0) = 0L.

Let f :
˜̃XW → X̃ be the following, f(w0, x) = x for x ∈ X̃. Clearly, f is

surjective. Since X ◦ f(w0, x) = X(x) > 0L =
X̃W (w0, x) for all x ∈ X̃ then

f ∈ Mor SET(L)∗(
X̃W, X).

Proposition 6.4. The category SET(L)
∗

has no extremal separators.

Proof. Suppose there exists some W ∈ ObjSET(L)
∗
which is an ex-

tremal separator. Let us take two objects X1, X2 ∈ ObjSET(L)∗ where

X̃1 = X̃2 = {x0} and X1(x0) = 0L, X2(x0) = 1L. Since W is an ex-
tremal separator, there exist some sets I1, I2 and some extremal epimorphisms
f1 :

I1W → X1, f2 :
I2W → X2. From the properties of coproduct of objects

in the category SET(L) it follows that ĨjW =
⋃

i∈Ij

W̃ × {i} and IjW (w, i) =
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W (w) for all w ∈ W̃ , j = 1, 2. Further, since f1 is an extremal epimor-
phism then X1(x0) =

∨{I1W (w, i) | f1(w, i) = x0} =
∨{W (w) | f1(w, i) =

x0} =
∨

w∈W̃

W (w). The same way we get, X2(x0) =
∨

w∈W̃

W (w). Thus,

0L = X1(x0) =
∨

w∈W̃

W (w) = X2(x0) = 1L that contradicts our definition of

lattice.

The theorem 5.8 implies the following result.

Proposition 6.5. The category SET(L)
∗

has no regular separators.
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