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Abstract. We consider a non-coercive mixed boundary value problem in a bounded do-
mainD of Rn for a second order parameter-dependent elliptic differential operator A(x, ∂, λ)
with complex-valued essentially bounded measured coefficients and complex parameter λ.
The differential operator is assumed to be of divergent form in D, the boundary operator
B(x, ∂) is of Robin type with possible pseudo-differential components on ∂D. The boundary
of D is assumed to be a Lipschitz surface. Under these assumptions the pair (A(x, ∂, λ), B)
induces a holomorphic family of Fredholm operators L(λ) : H+(D) → H−(D) in suitable
Hilbert spaces H+(D) , H−(D) of Sobolev type. If the argument of the complex-valued
multiplier of the parameter in A(x, ∂, λ) is continuous, then we prove that the operators
L(λ) are continuously invertible for all λ with sufficiently large modulus |λ| on each ray on
the complex plane C where the operator A(x, ∂, λ) is parameter-dependent elliptic. We also
describe reasonable conditions for the system of root functions related to the family L(λ)
to be (doubly) complete in the spaces H+(D), H−(D) and the Lebesgue space L2(D).
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1. Introduction

The notion of a parameter-dependent elliptic operator provides a useful link between
the theories of boundary value problems for parabolic and elliptic operators (see, for
instance, [3]). Investigating a boundary value problem for a parameter-dependent
elliptic operator A(x, ∂, λ) on a ray in the complex plane, first one aims to prove the
continuous invertibility in proper functional spacesH+(D), H−(D) of the correspon-
ding family L(λ) : H+(D) → H−(D) of the operators for all λ with sufficiently large
modulus |λ| on the ray (see [3, 7, 8, 17]). The next step is to prove the (multiple)
completeness of the corresponding root functions associated with the parameter-
dependent family (see, for instance, [10, 12, 16, 22]). Actually, this provides a
justification for the application of Galerkin type methods and a numerical solution of
the problem. For elliptic (coercive) problems, the results of this type are well known.
The investigation is usually based on the classical methods of functional analysis and
the theory of partial differential equations (see [1, 5, 10, 12, 16], and many others).
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For domains with smooth boundaries, the standard Shapiro-Lopatinsky conditions
with a parameter and their generalizations are usually imposed (see [3, 7, 8]). The
spectral theory in non-smooth domains usually depends upon hard analysis near
singularities on the boundary (see, for instance, [4, 20]).

Recently, the classical approach was adapted for investigation of spectral proper-
ties of non-coercive mixed problems for strongly elliptic operators in Lipschitz do-
mains (see [18, 19]). An essential part of the approach is the analysis in spaces
of negative smoothness. We use this method to prove that under reasonable as-
sumptions the non-coercive operator pencil L(λ) : H+(D) → H−(D) has almost the
same properties as a coercive one. Also, an example related to non-coercive mixed
problems for a strongly elliptic two-dimensional Lamé system is considered.

2. A Fredholm holomorphic family of mixed problems

Let D be a bounded domain in Euclidean space Rn with Lipschitz boundary ∂D.
We consider complex-valued functions defined in the domain D. We write Lq(D) for
the space of all (equivalence classes of) measurable functions u in D, such that the
Lebesgue integral of |u|q overD is finite. As usual, this scale continues to include the
case q = ∞, too. We denote by H1(D) the Sobolev space and by Hs(D), 0 < s < 1
the Sobolev-Slobodetskii spaces.

Consider a second order differential operator

A(x, ∂, λ)u = −
n
∑

i,j=1

∂i(ai,j(x)∂ju) +
n
∑

j=1

aj(x)∂ju+ a0(x)u + E(λ)u

in the domain D with a complex parameter λ; here x = (x1, . . . , xn) are the coordi-
nates in Rn, ∂j =

∂
∂xj

and

E(λ)u = λ





n
∑

j=1

a
(1)
j (x)∂ju+ a

(1)
0 (x)u



 + λ2a
(2)
0 (x)u.

The coefficients ai,j , aj , a
(1)
j , a

(1)
0 , a

(2)
0 are assumed to be complex-valued functions

of class L∞(D). We suppose that the matrix A(x) = (ai,j(x))i=1,...,n
j=1,...,n

is Hermitian

and that it satisfies

n
∑

i,j=1

ai,j(x)wiwj ≥ 0 for all (x,w) ∈ D × C
n, (1)

n
∑

i,j=1

ai,j(x)ξiξj ≥ m0 |ξ|2 for all (x, ξ) ∈ D × (Rn \ {0}), (2)

where m0 is a positive constant independent of x and ξ. Estimate (2) is nothing but
the statement that the operatorA(x, ∂, 0) is strongly elliptic. Since the coefficients of
the operator and the functions under consideration are complex-valued, the matrix
A(x) can be degenerate. In particular, inequalities (1) and (2) are weaker than the
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(strong) coerciveness of the Hermitian form, i.e., the existence of a constantm0 such
that

n
∑

i,j=1

ai,j(x)wiwj ≥ m0 |w|2 for all (x,w) ∈ D × (Cn \ {0}). (3)

We consider the following Robin type boundary operator

B = b1(x)

n
∑

i,j=1

ai,j(x) νi∂j + ∂τ +B0,

where b1 is a bounded function on ∂D, ν(x) = (ν1(x), . . . , νn(x)) is the unit outward
normal vector of ∂D at x ∈ ∂D, ∂τ =

∑n
j=1 τj(x)∂j is the tangential derivative with

a tangential field τ = (τ1, . . . , τn) on ∂D and B0 is a densely defined linear operator
in L2(∂D) of “order” not exceeding 1. The function b1(x) is allowed to vanish on an
open connected subset S of ∂D with piecewise smooth boundary ∂S and the vector
τ vanishes identically on S.

To specify the operator B0, fix a number 0 ≤ ρ ≤ 1/2 and a bounded linear
operator Ψ : Hρ(∂D) → L2(∂D). The range of ρ is motivated by trace and duality
arguments. We will consider operator B0 of the following form

B0 = χSu+ b1 (Ψ
∗Ψ(u) + δB0) ,

where χS is the characteristic function of the set S on ∂D, Ψ∗ : L2(∂D) → Hρ(∂D)
is the adjoint operator for Ψ and δB0 is a “low order” perturbation that will be
described later. For ρ = 0, a typical operator Ψ is a zero order differential operator,
i.e., it is given by Ψu = ψu, where ψ is a function on ∂D locally bounded away from
∂S. Then (Ψ∗Ψu)(x) = |ψ(x)|2u(x) is invertible provided that |ψ(x)| ≥ c > 0. If
∂D is C2 -smooth, then a model operator Ψ is Ψ = (1+∆∂D)ρ/2, where ∆∂D is the
Laplace-Beltrami operator on the boundary.

Consider the following family of boundary value problems. Given data f in D
and u0 on ∂D, find a distribution u in D which satisfies

{

A(x, ∂, λ)u = f in D,

B(x, ∂)u = u0 at ∂D.
(4)

If λ = 0 and Ψ is given by the multiplication on a function, this is a well known
mixed problem of Zaremba type (see [23]). It can be handled in a standard way
in Sobolev type spaces associated with Hermitian forms or in Hölder spaces and
Sobolev spaces using the potential methods (for the coercive case see [13, 23, 15]
and elsewhere). In the non-coercive case, the methods should be more subtle (see, for
instance, [2, 19]) because of the lack of regularity of its solutions near the boundary
of the domain. In [19], the method, involving non-negative Hermitian forms, was
adopted to study problem (4) in non-coercive cases with a zero order differential
operator Ψ. Namely, denote by C1(D,S) the subspace of C1(D) consisting of those
functions whose restriction to the boundary vanishes on S. Let H1(D,S) be the
closure of C1(D,S) in H1(D). This space is Hilbert under the induced norm. Since
on S the boundary operator reduces to B = χS and χS(x) 6= 0 for x ∈ S, the
functions of H1(D) satisfying Bu = 0 on ∂D belong to H1(D,S).
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Split a0 into two parts a0 = a0,0 + δa0, where a0,0 is a non-negative bounded
function in D. Then, under reasonable assumptions, the Hermitian form

(u, v)+ =

∫

D

n
∑

i,j=1

ai,j∂ju∂iv dx+ (a0,0u, v)L2(D) + (Ψ(u),Ψ(v))L2(∂D)

defines an inner product on H1(D,S). Denote by H+(D) the completion of the
space H1(D,S) with respect to the corresponding norm ‖ · ‖+.

To study problem (4) we need an embedding theorem for the space H+(D).

Theorem 1. Let the coefficients ai,j be C∞ in a neighbourhood X of the closure of
D, inequalities (1), (2) hold and there is a constant c1 > 0, such that

‖Ψu‖L2(∂D) ≥ c1 ‖u‖Hρ(∂D) for all u ∈ H1(∂D, S). (5)

If there is a positive constant c2, such that a0,0 ≥ c2 in D or the operator A is
strongly elliptic in a neighbourhood X of D and

∫

X

n
∑

i,j=1

ai,j∂ju∂iu dx ≥ m1 ‖u‖2L2(X)

for all u ∈ C∞
comp(X), with m1 > 0 a constant independent of u, then the space

H+(D) is continuously embedded into Hs(D), where s is given by

s =











1/2− ǫ with ǫ > 0, if ρ = 0,

1/2, if ρ = 0 and ∂D ∈ C2,

1/2 + ρ, if 0 < ρ ≤ 1/2.

Proof. It is similar to the proof of [19, Theorem 2.5] corresponding to the case
where ρ = 0 and Ψ is given by the multiplication on a function.

Of course, under the coercive estimate (3), the space H+(D) is continuously em-
bedded into H1(D). However, in general, the embedding described in Theorem 1 is
rather sharp (see [19, Remark 5.1], [18] and §5 below). In particular, it may happen
that the space H+(D) can not be continuously embedded into Hρ+ǫ(D) with any
ǫ > 0. Thus the operator Ψ is introduced here in order to improve, if necessary, the
smoothness of elements of H+(D) in the non-coercive case.

In order to pass to the generalized setting of the mixed problem, we need that all
the derivatives ∂ju belong to L2(D) for an element u ∈ H+(D), at least if s ≤ 1/2 in
Theorem 1. However, if 0 < s < 1, then the absence of coerciveness does not allow
this. To cope with this difficulty we note that the operator

∑n
i,j=1 ∂i(ai,j∂j ·) admits

a factorisation, i.e., there is an (m×n) -matrix D(x) = (Di,j(x))i=1,...,m
j=1,...,n

of bounded

functions in D, such that (D(x))∗D(x) = A(x) for almost all x ∈ D. For example,
one could take the standard non-negative selfadjoint square root D(x) =

√

A(x) of
the matrix A(x). Then

n
∑

i,j=1

ai,j∂ju∂iv = (D∇v)∗D∇u =
m
∑

k=1

DkvDku,
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for all smooth functions u and v in D, where ∇u is thought of as an n -column
with entries ∂1u, . . . , ∂nu, and Dku :=

∑n
l=1 Dk,l(x)∂lu, k = 1, . . . ,m. Then, by the

definition of the space H+(D), any term ãk(x)Dku, k = 1, . . . ,m, belongs to L2(D)
if u ∈ H+(D) and ãk ∈ L∞(D). Thus, if 0 < s < 1, then we may confine ourselves
to first order summands of the form

m
∑

k=1

ãk(x)Dk and

m
∑

k=1

ã
(1)
k (x)Dk

instead of
∑n

j=1 aj(x)∂j and
∑n

k=1 a
(1)
j (x)∂j . For this purpose, we fix a factorization

D(x) of the matrix A(x) and functions ãk ∈ L∞(D), ã
(1)
k ∈ L∞(D), k = 1, . . . ,m.

These considerations allow us to handle problem (4) with the use of the standard
tools of functional analysis. Indeed, let H−(D) stand for the completion of space
H+(D) with respect to the norm

‖u‖− = sup
v∈H+(D)

v 6=0

|(v, u)L2(D)|
‖v‖+

.

It is the dual space for H+(D) with respect to the pairing 〈·, ·〉 : H−(D)×H+(D) →
C induced by the scalar product (·, ·)L2(D)

〈u, v〉 = lim
ν→+∞

(uν , v)L2(D), u ∈ H−(D), v ∈ H+(D),

where {uν} ⊂ H+(D) converges to u in H−(D), see [15]. Note that under the
hypothesis of Theorem 1, the natural embedding ι : H+(D) → L2(D) is continuous;
it is compact if (5) holds. Let ι′ : L2(D) → H+(D) stand for the adjoint map for ι
with respect to the pairing 〈·, ·〉, i.e.,

〈ι′u, v〉 = (u, ιv)L2(D) for all u ∈ L2(D), v ∈ H+(D).

Now, integration by parts leads to a weak formulation of problem (4): given
f ∈ H−(D), find u ∈ H+(D), such that for all v ∈ C1(D,S) we have

(u, v)+ +
(

(

m
∑

j=k

ãkDk + δa0 + E(λ)
)

u, v
)

L2(D)

+
(

(b−1
1 ∂τ + δB0)u, v

)

L2(∂D\S)
=< f, v >. (6)

By the Cauchy inequality, if

∣

∣

∣

(

(b−1
1 ∂τ + δB0)u, v

)

L2(∂D\S)

∣

∣

∣ ≤ c ‖u‖+ ‖u‖+

with a constant c > 0 independent of u, v ∈ H+(D), then (6) induces a holomorphic
(with respect to λ ∈ C) family L(λ) : H+(D) → H−(D) of bounded linear operators.

Denote by L0 the operator L(0) in the case where τ ≡ 0, δB0 ≡ 0, δa0 ≡ 0,
ãk ≡ 0, k = 1, . . .m. According to [19, Lemma 2.6], the operator L0 : H+(D) →
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H−(D) is continuously invertible and ‖L0‖ = ‖L−1
0 ‖ = 1. Then we can consider

each operator L(λ), λ ∈ C, as a perturbation of L0.

Actually, it is convenient to endow the space H−(D) with the scalar product

(u, v)− = (L−1
0 u, L−1

0 v)+ =< L−1
0 u, v >, u, v ∈ H−(D) (7)

coherent with the norm ‖ · ‖− see, for instance [19, p. 3316 and formula (2.2)].

Lemma 1. Under the hypothesis of Theorem 1, if δB0 maps Hρ(∂D, S) continuously
into H−ρ(∂D), then the term (δB0u, v)L2(∂D) induces a bounded operator δLB :
H+(D) → H−(D). If δB0 maps Hρ(∂D, S) compactly into H−ρ(∂D) then the
operator δLB is compact. In particular, if δB0 is given by the multiplication on a
function δb0 ∈ L∞(∂D \ S), then

1) δB0 maps Hρ(∂D, S) compactly into H−ρ(∂D) for 0 < ρ ≤ 1/2,

2) δB0 maps L2(∂D, S) continuously into L2(∂D) for ρ = 0.

Proof. The proof is standard, cf. [19, Lemma 4.6].

Clearly, the linear span of the vectors

τi,j = ~ejνi(x) − ~eiνj(x), i > j,

coincides with the tangential plan at each point x ∈ ∂D where it exists. Thus we
may consider tangential partial differential operators of the following form:

∂τ =
∑

i>j

ki,j(x)∂τi,j .

Lemma 2. Let H+(D) be continuously embedded into H1(D,S). If ki,j/b1 is of
Hölder class C0,λ in the closure of ∂D \S for all i > j, with λ > 1/2, then the term
(b−1

1 ∂τu, v)L2(∂D\S) induces a bounded operator δLτ : H+(D) → H−(D).

Proof. The statement was proved in [19, Lemma 6.6].

Theorem 2. Under the hypothesis of Theorem 1, let τ = 0, unless s = 1. If
either the term (δB0u, v)L2(∂D) induces a bounded operator δLB from H+(D) to
H−(D) with ‖δLB+ δLτ‖ < 1 or ‖δLτ‖ < 1 and the term (δB0u, v)L2(∂D) induces a
compact operator from H+(D) to H−(D), then {L(λ)}λ∈C is a holomorphic family
of Fredholm operators of zero index.

Proof. Follows from Lemmas 1 and 2 because H+(D) is compactly embedded into
L2(D) under the hypothesis of Theorem 1.
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3. Mixed problems for parameter-dependent elliptic operators

To obtain the main theorem of this paper we recall that the operator A(x, ∂, λ) is
parameter-dependent elliptic on a ray Γ = {arg(λ) = ϕΓ} on the complex plane C if

n
∑

i,j=1

ai,j(x)ζiζj + λ
n
∑

j=1

a
(1)
j (x)ζj + λ2a

(2)
0 (x) 6= 0 (8)

for all x ∈ D and all (λ, ζ) ∈ (Γ× Rn) \ {0, 0}.
In particular, if the operator A(x, ∂, λ) is parameter-dependent elliptic on the

ray Γ, then by taking ζ = 0 and λ 6= 0 in (8) we obtain a
(2)
0 (x) 6= 0 for all x ∈ D.

In the sequel we consider the case where E(λ) = λ2a
(2)
0 (x), the most common

in applications. Let ϕ0(x) = arg
(

a
(2)
0 (x)

)

. Denote by C : H+(D) → H−(D) the

operator that is induced by the term (a
(2)
0 (x)u, v)L2(D).

Lemma 3. Let
a
(2)
0 6= 0 almost everywhere in D. (9)

Then the operator C : H+(D) → H−(D) is injective.

Lemma 4. Suppose that the matrix A(x) is Hermitian non-negative and (2) is ful-

filled. If E(λ) = λ2a
(2)
0 , then the operator A(x, ∂, λ) is parameter-dependent elliptic

on the ray Γ if and only if

|a(2)0 (x)| > 0 for all x ∈ D; (10)

cos (ϕ0(x) + 2ϕΓ) > −1 for all x ∈ D. (11)

If |a(2)0 (x)| ∈ C(D), then (10) is equivalent to the following

|a(2)0 (x)| ≥ θ0 > 0 for all x ∈ D; (12)

similarly, if ϕ0(x) ∈ C(D), then (11) is equivalent to the following

cos (ϕ0(x) + 2ϕΓ) ≥ θ1(Γ) = θ1 > −1 for all x ∈ D, (13)

where the constants θ0, θ1 do not depend on x.
Clearly, under the hypothesis of Theorem 2 we can decompose

L(λ) = L0 + δcL+ δsL+ λ2C,

where δcL : H+(D) → H−(D) is a compact operator and δsL : H+(D) → H−(D)
is a bounded one. Moreover, the family L(λ) is Fredholm if ‖δsL‖ < 1.

Theorem 3. Let either Ψ is given by the multiplication on a function ψ ∈ L∞(∂D)

or ∂D ∈ C∞ and Ψ is a pseudodifferential operator on ∂D. Let also E(λ) = λ2a
(2)
0 ,

the hypothesis of Theorem 2 be fulfilled, and (9) and (13) hold true. If ϕ0 ∈ C(D)

and ‖δsL‖2 + (max (0,−θ1(Γ)))2 < 1, then
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1) there is γ0 ∈ Γ such that the operators L(λ) : H+(D) → H−(D) are continu-
ously invertible for all λ ∈ Γ with |λ| ≥ |γ0|;

2) the operators L(λ) are continuously invertible for all λ ∈ C except a discrete
countable set {λν} without limit points in C.

Proof. We begin with the following lemma. Set η(Γ) = max (0,−θ1).
Lemma 5. Under the hypothesis of Theorem 3, there is k0 ∈ N such that for all
λ ∈ Γ with |λ| ≥ k0 we have

‖(L0 + δsL+ λ2C)u‖− ≥
(

√

1− η2(Γ)− ‖δsL‖
)

‖u‖+ for all u ∈ H+(D)

and there are positive constants p1 = p1(ϕΓ), q1 = q1(ϕΓ) such that

‖(L0 + δsL+ λ2C)u‖− ≥ p1‖u‖+ + q1|λ|2‖Cu‖− (14)

for all u ∈ H+(D) and λ ∈ Γ with |λ| ≥ k0.

Proof. Given any u ∈ H+(D) a computation with the use of formula (7) shows
that

λ2〈Cu, u〉 = |λ|2
∫

D

|a(2)0 (x)||u(x)|2e
√
−1(ϕ0(x)+2ϕΓ) dx,

‖(L0 + λ2C)u‖2− = 〈u + λ2L−1
0 Cu, (L0 + λ2C)u〉2

= 〈u, L0u〉+ 〈λ2L−1
0 Cu, λ2Cu〉+ λ

2〈u,Cu〉+ λ2〈L−1
0 Cu,L0u〉

= ‖u‖2+ + |λ|4‖Cu‖2− + λ
2〈u,Cu〉+ λ2(L−1

0 Cu, u)+

= ‖u‖2+ + |λ|4‖Cu‖2− + λ
2〈u,Cu〉+ λ2〈Cu, u〉

= ‖u‖2+ + |λ|4‖Cu‖2− + 2ℜ
(

λ2〈Cu, u〉
)

. (15)

Clearly, for λ ∈ Γ,

ℜ
(

λ2〈Cu, u〉
)

= |λ|2
∫

D

|a(2)0 (x)||u(x)|2 cos (ϕ0(x) + 2ϕΓ) dx. (16)

If θ1 ∈ [0, 1], then η(Γ) = 0 and for all u ∈ H+(D) we immediately have:

‖(L0 + λ2C)u‖2− ≥ ‖u‖2+ + |λ|4‖Cu‖2−,
‖(L0 + δsL+ λ2C)u‖− ≥ ‖(L0 + λ2C)u‖− − ‖δsLu‖−

≥
√

‖u‖2+ + |λ|4‖Cu‖2− − ‖δsLu‖−.

Then, for α ∈ [0, π/2] and non-negative numbers a, b, we have

√
a+ b ≥ √

a cos (α) +
√
b sin (α). (17)

As ‖δsL‖ <
√

1− η2(Γ) = 1, there is α0 ∈ (0, π/2) such that

‖δsL‖ < cos (α0)
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In particular, this means that for all u ∈ H+(D) and all λ ∈ Γ we have:

‖(L0 + δsL+ λ2C)u‖− ≥ ‖u‖+ − ‖δsLu‖− ≥ (1− ‖δsL‖)‖u‖+,
‖(L0 + δsL+ λ2C)u‖− ≥ cos (α0)‖u‖+ + sin (α0)|λ|2‖Cu‖− − ‖δsLu‖−

≥ (cos (α0)− ‖δsL‖)‖u‖+ + sin (α0)|λ|2‖Cu‖−,

i.e., the desired inequalities are true if θ1 ∈ [0, 1].
If θ1 ∈ (−1, 0), then, by (16) and (13),

ℜ
(

λ2〈Cu, u〉
)

≥ −|θ1||λ|2
∫

D

|a(2)0 (x)||u(x)|2 dx. (18)

Let us prove that for any θ ∈ (−θ1, 1] and γ ∈ [0, 1) with θ
√
1− γ > −θ1 there

is k0 ∈ N such that

‖(L0 + λ2C)u‖2 ≥
(

1− θ2
)

‖u‖2+ + γ|λ|4‖Cu‖2− (19)

for all u ∈ H+(D) and all λ ∈ Γ with |λ| ≥ k0. Indeed, we argue by contradiction.
Let there be θ ∈ (|θ1|, 1] and γ ∈ [0, 1) with θ

√
1− γ > |θ1| such that for each k ∈ N

there are uk ∈ H+(D) with ‖uk‖+ = 1, and a number λk ∈ Γ with |λk| ≥ k such
that

‖(L0 + λ2kC)uk‖2 < 1− θ2 + γ|λk|4‖Cuk‖2−.
It follows from (15) and (16) that

θ2 + |λk|4‖Cuk‖2−(1− γ) + 2|λk|2
∫

D

cos (ϕ0 + 2ϕΓ)|a(2)0 (x)||uk(x)|2 dx < 0,

i.e.,

(θ −
√

(1− γ)|λk|2‖Cuk‖− )
2
+

2

(

θ
√

(1− γ) +

∫

D cos (ϕ0 + 2ϕΓ)|a(2)0 (x)||uk(x)|2 dx
‖Cuk‖−

)

|λk|2‖Cuk‖− < 0, (20)

for all k ∈ N.
On the other hand, for all u ∈ H+(D) with ‖u‖+ = 1 we have

‖Cu‖− = ‖e2
√
−1ϕΓCu‖− ≥

∣

∣

∣(e
√
−1(ϕ0+2ϕΓ)|a(2)0 |u, u)L2(D)

∣

∣

∣ .

In particular, we have

∣

∣

∣

∣

∣

∫

D
cos (ϕ0 + 2ϕΓ)|a(2)0 (x)||uk(x)|2 dx

‖Cuk‖−

∣

∣

∣

∣

∣

≤ 1, for all k ∈ N.

Now, if the sequence {|λk|2‖Cuk‖−} is unbounded, then by extracting a subsequence
{|λkj

|2‖Cukj
‖−} tending to +∞, dividing (20) by |λkj

|4‖Cukj
‖2− and passing to the

limit with respect to kj → +∞ we obtain 1 ≤ 0, a contradiction.
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Let the sequence {|λk|2‖Cuk‖−} be bounded. Now, the weak compactness prin-
ciple for Hilbert spaces yields that there is a subsequence {ukj

} weakly convergent
to an element u0 in the space H+(D). Then {Cukj

} converges to Cu0 in H−(D) be-
cause C : H+(D) → H−(D) is compact and {ukj

} converges to u0 in L2(D) because
the embedding ι : H+(D) → L2(D) is compact, too. Since the sequence {λ2kj

Cukj
}

is bounded in H−(D) and |λk| → +∞ we conclude that {Cukj
} converges to zero

in H−(D). This means that Cu0 = 0 and then u0 = 0 because a
(2)
0 (x) 6= 0 if (9) is

fulfilled on the ray Γ and then the operator C is injective (see Lemma 3).
According to the compactness principle, we may consider the subsequences

{

|λkj
|2‖Cukj

‖−
}

and

{

−
∫

D cos (ϕ0 + 2ϕΓ)|a(2)0 (x)||ukj
(x)|2 dx

‖Cukj
‖−

}

as convergent to the limits α ≥ 0 and β ∈ [−1, 1], respectively. Now it follows from
(20) that

(θ − α)
2
+ 2α (θ − β) ≤ 0. (21)

If α = 0, then we have a contradiction because θ > 0. If α > 0 and β ≤ 0, then
θ − β > 0 and we again have a contradiction.

Let α > 0 and β > 0. If ϕ0 ∈ C(D), then, according to the Weierstraß Theo-
rem, there is a polynomial sequence {Pi(x)} approximating ϕ0(x) in this space. In
particular, for each ε > 0, there is iε ∈ N such that

max
x∈D

|1− cos (ϕ0(x)− Pi(x))| < ε for all i ≥ iε.

Since ue
√
−1Pi(x) ∈ H+(D), we see that for all i ≥ iε

‖Cu‖− ≥

∣

∣

∣(e
√
−1(ϕ0(x)−Pi(x))|a(2)0 |u, u)L2(D)

∣

∣

∣

‖ue
√
−1Pi‖+

≥

∣

∣

∣(cos (ϕ0(x)− Pi(x))|a(2)0 |u, u)L2(D)

∣

∣

∣

‖ue
√
−1Pi‖+

≥ (1− ε)(|a(2)0 |u, u)L2(D)

‖ue
√
−1Pi‖+

.

Hence if ε ∈ (0, 1), then

lim sup
kj→∞

(|a(2)0 |ukj
, ukj

)L2(D)

‖Cukj
‖−

≤
lim supkj→∞ ‖ukj

e
√
−1Pi‖+

1− ε
, for all i ≥ iε.

On the other hand, as |e
√
−1Pi | = 1, we conclude that

‖ue
√
−1Pi‖2+ =‖u‖2+ + ‖(De

√
−1Pi)u‖2L2(D)

+ 2ℜ
(

((De
√
−1Pi)u, e

√
−1PiDu)L2(D)

)

+ ‖Ψ(e
√
−1Piu)‖2L2(∂D) − ‖Ψ(u)‖2L2(∂D), (22)
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for all i ∈ N and u ∈ H+(D). If Ψ is given by the multiplication on a function

ψ ∈ L∞(∂D) then ‖Ψ(e
√
−1Piu)‖L2(∂D) = ‖Ψ(u)‖L2(∂D). If ∂D ∈ C∞ and Ψ is

a pseudodifferential operator of order ρ on ∂D, then, as the multiplication on a
smooth function is a pseudodifferential operator of order zero, we conclude that the
commutator [Ψ, e

√
−1Pi ] = (Ψ◦e

√
−1Pi −e

√
−1Pi ◦Ψ) is a pseudodifferential operator

of order (ρ − 1) on ∂D (see, for instance, [11]). By the conctruction of ‖ · ‖+ and
Theorem 1, the sequence {uk} is bounded in Hρ(∂D) and then we can consider that
the subsequence {ukj

} converges weakly to zero in this space. Then
∣

∣

∣
‖Ψ(e

√
−1Piu)‖L2(∂D) −‖Ψ(u)‖L2(∂D)

∣

∣

=
∣

∣

∣‖Ψ(e
√
−1Piu)‖L2(∂D) − ‖e

√
−1PiΨ(u)‖L2(∂D)

∣

∣

∣

≤ ‖[Ψ, e
√
−1Pi ](u)‖L2(∂D),

for all u ∈ H+(D) and hence

lim
kj→∞

(

‖Ψ(e
√
−1Piukj

)‖L2(∂D) − ‖Ψ(ukj
)‖L2(∂D)

)

= 0 (23)

because the operator [Ψ, e
√
−1Pi ] : Hρ(∂D) → L2(∂D) is compact by the Rellich

Theorem. Thus, as ukj
→ 0 in L2(D) and ‖ukj

‖+ = 1, it follows from (22) and (23)
that

lim sup
kj→∞

‖ukj
e
√
−1Pi‖+ = 1, for all i ∈ N.

Therefore, if β > 0, then by (18)

β = lim
kj→∞

−
∫

D
cos (ϕ0 + 2ϕΓ)|a(2)0 (x)||ukj

(x)|2 dx
‖Cukj

‖−

≤ lim sup
kj→∞

|θ1|
∫

D |a(2)0 (x)||ukj
(x)|2 dx

‖Cukj
‖−

≤ |θ1|
1− ε

for each ε ∈ (0, 1).

This means that θ − β > 0 if θ > |θ1| and we again have a contradiction with (21).
Thus, (19) is fulfilled.

Finally, as ‖δsL‖2 < 1 − η2(Γ) = 1 − |θ1|2, we see that there are θ2 ∈ (|θ1|, 1],
γ0 ∈ [0, 1) with θ2

√
1− γ0 > |θ1| and α1 ∈ (0, π/2) such that

‖δsL‖ < cos (α1)
(

1− θ2

)1/2

.

Therefore, using (17), (19) we see that

‖(L0 + δsL+ λ2C)u‖− ≥
√

(

1− θ22

)

‖u‖2+ + γ0|λ|4‖Cu‖2− − ‖δsLu‖−

≥ cos (α1)
(

1−θ22
)1/2

‖u‖++sin (α1)
√
γ0|λ|2‖Cu‖−−‖δsLu‖−

≥
(

cos (α1)
(

1−θ22
)1/2

−‖δsL‖
)

‖u‖++sin (α1)
√
γ0|λ|2‖Cu‖−,
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for all u ∈ H+(D) and all λ ∈ Γ with |λ| ≥ k0.

We continue with the proof of property 1). For this purpose, using Lemma
5, we conclude that the operator (L0 + δsL + λ2C) is continuously invertible if
‖δsL‖2 < 1− η2(Γ) and λ ∈ Γ with |λ| ≥ k0. Hence we obtain

L(λ) = (I + δcL(L0 + δsL+ λ2C)−1)(L0 + δsL+ λ2C) (24)

for all λ ∈ Γ with |λ| ≥ k0.
We will show that the operator I + δcL(L0 + δsL + λ2C)−1 is injective for all

λ ∈ Γ such that |λ| ≥ k1 with some k1 ∈ N with k1 ≥ k0. Indeed, we argue by
contradiction. Suppose that for any k ∈ N there are λk ∈ Γ with |λk| ≥ k and
fk ∈ H−(D), such that ‖fk‖− = 1 and

(I + δcL(L0 + δsL+ λ2kC)
−1)fk = 0. (25)

It follows from Lemma 5 that the sequence uk := (L0 + δsL+ λ2kC)
−1fk is bounded

in H+(D) for all λk ∈ Γ with |λk| ≥ k0. Now the weak compactness principle for
Hilbert spaces yields that there is a subsequence {fkj

} with the property that both
{fkj

} and {ukj
} converge weakly in the spaces H−(D) and H+(D) to limits f and u,

respectively. Since δcL is compact, it follows that the sequence {δcLukj
} converges to

δcLu in H−(D), and so {fkj
} converges to f because of (25). Obviously, ‖f‖− = 1.

In particular, we conclude that the sequence {δcL(L0+δsL+λ2kj
C)−1fkj

} converges

to (−f) whence
f = −δcLu. (26)

Further, on passing to the weak limit in the equality fkj
= (L0+ δsL+λ2kj

C)ukj

we obtain

f = L0u+ δsLu+ lim
kj→∞

λ2kj
C ukj

,

for the continuous operator L0 + δsL : H+(D) → H−(D) maps weakly convergent
sequences to weakly convergent sequences.

As the operator C is compact, the sequence {C ukj
} converges to C u in the space

H−(D) and C u 6= 0, which is a consequence of (26) and the injectivity of C (see
Lemma 3). This shows readily that the weak limit

lim
kj→∞

λ2kj
C ukj

= f − L0u− δsLu

does not exist, a contradiction.
We have proved that the operator I + δcL(L0 + δsL + λ2 C)−1 is injective for

all λ ∈ Γ with |λ| ≥ k1. Since this is a Fredholm operator of index zero, it is
continuously invertible. Hence, the operators L(λ) are continuously invertible for all
λ ∈ Γ with sufficiently large |λ|.

Thus, {L−1(λ) = (L0+δcL+δsL+λ
2C)−1}λ∈C is a meromorphic family of Fred-

holm operators. Since there is a point γ where L(γ) is continuously invertible, the
operators L(λ) are continuously invertible for all λ ∈ C, except a discrete countable
set {λν} without limit points in C (see, for instance, [12] or [10]).
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Corollary 1. Let either Ψ is given by the multiplication on a function ψ ∈ L∞(∂D)
or ∂D ∈ C∞ and let Ψ is a pseudodifferential operator on ∂D. Let also (9) hold
true, ϕ0 ∈ C(D) and

Φ = sup
x,y∈D

(ϕ0(x) − ϕ0(y)) < 2π.

Under the hypothesis of Theorem 1, for each compact operator δcL : H+(D) →
H−(D) and each bounded operator δsL : H+(D) → H−(D) with

‖δsL‖2 + (max (0,− cos (Φ/2)))2 < 1, (27)

the operators L(λ) = L0+ δsL+ δcL+λ2C are continuously invertible for all λ ∈ C,
except a countable number of the characteristic values {λν}.
Proof. As ϕ0 ∈ C(D), the function admits maximal and minimal values Φ1 =
minx∈D ϕ0(x), Φ2 = maxx∈D ϕ0(x) and Φ = Φ2 −Φ1. Hence, the statement follows
from Theorem 3 applied to the ray Γ0 = {arg(λ) = −(Φ2 + Φ1)/4} with θ1(Γ0) =
minx∈D cos (ϕ0(x) + 2ϕΓ0

) ≥ cos(Φ/2) > −1.

4. On the completeness of root functions

We are interested in studying the completeness of root functions related to the mixed
problem in Sobolev type spaces H+(D), H−(D).

For this purpose we recall some basic definitions. Suppose λ0 ∈ C and F (λ) is a
holomorphic function in a punctured neighborhood of λ0 which takes on its values
in the space L(H1, H2) of bounded linear operators acting from a Hilbert space H1

to a Hilbert space H2. The point λ0 is called a characteristic point of F (λ) if there
exists a holomorphic function u(λ) in a neighborhood of λ0 with values in H1, such
that u(λ0) 6= 0 but F (λ)u(λ) extends to a holomorphic function (with values in H2)
near the point λ0 and vanishes at this point. As usual, we call u(λ) a root function
of the family F (λ) at λ0. If N is the order of zero of the holomorphic function
F (λ)u(λ) at the point λ0, then we have

m
∑

j=0

Fm−juj = 0 for all m ∈ Z+ with 0 ≤ m ≤ N − 1, (28)

where uj = 1
j!

dju
dzj (λ0) ∈ H1 and Fj = 1

j!
djF
dzj (λ0) ∈ L(H1, H2), j ∈ N. The vector

u0 is called an eigenvector of the family F (λ) at the point λ0 and the vectors uj ,
1 ≤ j ≤ N − 1, are said to be associated vectors for the eigenvector u0. If the linear
span of the set of all eigen- and associated vectors in the family F (λ) is dense in H1,
one says that the root functions of the family F (λ) are complete in H1. The notion
of root function of a holomorphic family is a generalization of the notion of a root
vector of a linear operator. Namely, a non-zero element u ∈ H is called a root vector
of T corresponding to an eigenvalue µ0 ∈ C if u ∈ D(T−µ0I)k , for all 1 ≤ k ≤ m and
(T − µ0I)

mu = 0 for some natural number m.

Note that under (9) the multiplication on the function a
(2)
0 ∈ L∞(D) induces a

bounded injective operator in the space L2(D); it is continuously invertible under
(12). We will denote this operator by C0. Then we can factorize C = ι′C0ι.
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Lemma 6. If (9) is fulfilled, then for the holomorhic Fredholm family L(λ) = L(0)+
λ2C : H+(D) → H−(D) the set of all its root functions coincides with the set of all
root vectors of one of the following closed densely defined linear operators:

C−1L(γ) : H+(D) → H+(D) and L(γ)C−1 : H−(D) → H−(D),

where γ ∈ C is an arbitrary point. Besides, if there is a point γ0 ∈ C, where the
operator L(γ0) = L(0)+λ20C is continuously invertible, it also coincides with the set
of all the root vectors of one of the following bounded linear operators:

L−1(γ0)C : H+(D) → H+(D), CL−1(γ0) : H
−(D) → H−(D),

ιL−1(γ0)ι
′C0 : L2(D) → L2(D).

Proof. Follows immediately from (28).

To formulate the completeness results regarding parameter-dependent elliptic
operators we need the notion of a compact operator of finite order. If T : H → H
is compact, then the operator T ∗T is compact, selfadjoint and non-negative. Hence
it follows that T ∗T possesses a unique non-negative selfadjoint compact square root
(T ∗T )1/2 often denoted by |T |. By the Hilbert-Schmidt Theorem the operator |T |
has a countable system of non-negative eigenvalues sν(T ) which are called the s -
numbers of T . It is clear that if T is selfadjoint, then sν = |µν |, where {µν} is the
system of eigenvalues of T . The operator T is said to belong to the Schatten class
Sp, with 0 < p <∞, if

∑

ν

|sν(T )|p <∞.

A compact operator T is said to be of finite order if it belongs to the Schatten class
Sp. The infinum ord (T ) of such numbers p is called the order of T .

Let us denote by C : H+(D) → H−(D) a linear bounded operator induced by

the term (|a(2)0 |u, v)L2(D). Note that under (9) the multiplication on the function

|a(2)0 | ∈ L∞(D) induces a bounded injective selfadjont operator C0 : L2(D) → L2(D);
it is continuously invertible under (12). In the following theorem h(·, ·) stands for
the Hermitian form

h(u, v) = (|a(2)0 |u, v)L2(D).

We note that under (9) it defines a scalar product on L2(D); this Hilbert space is
denoted by L2

h(D). The corresponding norm is not stronger than ‖ · ‖L2(D), it is
equivalent to the original norm of this space if (12) is fulfilled.

Theorem 4. Let (9) hold true. Under the hypothesis of Theorem 1, the operators

L−1
0 C : H+(D) → H+(D), CL−1

0 : H−(D) → H−(D), ιL−1
0 ι′C0 : L2(D) → L2(D)

are compact and their orders are finite:

ord (CL−1
0 ) = ord (L−1

0 C) = ord (ιL−1
0 ι′C0) = n/(2ρ+ 1).

Moreover, the operators L−1
0 C and CL−1

0 are selfadjoint. Besides, the operators

have the same systems of eigenvalues {µν}, the system {b(+)
ν } of eigenvectors of the
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operator L−1
0 C is complete in the spaces H+(D), L2(D) and H−(D). Moreover,

the system {b(+)
ν } is an orthonormal basis in H+(D), the system {b(−)

ν = Cb
(+)
ν }

of eigenvectors of the operator CL−1
0 is an orthogonal basis in H−(D), the system

{b(0)ν = ιb
(+)
ν } of eigenvectors of the operator ιL−1

0 ι′C0 is an orthogonal basis in the

space L2
h(D) and the system {

√

|a(2)0 |b(+)
ν } is an orthogonal basis in L2(D). If, in

addition, (12) holds, then the operator ιL−1
0 ι′C0 is selfadjoint in L2

h(D).

Proof. The proof is standard for self-adjoint operator pencils (see [16] or even [21,
Suppl. II, Introduction and P. 1, § 2] for Ordinary Differential Equations.

Now we can use the famous Keldysh’ Theorem on the weak perturbation of
compact selfadjoint operators (see, [12], [10], [16], or elsewhere).

Corollary 2. Let (9) hold true. Under the hypothesis of Theorem 1, for each com-
pact operator δcL : H+(D) → H−(D) we have

1) for any ε > 0 all characteristic values λν (except for a finite number) of the
operator pencil L(λ) = L0 + δcL+ λ2C belong to the corners

Mε = {| arg(λ)− π/2| < ε}, M−ε = {| arg(λ) + π/2| < ε}

and limν→∞ |λν | = +∞;

2) the system of root vectors of the family L(λ) = L0 + δcL+ λ2C is complete in
the spaces H+(D), L2(D) and H−(D).

Finally, we may apply the method of rays of minimal growth of the resolvent to
obtain the completeness of root vectors in the case of more general perturbations.

Theorem 5. Let either Ψ is given by the multiplication on a function ψ ∈ L∞(∂D)
or ∂D ∈ C∞ and let Ψ is a pseudodifferential operator on ∂D. Under the hypothesis
of Theorem 1, let also (9) and

Φ = sup
x,y∈D

(ϕ0(x)− ϕ0(y)) < π(2ρ+ 1)/2n. (29)

hold true. If ϕ0 ∈ C0,1(D) and

‖δsL‖2 + (max (0,− cos ((π(2ρ+ 1)− 2nΦ)/4n)))
2
< 1,

then we have

1) for any ε > 0, all characteristic values λν (except for a finite number) of the
family L(λ) = L0 + δsL+ δcL+ λ2C belong to the corners

{| arg(λ)± π/2| < π(2ρ+ 1)/2n+ ε}

and limν→∞ |λν | = +∞;

2) the system of root vectors of the family L(λ) = L0+δcL+δsL+λ
2C is complete

in the spaces H+(D), H−(D) and L2(D).
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Proof. As the operator γ20C : H+(D) → H−(D) is compact, the family L̃(λ̃) =
L0 + δsL + δ̃cL+ λ̃2C with δ̃cL = δcL + γ20C and λ̃2 = λ2 − γ20 satisfies conditions
of Theorem 5, too. Moreover, the operator L̃(0) = L(γ0) is continuously invertible.
Since the root functions and root vectors of the families L̃(λ̃) and L(λ) have obvious
relations, we can replace the family L(λ) by the family L̃(λ̃). Hence we may consider
that the operator L(0) is continuously invertible. Now, according to Lemma 6, the
proof of the theorem can be reduced to the investigation of the properties of one of
the operators L−1(0)C and L(0)C−1 = (L−1(0)C)−1 .

If ϕ0 ∈ C0,1(D), then the multiplication on the function e
√
−1ϕ0 ∈ C0,1(D)

induces a bounded linear operator δC : H+(D) → H+(D). Hence the operator
CL−1(0) can be presented in the following form:

CL−1(0) = (CL−1
0 )L0 δC L

−1(0).

It follows from Theorem 4 that the operator CL−1
0 belongs to the Schatten class

Sn/(2ρ+1)+ε with any ε > 0, i.e. CL−1(0) ∈ Sn/(2ρ+1)+ε with any ε > 0, too (see
[10, Ch. 2, §2]). Besides, estimates (14) and (29) imply that the angle between any
two neighboring rays of minimal growth of the resolvent of the operator L(0)C−1 is
less than π(2ρ+1)/2n. Thus the statement of the theorem follows from the standard
arguments with the use of the Phragmen-Lindelöf theorem which go back at least
as far as [1] (see also [19] for the non-coercive case).

Remark 1. Actually, it follows from the reducing procedure of Lemma 6 that in
Corollary 2 and Theorem 4 we should claim the multiple (double) completeness of
root vectors related to the operator pencil L(λ) (see [12], [22] and elsewhere).

5. An example

Consider an instructive example. Let n = 2 and A
(2)
0 be a (2 × 2) matrix with

real-valued entries of class L∞(D) and

Ã(x, ∂, λ)V (x) = −ϑ∆2I2V (x)− (ϑ+ ϑ1)∇2div2V (x) + λ2A
(2)
0 (x)V (x)

the Lamé type system, where V (x) = (V1(x), V2(x)) is an unknown vector, I2 is
the identity (2 × 2)-matrix, ∆2 the Laplace operator, ∇2 and div2 are the gradient
operator and the divergence operators in R2, respectively, and ϑ, ϑ1 are the Lamé
parameters. This operator plays an essential role in the two-dimensional Linear
Elasticity Theory (see, for instance, [9]); the vector V (x) represents the displacement
of points of an elastic body. This operator can also be considered as part of a
linearisation system of the stationary version of the two-dimensional Navier-Stokes
type equations for a viscous compressible fluid with known pressure and unknown
velocity vector V (x) (see [14, §15]); in this case, the Lamé parameters represent
viscosities. The system is strongly elliptic and formally selfadjoint non-negative if
ϑ > 0, 2ϑ + ϑ1 > 0. Let us consider a very special case where the first Lamé
parameter ϑ1 is negative and ϑ1 = −ϑ. Then, Ã(x, ∂, λ) reduces to

Ã(x, ∂, λ) = −ϑ∆2I2 + λ2A
(2)
0 (x). (30)
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On the other hand,
−∆2I2V = rot∗2rot2V + div∗2div2V,

where rot2V = (∂1V2 − ∂2V1) is the rotation operator in R2 and rot∗2, div
∗
2 are the

formal adjoint operators for rot2, div2, respectively. Assume now that the matrix

A
(2)
0 (x) has the following form A

(2)
0 (x) = α(x)U(x), where α(x) ∈ L∞(D) is a non-

negative function and

U(x) =

(

U1(x) −U2(x)
U2(x) U1(x)

)

is an orthogonal matrix with entries Uj ∈ L∞(D). Then, after the complexification

u(z) = V1(z) +
√
−1V2(z), z = x1 +

√
−1x2,

system (30) with real-valued coefficients reduces to the following equation with
complex-valued coefficients

A(x, ∂, λ)u = 4ϑ∂
∗
∂ u+ λ2a

(2)
0 (x)u,

where ∂ = 1/2( ∂
∂x1

+
√
−1 ∂

∂x2
) is the Cauchy-Riemann operator, ∂

∗
= −1/2( ∂

∂x1
−√

−1 ∂
∂x2

) is its formal adjoint and

a
(2)
0 (x) = α(x)

(

U1(x) +
√
−1U2(x)

)

.

Then, with a proper operator Ψ : Hρ(∂D) → L2(∂D), the Robin type operator B
has the form

B = 2ϑ (ν1 −
√
−1ν2)∂̄ +Ψ∗Ψ,

where (ν1, ν2) is the unit normal vector field to ∂D. The boundary operators

∂

∂ν
= ν1∂1 + ν2∂2, ∂̄ν = (ν1 −

√
−1ν2)∂̄ =

1

2

(

∂

∂ν
+

√
−1(ν1∂2 − ν2∂1)

)

are known as the normal derivative and the complex normal derivative with respect
to ∂D, respectively. Thus, we obtain a mixed problem of the type considered above:

{
(

−ϑ∆2 + λ2a
(2)
0

)

u(z) = f in D,
(

2ϑ∂̄ν +Ψ∗Ψ
)

u(z) = 0 at ∂D.
(31)

Note that the usual boundary conditions for the Navier-Stokes equations or the
Lamé type operator are formulated by using the boundary stress tensor σ. In our
particular case, the tensor has the following components:

σi,j = ϑ

(

δi,j
∂

∂ν
+ νj

∂

∂xi
− νi

∂

∂xj

)

, 1 ≤ i, j ≤ 2. (32)

Hence, with the tangential operator ∂τ0 =
(

(ν(x)div2)
T − ν(x)div2

)

, we have

σ = ϑ

(

∂

∂ν
I2 + ∂τ

)

= ϑ (σ̃ + 2∂τ0), (33)
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where the boundary tensor σ̃ corresponds to the boundary operator 2∂̄ν after the
decomplexification of the mixed problem (31), i.e., in the matrix form (31) reads as

{ (

−ϑ∆2I2 + λ2A
(2)
0

)

V (x) = F in D,

((σ − 2ϑ∂τ0) + Ψ∗ΨI2)V (x) = 0 at ∂D.

In Elasticity Theory, the boundary tensor σ̃ = ϑ−1σ − 2∂τ0 was discovered in [6].
We continue with the mixed problem (31). The corresponding scalar product of

the space H+(D) related to the mixed problem has the form

(u, v)+ = 4ϑ (∂̄u, ∂̄v)L2(D) + (Ψu,Ψv)L2(∂D).

Then, Theorem 1 grants the embedding of the space H+(D) into the Sobolev-
Slobodetskii space Hs(D). However, for 0 < ρ < 1/2, each holomorphic function
u ∈ Hρ+1/2(D) belongs to H+(D) but there is no reason for it to belong to H1(D),
i.e., the embedding is sharp. For ρ = 0, the embedding described in Theorem 1 is
sharp, too, but the arguments are more subtle (see [18] or [19]). In particular, the
Shapiro-Lopatinskii conditions are violated on the smooth part of ∂D.

In some cases we can obtain reasonable formulas for solutions to the problem.
Let D be the unit circle B around the origin in C and S = ∅. We pass to polar
coordinates z = r e

√
−1φ in R2, where r = |x| and φ ∈ [0, 2π], and set

ϑ = 1, Ψ∗Ψ = 2

(

1− ∂2

∂2φ

)ρ/2

a
(2)
0 (z) = |z|2d, d ≥ 0,

(− ∂2

∂2φ being the Laplace-Beltrami operator on ∂B). Then, a
(2)
0 ∈ C0,2d(D) if 0 <

d ≤ 1/2. Besides,

∂

∂ν
= r∂r , ∂ν = z̄ ∂̄ =

1

2

(

r∂r +
√
−1 ∂φ

)

. (34)

Consider the Sturm-Liouville problem for the ordinary differential equation with
respect to the variable r in the interval (0, 1),

(

r∂2r + ∂r − k2r−1 + µ2r2d+1
)

g = 0 in (0, 1), (35)

g is bounded at 0, (36)
(

r∂r − k + (1+k2)ρ/2
)

g = 0 at r = 1, (37)

see [21, Suppl. II, Introduction and P. 1, § 2]. Actually, as we have seen above, µ
are non-negative real numbers (with µ2 = −λ2) and then (35) is a particular case
of the Bessel equation. Its (real-valued) solution g(r) is a Bessel function defined on
(0,+∞), and the space of all solutions is two-dimensional. For example, if λ2 = 0
and d = 0, then g(r) = αrk + βr−k with arbitrary constants α and β is a general
solution to (35). In the general case, the space of solutions to (35) contains a one-

dimensional subspace {αgk(r, µ) = αJ |k|
d+1

(

µrd+1

d+1

)

} of functions bounded at the

point r = 0, where Jp(t) are Bessel functions, cf. (see, for instance, [21]). As usual,



On non-coercive mixed problems 149

for each k ∈ Z the proper system of eigenvalues {µ(ν)
k }ν∈N can be found as solutions

to the transcendental equation

µ

d+ 1
J ′

|k|
d+1

(

µ

d+ 1

)

+
(

(1+k2)ρ/2 − k
)

J |k|
d+1

(

µ

d+ 1

)

= 0

induced by (37) with gk(·, µ) instead of g. For any k ∈ Z, fix a non-trivial solution

g
(ν)
k (r) of problem (35) corresponding to an eigenvalue µ

(ν)
k . This system is an

orthogonal basis in the weighted Lebesgue space L2
d(0, 1) with the scalar product

hd(g, f) =

∫ 1

0

r2d+1g(r)f(r) dr,

see [21, Suppl. II, Introduction and P. 1, § 2]. Then the function

u
(ν)
k (z) = g

(ν)
k (r)e

√
−1kφ

satisfies






(

−∆2 + (λ
(ν)
k )2|z|2d

)

u
(ν)
k (z) = 0 in C

(

∂̄ν + (1− ∂2

∂2φ )
ρ/2
)

u
(k)
ν (z) = 0 at ∂B

, (38)

where (λ
(ν)
k )2 = −(µ

(ν)
k )2 Indeed, by (35) and Fubini’s theorem we conclude that this

equality holds in C \ {0} (here we used the fact that u
(k)
ν is bounded at the origin).

On the other hand, the boundary condition (38) follows immediately from (34) and

(37). By the construction, the system {u(k)ν }k∈Z,ν∈N consists of eigenfunctions of the
family L(λ) = L0 + λ2C. Obviously, it coincides with the system of all eigenvectors
constructed in Theorem 4 if it is complete in the space L2

h(B) with the scalar product

h(u, v) =

∫

D

|z|2du(z)v(z)dx.

But {hk}k∈Z is an orthogonal basis in L2(∂B) and {g(ν)k }k∈Z+,ν∈N is an orthogonal
basis in L2

d(0, 1) and hence Fubini’s Theorem implies that the system is an orthogonal
basis in the space L2

h(B).
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