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R GROUPS FOR QUATERNIONIC HERMITIAN GROUPS

Marcela Hanzer

University of Zagreb, Croatia

Abstract. In this paper a complete classification of R-groups for her-
mitian quaternionic groups is given. This completes the work of Goldberg
for all classical p–adic groups. As a consequence, multiplicity one result
follows.

1. Introduction

Let G be a connected reductive p–adic group defined over a nonar-
chimedean field F and letM be a Levi subgroup of a F -parabolic subgroup P
of G. Let σ be an irreducible admissible representation of M . We are inter-
ested in decomposing the representation IndG

P (σ) into the irreducible compo-
nents especially when σ is a discrete series representation, and G a non-split
form of the classical p–adic group. We will do this using the concept of the R
group.

Let P = Pθ = MθNθ be the standard F -parabolic subgroup correspond-
ing to the subset θ of the basis of the root system Φ(G,A0) where A0 is a
maximal split torus in G. Let Aθ be the split component of Pθ with the rel-
ative Weyl group Wθ = NG(Aθ)/Mθ. We denote the stability subgroup by
W (σ), i.e. W (σ) = {w ∈ Wθ : w(σ) ∼= σ}.

Let us denote C(σ) the intertwining algebra of the representation IndG
P (σ).

From the work of Casselman [4] we have estimate dim C(σ) ≤ |W (σ)|. R
group is a subgroup ofW (σ) which determines the exact dimension and struc-
ture of C(σ). This approach goes back to the work of Knapp and Stein who

used the intertwining operators to calculate the reducibility of IndG
P (σ) in

the case of the real groups and Pθ minimal parabolic subgroup. We follow
the calculation of the R-groups in p–adic case from the work of Keys [9], [10],

2000 Mathematics Subject Classification. 22E35.
Key words and phrases. R groups, p–adic groups.

31



32 M. HANZER

Winarsky [13], Goldberg [6] and Herb [8]. In the preliminaries, we explain the
structure of the hermitian quaternionic groups, as non-split forms of the clas-
sical p–adic groups. Then, in the next subsection we recall the definitions and
the results concerning intertwining operators for the representations induced
from the discrete series representations. We recall definition of Plancherel
measure, the connection with R-groups and the structure of the algebra of
the intertwining operators for representations induced from the discrete series
representations of the Levi subgroups.

In the third section, we obtain the structure of the Weyl groups and R-
groups related to the Levi subgroups of quaternionic group, analogous to one
obtained in [6]. Also, we obtain the formula for R group as product of R-
groups of the basic parabolic subgroups. In the fourth section the formula for
R-group for the basic parabolic subgroup is obtained. In the fifth section we
prove the multiplicity one theorem for our non-split forms, by the methods
analogous to those used for the split classical groups by Herb [8].

2. Preliminaries

2.1. Let F be a non-archimedean field of characteristic zero, with the residual
field with q elements. Let D be a quaternionic algebra, central over F and let
τ be the usual involution, fixing the center of D. Then D is a rank 4 algebra
over F with basis {1, w1, w2, w3} satisfying

w2
1 = α,w2

2 = β,w1w2 = −w2w1 = w3 for some α, β ∈ F.

Then, τ acts on d = x0+x1w1+x2w2+x3w3 as τ(d) = x0−x1w1−x2w2−x3w3.
Division algebra D has well-known matrix representation in M(2, F (

√
α))

d = x0 + x1w1 + x2w2 + x3w3 7→
(

x0 + x1
√
α x2 + x3

√
α

βx2 − βx3
√
α x0 − x1

√
α

)
.

It is straightforward that

(2.1) D ⊗F F ∼=M(2, F ),

so we can naturally extend the involution τ to M(2, F ). By Skolem-Noether
theorem there exists a matrix h0 such that

τ(x) = h0x
th−1

0 for all x ∈M(2, F ).

Actually, with the above matrix representation of D we can take h0 =
(

0 1
−1 0

)
.

We define an involution on the space M(k,D) by g 7→ g∗ = τ(g)t. Again, we
can extend the involution ∗ from M(k,D) on

(2.2) M(k,D)⊗F F ∼=M(2k, F ),
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and by Skolem-Noether theorem realize it through transposition and conju-
gation by matrix

h =




h0

h0

. . .

h0


 .

Also, we can assume by (2.2) thatM(k,D) is embedded inM(2k, F ). Division
algebra D defines a reductive group G over F as follows. Let

Vn = e1D ⊕ · · · ⊕ enD ⊕ en+1D ⊕ · · · ⊕ e2nD

be a right vector space overD. Relations (ei, e2n−j+1) = δij for i = 1, 2, . . . , n
define the hermitian form on Vn:

(v, v′) = ετ((v′, v)), v, v′ ∈ Vn, ε ∈ {−1, 1}
(vx, v′x′) = τ(x)(v, v′)x′, x, x′ ∈ D.

Let G(F, ε) = Gn(D, ε) be the group of isometries of the form (·, ·). In the
sequel, we will do explicit calculations for the case ε = −1, so we drop ε from
the notation and, unless otherwise specified, assume ε = −1. The remaining
case is quite similar and we will turn our attention to that case in the end.
We can describe group G(F, ε) = G(F ) also as

G(F ) =

{
g ∈ GL(2n,D) : g∗

(
0 Jn

−Jn 0

)
g =

(
0 Jn

−Jn 0

)}
,

where

Jn =




1
1

. .
.

1


 .

So, if we consider the group

Gn(F ) =

{
g ∈ GL(4n, F ) : g∗

(
0 J ′

2n

−J ′
2n 0

)
g =

(
0 J ′

2n

−J ′
2n 0

)}

with J ′
2n obtained from Jn by embedding which follows from (2.2) we see that

Gn(D) is the group of F -rational points of the group Gn(F ). Of course, the
action of the Galois group Γ = Gal(F/F ) is given by isomorphism (2.2).
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2.2. The group Gn(F ) is conjugated to SO(4n, F ) in GL(4n, F ), so we con-
clude that

T =








λ1

λ2

. . .

λ2n

λ−1
2n

. . .

λ−1
2

λ−1
1




: λi ∈ F





is a maximal torus in Gn(F ). To determine whether T is defined over F we
observe the following. Let χij denote a regular function (in algebraic sense)

on the groupGn(F ) given by g = (gij) 7→ gij . Then σ ∈ Γ acts in the following
way

χσ
ij =





χij if σ(
√
α) =

√
α,




χi+1j+1 if i, j are odd
1
βχi+1j−1 if i odd and j even,

βχi−1j+1 if i is even and j is odd,

χi−1j−1 if i, j are even

if σ(
√
α) = −√α.

Denote by J the ideal of functions in F [Gn(F )] vanishing on T , and by JF =
J ∩ F [Gn(F )], where F [Gn(F )] = F [Gn(F )]

Γ. For T to be defined over F it
is enough to show (e.g. from [3]) that

J = F [Gn(F )]JF .

Consider, for example, for i odd and j even, function
√
α(χij − 1

βχi+1j−1).

This function as well as function χij+
1
βχi+1j−1 belongs to JF , so χij belongs

to F [Gn(F )]JF and, in general, χij , for i 6= j belongs to F [Gn(F )]JF . The
same reasoning implies also that functions χiiχ4n+1−i4n+1−i−1, i = 1, . . . , 2n
belong to F [Gn(F )]JF . So, T is defined over F . Now, it is easy to see that
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the maximal F -split subtorus of T is

A0 =








λ1

λ1

. . .

λn

λn

λ−1
n

λ−1
n

. . .

λ−1
1

λ−1
1




: λi ∈ F
∗





.

From (2.2) follows

A0(F ) =








λ1

λ2

. . .

λn

λ−1
n

. . .

λ−1
2

λ−1
1




: λi ∈ F ∗





.

Since the absolute root system Φ(Gn(F ), T ) is of the type D2n, we can take

Φ(Gn(F ), T ) = {±(εi ± εj); i 6= j, i, j = 1, 2, . . . 2n}.

Here, {εi}’s have obvious meaning. It follows that the relative root system
obtained from the absolute one restricted on A0 is

Φ(Gn(F ), A0) = {±(εi ± εj),±2εi; i 6= j, i, j = 1, 2, . . . n},
i.e. the relative root system is of the type Cn. We can choose the basis

∆ = {εi − εi+1 : i = 1, 2, . . . n} ∪ {2εn}.
We abbreviate αi = εi − εi+1 and αn = 2εn. Let us denote

J̃2k =




−1
1

. .
.

. .
.

−1
1



.
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Now, the (standard) Levi subgroup M0 = ZGn(F )(A0) of the minimal F -

parabolic subgroup P0 =M0N0 corresponding to the above basis is

M0 =








A1

A2

. . .

An

Ãn

. . .

Ã2

Ã1




: Ai ∈ GL(2, F )





.

The matrices Ãi are obtained as Ãi = −J̃2Ai
−tJ̃2. Hence:

M0(F ) =








ξ1
ξ2

. . .

ξn
τ(ξn)

−1

. . .

τ(ξ2)
−1

τ(ξ1)
−1




: ξi ∈ D∗





.

Analogously, the standard Levi F -subgroups correspond to the subsets θ
of the basis ∆. They have the following form:
(i) If αn /∈ θ there exist positive integers n1, n2, . . . , nk with Σni = n, such
that
(2.3)

Mθ =








An1

An2

. . .

Ank

Ãnk

. . .

Ãn2

Ãn1




: Ai ∈ GL(2ni, F )





.
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(ii) If αn ∈ θ there exist positive integers n1, n2, . . . , nk, r with Σni + r = n,
such that

Mθ =








An1

An2

. . .

Ank

Gr(F )

Ãnk

. . .

Ãn2

Ãn1




: Ai ∈ GL(2ni, F )





,

where the matrices Ãni are obtained as Ãni = −J̃2niAni

−tJ̃2ni . In the same
way, their groups of F -rational points are

Mθ(F ) =








An1

. . .

Ank

Jnk
(A−1

nk
)∗Jnk

. . .

Jn1(A
−1
n1
)∗Jn1




: Ai ∈ GL(ni, D)





,

with Σni = n in the first case, and

Mθ(F ) =








An1

. . .

Gr(D)
. . .

Jn1(A
−1
n1
)∗Jn1



: Ai ∈ GL(ni, D)





,

with Σni + r = n in the second case.

2.3. Let us denote the complexified dual of the real Lie algebra of Aθ by
(a∗Mθ

)C and by E2(Mθ) the set of equivalence classes of the irreducible square
integrable modulo center representations of Mθ. If θ is fixed we write M for
Mθ and P for Pθ. Let K be a maximal, good compact subgroup of G and let
HP be the homomorphism from subgroup P to aM trivial on the subgroup N
such that the following holds

q<HP (a),α> = |α(a)|F ∀a ∈ A, ∀α ∈ Rat(A).
We extend it from P , trivially onK, to G. For ν ∈ (a∗

Mθ
)C and σ discrete series

representation ofM we denote by JP ′|P (ν, σ) standard (integral) intertwining
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operator between IndG
P (σ⊗ q〈ν,HP ()〉) and IndG

P ′(σ⊗ q〈ν,HP ′ ()〉), defined in the
following way

JP ′|P (ν, σ)f(g) =

∫

N∩N ′\N ′

f(ng)dn.

Here, P ′ is another parabolic subgroup with Levi subgroup M . This integral
(weakly) converges in a cone in (a∗Mθ

)C and has meromorphic continuation
on the whole space. Let RP ′|P (σ, ν) denote the normalization of the operator
JP ′|P (σ, ν) which satisfies number of properties, e.g. see [1]. When ν is 0,
we exclude it from the notation. Let us denote by l(w) an operator of the
left translation by element w−1 of the Weyl group. This operator acts on
the spaces of the induced representations. If σ acts on the space V , then for
w ∈W (σ) there exist the isomorphisms Tw on V such that

Tww(σ)(m) = σ(m)Tw , for all m ∈M.

We define the operators R(w, σ) = Twl(w)Rw−1Pw|P (σ) which are the inter-

twining operators for the representation IndG
P (σ). By the results of Harish-

Chandra, family {R(w, σ) : w ∈ W (σ)} spans (as a vector space) algebra
C(σ). Now, we could introduce R group without referring to Plancherel
measures: we could say that R group is the subgroup of elements in W (σ)
which act on (a∗Mθ

)C in such a way that they fix positive chamber, but for
our calculations it is easier to use Plancherel measures. We also denote
A(σ, ν, w) = l(w)Jw−1Pw|P (σ, ν) and to avoid misinterpretation once more
we note that

A(σ, ν, w)f(g) =

∫

Nw

f(w−1ng)dn,

where Nw = N0 ∩ w−1Nw.

Definition 2.1. Plancherel measures µ(σ, ν, w) are defined as follows

A(σ, ν, w)A(w(σ), w(ν), w−1 ) = µ(σ, ν, w)−1γ2
w(G/P )

where

γ2
w(G/P ) =

∫

Nw

q〈2ρP ,HP (n)〉dn.

Here ρP is half the sum of the positive roots in Nθ.

When w is the longest element in the corresponding Weyl group we ex-
clude it from the notation. We shall denote by µα(σ, ν) the Plancherel measure

corresponding to the representation IndMα

P∗

θ
(σ ⊗ q〈ν,HP∗

θ
()〉
). Root α is in the

set of roots in Pθ corresponding to Aθ. Group Mα is the Levi subgroup of
G centralizing torus Aθ∪{α} and P ∗

θ = Mα ∩ Pθ is the maximal parabolic
subgroup of Mα. Let us denote ∆

′ = {α ∈ Φ(Pθ, Aθ) : µα(σ) = 0}.
Definition 2.2. R-group of the representation σ ∈ E2(Mθ) is

Rσ = {w ∈W (σ) : w(∆′) > 0}.
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We observe that w is an element of Rσ if and only if w(∆
′) = ∆′. In the

sequel, if the representation σ is fixed, we write Rσ = R.

Theorem 2.3 (Harish-Chandra). We have

dim C(σ) = |Rσ |.
The following holds

R(r1r2, σ) = ησ(r1, r2)R(r1, σ)R(r2, σ), ∀r1, r2 ∈ Rσ,

where ησ(r1, r2) = Tr1r2T
−1
r2
T−1

r1
is a non-zero complex number, and the above

operators have appropriate domains. It is easy to see that ησ is a 2-cocycle for
Rσ with values in C∗, so we can form the finite central extension ([2]) where
ησ splits, i.e. we have short exact sequence

1→ Zσ → R̃σ → Rσ → 1,

for certain group R̃σ . Then, we have bijective correspondence between certain
class of the irreducible representations of R̃σ and the irreducible components
of IndG

Pθ
(σ). During the calculations, one can assume that in the Levi sub-

groups, all the GL- blocks of the same size are grouped together. This is pos-
sible because each parabolic subgroup has associate parabolic subgroup with
such structure, and associate parabolic subgroups have equal corresponding
Plancherel measures.

3. Weyl groups and R groups

In this section we compute relative Weyl groups which we need for the
calculation of R-groups. We adopt the settings from [6]. Let M =Mθ be the
standard F-Levi subgroup of Gn(D). We assume thatM is composed from the
GL-blocks which are arranged in the following way. Let θ = θ1∪θ2∪· · ·∪θk be
the decomposition of θ ⊂ ∆ into disjoint union of the connected components
of the Dynkin diagram. First consider the case when αn /∈ θ. We assume that
there are no gaps between the components of θ and that α1 ∈ θ. Further, let

X1 = {θ11, θ12, . . . , θ1n1},
X2 = {θ21, θ22, . . . , θ2n2},

...

Xr = {θr1, θr2, . . . , θrnr},
where each Xi assembles components of the same length. If we put mi =
|θi1 + 1|, then let b =

∑r
i=1mini and nr+1 = n − b. With this notation we

have

(3.1) Mθ(F ) ∼= GL(m1, D)
n1 × GL(m2, D)

n2 × · · · ×
×GL(mr, D)

nr ×GL(1, D)nr+1 ,
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where all the blocks are arranged in above strict order.
In the case when αn ∈ θ we assume αn ∈ θk. Let mi = |θi1 + 1| for

i = 1, 2, . . . , r−1 andm = |θk|. We set b′ =
∑r−1

i=1 mini and nr+1 = n−m−b′.
Then

(3.2) Mθ(F ) ∼= GL(m1, D)
n1 × GL(m2, D)

n2 × · · · ×
×GL(mr−1, D)

nr−1 ×GL(1, D)nr+1 × Gm(D).

We can make the above assumptions because of the remark given in the pre-
liminaries: in the calculation of R-groups we can reduce the case of the
arbitrary standard Levi subgroup to the case of one given above. Now,
with G = Gn(D) let us compute relative Weyl groups W (G/Aθ) = Wθ =
NG(Aθ)/Mθ. Because NG(Aθ)/Mθ is a subgroup of NG(A0)/Mθ ∩NG(A0) '
W0/(Mθ ∩ NG(A0))/M0 we can take for the representatives of Wθ elements
of Weyl group W0 modulo certain subgroup (in fact, modulo Weyl group of
system Φ(Mθ, A0)).

We know that the Weyl group of the root system Cn isW0
∼= SnnZn

2 . We
can interpret Sn as the group of permutations on the set of diagonal entries
{λi} of the torus A0(F ). Zn

2 acts in such a way that if we denote by ci the
nontrivial element in the i–th copy of Z2, then ci sends λi 7→ λ−1

i , hence it is

called the sign change. Indeed, it is of no importance that the group G(F ) is
not even quasi-split: it easy to see that every member of the Weyl group of
Sp(2n, F ) ⊂ Gn(D), appropriately embedded in G(F ) normalizes A0 modulo
M0, and, vice versa, that every element of NG(A0) comes from Weyl group
of Sp(2n, F ) modulo M0.

Analogously, we have the same situation with the relative Weyl groups.

Proposition 3.1. (a) If αn /∈ θ, we have

Wθ
∼= (

r+1∏

i=1

Sni)n Z
n1+···+nr+1

2

(b) If αn ∈ θ, we have

W ∼=
∏

i 6=r

(Sni n Z
ni
2 )

Proof. The claim is obvious if we keep in mind the structure of Levi
subgroups. In other words, relative Weyl group Wθ acts as permutation of
blocks of the same size and sign change on the blocks inside the torus Aθ.

Because we are interested in the representations of the groups of F -rational
points of the reductive algebraic groups, from now on, to simplify notation,
we will denote by Mθ the group previously denoted by Mθ(F ).
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Definition 3.2. Let Pθ = MθNθ be the standard parabolic subgroup of
Gn(D). If Mθ

∼= GL(m1, D)
n1 or Mθ

∼= GL(m1, D)
n1× Gk(D), the parabolic

subgroup Pθ is called basic.

3.1. Keeping in mind 3.1 and 3.2 we want to express the relative Weyl group
Wθ in terms of the relative Weyl groups of the basic parabolic subgroups.
We are keeping our usual assumption, i.e. there are no gaps between the
components of θ and they are arranged in such a way that the components
of the same length are grouped together. If αn /∈ θ suppose Mθ is of the
form (3.1). For i = 1, . . . , r + 1 (where nr+1 ≥ 0) we define a group Gi as
Gi = Gmini(D). Then the group Gi has a basic parabolic subgroup Pi with
Levi subgroupMi

∼= GL(mi, D)
ni . If we denote by Ai the split component of

Mi from (3.1) follows

Lemma 3.3. If αn /∈ θ then

Wθ
∼=
∏

W (Gi/Ai).

It is useful to realize the tori Ai as subgroups of the torus Aθ and the
groups Mi as subgroups of the group Mθ. Now, we follow [6]. If Xi =
{θi1, θi2, . . . , θini} then Xi (as set of roots) has cardinality (mi−1)ni. Denote
by Θi, i ∈ {1, 2, . . . , r} the (unique) subroot system of Φ(G,A0) of the type
Cmini containing Xi. Basis ∆i of Θi is obtained by joining to Xi intermediate
roots and one long root (i.e. εm1 − εm1+1, . . . εm1(n1−1) − εm1(n1−1)+1 and
2εm1n1 for X1). Also, let Θr+1 = {α ∈ Φ(G,A0) : (α, β) = 0, ∀β ∈ θ}. Now,
the torus Ai in Gi is the split torus which corresponds to set of roots Xi, i.e.
Ai = AXi and then let Pi = PXi in Gi.

Let us turn our attention to the representations again. If σ ∈ E2(Mθ) then
σ ∼= σ1⊗σ2⊗ · · · ⊗σr+1 where σi ∈ E2(Mi). As before, let Wi(σi) denote the

stabilizer of σi in W (Gi/Ai). We consider representations Ind
Gi

Pi
(σi). Then,

from the fact that Mθ
∼=
∏r+1

i=1 Mi and from Lemma 3.3 the content of the
following lema is straightforward

Lemma 3.4. If αn /∈ θ then

W (σ) ∼=
r+1∏

i=1

Wi(σi).

In the following lemmas, we relate the subset ∆′ from the definition of
the R group to the analogous subsets ∆′

i which correspond to Levi subgroups.

Lemma 3.5. If αn /∈ θ then, with the above notation, we have:

if α /∈
⋃
Θi then α|Aθ

/∈ ∆′.

Proof. The roots of the form α = ±2εl for some l ∈ {1, 2 . . . , n} are
necessarily in some Θi, i ∈ {1, 2 . . . , r + 1} by the construction: they are
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the roots added Xi to form Θi, i ∈ {1, 2 . . . , r}, or they are in Θr+1. So, for
α /∈ ⋃Θi we can suppose that α = εj±εk for some j, k, that is, α is a shorter
root. Because α /∈ ⋃Θi there exist l and s, l 6= s such that εj − εj+1 ∈ ∆l

and εk− εk+1 ∈ ∆s. Then, from the Figure 1 that presents a case α = εj− εk

and Figure 2 that presents a case α = εj + εk it is easy to see that

Mα
∼=
∏

f 6=l,s

Mf ×GL(ml, D)
nl−1 ×GL(ms, D)

ns−1 ×GL(ml +ms, D).

Consider now the representation IndMα

P∗

α
(σ), where P ∗

α is a maximal parabolic

subgroup in Mα obtained as Mα ∩ Pθ. Then

(3.3) IndMα

P∗

α
(σ) ∼=

⊗

f 6=l,s

σf ⊗
⊗

p6=p0

σl,p ⊗
⊗

t6=t0

σs,t⊗

Ind
GL(ml+ms,D)
GL(ml,D)×GL(ms,D)(σl,p0 ⊗ σs,t0),

where

σl
∼=

nl⊗

p=1

σl,p and σs
∼=

ns⊗

t=1

σs,t,

and εj − εj+1 is between θl,p0 and θl,p0+1 in Xl and analogously εk − εk+1 in
Xs. BecauseMθ is maximal in Mα, for µα(σ) = 0 to be fulfilled i.e. α ∈ ∆′ it
is necessary and sufficient that the representation σ ramifies in Mα and that
the induced representation is irreducible [7]. Now, for the ramification of σ in
Mα it is necessary that ml = ms but this is not the case.

On the figures we denote Bij = Jmi(A
−1
ij )

∗Jmi .

Figure 1:
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Figure 2:

From Lemma 3.5 follows that we can restrict our attention to each Θi in
order to determine ∆′. So, let α ∈ Θi. We can consider α as an element of
Φ(Pi, Ai) and as an element of Φ(Pθ, Aθ). Let us denote Ai,α = (Ai ∩Kerα)◦,
Mi,α = ZGi(Ai,α) and P

∗
i,α = Pi∩Mi,α. Let µα(σi) be the Plancherel measure

associated with the representation Ind
Mi,α

P∗

i,α
(σi). Then the following lemma

holds.

Lemma 3.6. If αn /∈ θ then for i ∈ {1, 2, . . . r + 1} and α ∈ Θi we have

(i)

Mα
∼=

r+1∏

k 6=i

Mk ×Mi,α,

(ii)

P ∗
α
∼=

r+1∏

k 6=i

Mk × P ∗
i,α,

(iii)

W (Mα/Aθ) =W (Mi,α/Ai),

(iv)

IndMα

P∗

α
(σ) ∼= σ1 ⊗ · · · ⊗ σi−1 ⊗ (IndMi,α

P∗

i,α
(σi))⊗ · · · ⊗ σr+1.

Proof. When α is shorter root (i) and (ii) follow immediately from Fig-
ure 1 and Figure 2 but with the constraint that everything is happening in
the square corresponding to Xi. If α = ±2εl then the torus Ai,α has a mi
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block consisting of all 1’s, so

Mi,α
∼= GL(mi, D)

ni−1 × Gmi(D),

and

Mα
∼=

r+1∏

j 6=i

Mj ×GL(mi, D)
ni−1 × Gmi(D),

so (i) and (ii) follow in this case too. Claims (iii) and (iv) are now straight-
forward.

We can now finally attach R-groups to Levi subgroups. As before, let

σ ∼=
⊗

i

σi ∈ E2(Mθ).

Let

∆′
i = {α ∈ Φ(Pi, Ai) : µα(σi) = 0} and Ri = {w ∈Wi(σi) : w(∆

′
i) = ∆

′
i}.

We have the following proposition

Proposition 3.7. If αn /∈ θ, let us denote by R the R-group of the repre-

sentation Ind
Gn(D)
Pθ

(σ) and by Ri the R-group associated to the representation

IndGi

Pi
(σi). Then we have

R = R1 × · · · ×Rr+1.

Proof. The proof is straightforward from the preceding lemmas.

Discussion in the case when αn ∈ θ is very similar, but with the following
difference: in the decomposition into the connected components of Dynkin
diagram now Xr has only one component θk which contains αn. Now, for
each i ∈ {1, 2, . . . , r−1} let Θi be the unique subroot system of type Cnimi+m

containing Xi ∪Xr. Hence, Mi
∼= GL(mi, D)

ni × Gm(D). Then, we have

Mθ
∼= M̃i · · · × M̃r−1 × Gm(D)

where Mi
∼= M̃i × Gm(D).

Now let σ ∼= σ1 ⊗ σ2 ⊗ · · · ⊗ σr−1 ⊗ σr+1 ⊗ ρ where ρ ∈ E2(Gm(D)) and

σi ∈ E2(M̃i). Analogously as before, we let Wi(σi) be the stabilizer of the
representation σi ⊗ ρ in Gi.

Proposition 3.8. If α ∈ θ then

(i)

W (σ) ∼=W1(σ1) × · · · × Wr−1(σr−1) ×Wr+1(σr+1),

(ii)
R = R1 ×R2 · · · ×Rr−1 × Rr+1.

So, we have reduced the calculation of R-groups to the case of basic
parabolic subgroups.
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4. R-groups for basic parabolic subgroups

4.1. First we present an observation of Muić and Savin ([11]) on representa-
tions that will occur.

Definition 4.1. Let π be an admissible representation of GL(n,D). Let
us define representation π∗ in the following way: π∗(g) = π((g∗)−1).

Lemma 4.2. π∗ ∼= π̃.

For computation of R-groups we must have some information about in-
duction from maximal parabolic subgroup. So, Levi subgroup of maximal
F -parabolic subgroup of Gn(D) is of the following form:


g

g′

Jk(g
−∗)Jk


 .

Here g ∈ GL(k,D) and g′ ∈ Gm(D) are such that m ≥ 0 and m+ k = n. As
we have seen, the only non-trivial element of the relative Weyl group acts as
a sign change, i.e

w



g

g′

Jk(g
−∗)Jk


w−1 =



g−∗

g′

JkgJk


 .

We conclude that σ ⊗ ρ ramifies in Gn(D) if and only if σ
∗ ∼= σ.

4.2. To calculate R-groups for basic parabolic subgroups we follow the argu-
ments of D.Keys [9] which prove that only possible elements in R-group are
sign changes. We have the following lemma

Lemma 4.3. Let w = sc be an element of the R-group of the representation

Ind
Gn(D)
Pθ

(σ), where Pθ is a basic parabolic subgroup, σ ∈ E2(Mθ) with s ∈ Sr

and c ∈ Zr
2. Then s = 1.

Proof. See [6], [9].

Lemma 4.4. Let M ∼= GL(m,D) ×GL(k,D) be Levi subgroup of the max-
imal standard parabolic P = MN in GL(m + k,D). Let σ1 ∈ E2(GL(m,D))
and σ2 ∈ E2(GL(k,D)). Then the representation Ind

GL(m+k,D)
P (σ1 ⊗ σ2) is

irreducible.

Proof. The proof of this lemma can be found in [5].

Now we can state our main proposition about R groups:

Proposition 4.5. Let Pθ be the basic parabolic subgroup of Gn(D) such
that Mθ

∼= GL(k,D)r × Gm(D), where m ≥ 0, and let σ = σ1 ⊗ · · ·σr ⊗ ρ ∈
E2(Mθ). Then R-group of the representation Ind

Gn(D)
Pθ

(σ) is isomorphic to

Zd
2, where d is number of inequivalent σi’s such that Ind(σi ⊗ ρ) is reducible.
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Proof. The proof of this proposition follows from the proof of the anal-
ogous result of Goldberg [6] in the split case combined with Lemma 4.4.

5. Multiplicity one

Finally, we prove that the cocycle relation mentioned in the preliminaries
is, in our case, in fact, trivial. As a result, there exists an algebra isomorphism
between the commuting algebra C(σ) of the representation IndG

P (σ) and group

algebra C[R]. Because R is abelian this means that IndG
P (σ) is multiplicity

one representation. Recall the operators Tw which realize the isomorphisms
between the representations w(σ) and σ. If V is the representation space of
the representation σ, then Tw : V → V and Tww(σ)(m) = σ(m)Tw holds.

Proposition 5.1. We can choose operators Tw in such a way that
Tw1w2 = Tw1Tw2 for all w1, w2 ∈ R.

Proof. Recall that the representation σ = σ1 ⊗ · · · ⊗ ρ is acting on the
space V = V1 ⊗ · · · ⊗ Vr+1 ⊗W . The representation σi is representation of
group Mi

∼= GL(mi, D)
ni on the representation space Vi1 ⊗ · · · ⊗ Vini . We

know from (3.7) and (3.8) that R = R1 × · · · × Rr+1. R is generated by
the certain number of sign changes, say cj1 , cj2 , . . . , cjd

, and each cjk
acts

on the corresponding GL- block of the Levi subgroup by sending g 7→ g−∗.
So, let operator Tcjk

act on the space Vjk
. The operator Tcjk

establishes
isomorphism between σij and σ

∗
ij
which acts on the same space. Because of

the fact that (σ∗
ij)

∗ = σij , follows that T
2
ij
is a scalar complex operator which

we can normalize in such a way that T 2
ij
= 1. Now we extend it trivially (as

identity) on the whole space V . It is easy to see that now these operators
commute, because they act nontrivially on the different components of V . We
conclude that the mapping cij 7→ Tcij

defines desired homomorphism.

We can state our main theorem:

Theorem 5.2. Let M ∼= GL(n1, D) × GL(n2, D) × · · · × GL(nk, D) ×
Gm(D) be Levi subgroup of the standard parabolic subgroup P of Gn(D) with
m ≥ 0. Let σ ∼= σ1 ⊗ σ2 ⊗ · · · ⊗ σk ⊗ ρ be discrete series representation of M .
Then

Ind
Gn(D)
P (σ) =

2d⊕

i=1

πi.

Here {πi, i = 1, . . . 2
d} form the set of mutually inequivalent irreducible tem-

pered representations of Gn(D), and d is number of mutually inequivalent σi

such that Ind
Gni+m(D)

GL(ni,D)×Gm(D)(σi ⊗ ρ) reduces.
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Remark 5.3. The question of the group G(F, ε) in the case ε = 1 resolves
in the same way. We can take the same maximal F -split torus as in the case
ε = −1, and we obtain the same type of the relative root system–that is, type
Cn. Then, Weyl group of the system is isomorphic to Sn n Zn

2 and for the
representatives of the Weyl group we can take elements of O(2n, F ) ⊂ G(F, 1)
embedded in G(F ). The Levi subgroups have virtually the same form, so the
rest of the calculation and the results are the same as in the case ε = −1.

Remark 5.4. The question of the reducibility of the induced representa-
tion now reduces to examining reducibility when inducing from the maximal
parabolic. In the Siegel case, we can calculate Plancherel measure µ(σ, s)
where σ is discrete series representation of maximal Levi subgroupM isomor-
phic to GL(n,D). Here s corresponds to the character |det|sF . We can do that
combining equality of Plancherel measures when σ is cuspidal representation
with corresponding measure on the split form, see ([11]), with the fact that σ

discrete series is subrepresentation of ν
k−1
2

ρ ρ × · · · × ν
−(k−1)

2
ρ ρ for some k ∈ N

and ρ cuspidal representation. For notation and reference see [12].
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