Disease Progression in Cases of Multiple Primary Melanoma

Marija Buljan1,3, Nada Tomić Sremec1, Josip Sremec1, Davor Tomas2,4, Iva Crnaric1, Mirna Šitum1,3

1Department of Dermatovenereology, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Ljudevit Jurak Department of Pathology, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3University of Zagreb, School of Dental Medicine, Zagreb, Croatia; 4University of Zagreb, School of Medicine, Zagreb, Croatia

Corresponding author:
Marija Buljan, MD, PhD
Department of Dermatology and Venereology
Sestre milosrdnice University Hospital Centre
Vinogradska 29
10000 Zagreb
Croatia
buljan.marija@gmail.com

Received: January 19, 2015
Accepted: October 15, 2015

INTRODUCTION

There have been a number of studies on the phenomenon of multiple primary melanomas (MPM), especially over the last decades. According to various studies, the risk of developing an additional primary tumor in patients who have already been diagnosed with primary melanoma ranges from 0.6% to 12.7% (1-9). Many aspects of MPM have been investigated, including their epidemiological and clinical properties, clinicopathologic differences between first and subsequent melanomas in people with MPM, as well as dermoscopic features of MPM (10-12). However, outcome and prognosis studies regarding MPM are rare.

An association has been found between MPM and other malignant diseases, leading to a proposition of common genetic or environmental factors (10). However, the most relevant findings in that study are the disease-free survival curves of MPM and single primary melanoma (SPM) patients, which did not differ significantly, and survival curves, which inexplicably favored patients with MPM (10). The latest multicenter study reported an increased risk of death with increasing tumor thickness in patients with SPM compared with patients with MPM (13). To unravel some more details about this fact, we analyzed individual melanoma cases in patients with both MPM and SPM.
and compared the frequency of disease progression between those two groups. The aim of this study was to determine whether the tumors in patients with MPM are less likely to metastasize than those in patients with SPM.

PATIENTS AND METHODS

In this study, we focused on melanoma cases per se, rather than on the number of patients with melanoma, as it provided us with an opportunity to assess the frequency of disease progression for each individual tumor. The cases of melanoma were taken from the database of the Croatian Referral Melanoma Centre (Department of Dermatovenereology, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia), and melanoma cases (of consecutively diagnosed patients) evidenced in the Referral Melanoma Centre during a 11-year-period (2002-2012) were analyzed. Histopathological data about tumors was obtained from the histopathological reports, and clinical data (age, sex, follow-up, and the occurrence of disease progression) was obtained from the department charts. The study was carried out in compliance with the Helsinki Declaration and approved by the institution's ethics committee.

After exclusion criteria (incomplete data, melanoma of unknown primary origin, primary melanoma of the eye, patients who received adjuvant therapy after the diagnosis of the first primary melanoma) were met, 1698 cases of melanoma remained, of which 164 (9.65%) appeared alongside other primary melanomas in 72 patients with MPM. To avoid early detection bias, we added to exclusion criteria the early stages of melanoma (melanoma in situ (MIS) and Breslow I tumors of <0.75 mm thickness) when they would have been unlikely to produce metastases. Most of the patients with MPM had 2 melanomas (56 patients, 77.77%). There were 10 (13.88%) patients with 3 MPM, 2 (2.77%) patients with 4 MPM, and 4 (5.54%) patients with 5 or more MPM. The highest number of primary tumors in one patient was 16.

Cases of melanoma were divided in two groups, with cases of melanoma in patients with multiple primaries in the first group, and single primary melanomas as controls in the second group. We compared the disease progression in cases of MPM with the cases in patients with SPM. The disease progression was defined by the detection of regional lymph node or distant cutaneous, subcutaneous or visceral metastases. The follow up protocol was the same for both groups, with the frequency of examinations (clinical examination, laboratory examinations, ultrasound of the regional lymph nodes and abdomen, chest X-ray, and CT or PET/CT scans) depending on the primary tumor thickness/the thickest primary melanoma thickness and stage of the disease. The mean follow up of this cohort was 58.16 months, and the median follow-up was 60 months. The shortest follow-up was 6 months, and the longest follow-up was 194 months.

Statistical analysis

Differences in the frequency of disease progression in both case and control groups (MPM and SPM) were assessed using the χ² test. The underlying characteristics of both the case and control group and the differences between categorical variables were analyzed using the Student t-test. The level of significance was set at P<0.05 in all cases. All analyses were performed with MedCalc for Windows, version 11.3 (www.medcalc.be).

RESULTS

The clinicopathologic data of all patients with MPM and SPM are shown in Table 1. Analysis of all melanoma cases (N=1698) showed that there was no significant difference in tumor thickness (P=0.188) and follow-up period (P=0.501) between MPM and SPM. A significant difference was noticed in the age of patients with melanoma, with patients with MPM being older than those with SPM (P=0.028) (Table 1).

The mean tumor thickness of the first melanoma

| Table 1. Clinicopathologic characteristics of all patients with multiple primary melanomas (MPM) and single primary melanoma (SPM) (N=1698) |
|---|---|---|
| Cases (MPM) | Controls (SPM) | P-value |
| Number of cases | 164 | 1534 |
| Patient age mean (years) | 58.08 ± 14.79 | 54.42±15.29 | 0.028 |
| Women/Men | 25 (34.72%)/47(65.28%) | 837 (54.56%)/697 (45.44%) | 0.001 |
| Thickness mean (mm) | 1.87 ± 3.82 | 2.22±2.79 | 0.188 |
| Number of disseminated melanomas | 5 (3.04%) | 189 (12.32%) | 0.001 |
| Follow-up mean (months) | 59.53 | 56.80 | 0.501 |
diagnosed in the MPM group was 2.68±5.29 mm, whereas the mean tumor thickness in the SPM group was 2.22±2.79 mm, \(P=0.521\). The mean tumor thickness of all subsequently diagnosed melanomas in the MPM group was 1.29 mm.

Furthermore, the analysis of all melanoma cases in the study (N=1698) showed that in the control group (SPM) disease progression occurred in 189 out of 1534 cases (12.32%), whereas in the case group (MPM), disease progression occurred in 5 out of 164 cases (3.04%). The difference in the occurrence of disease progression between these two groups was statistically significant (\(P<0.0001\)) (Table 1).

To avoid early detection bias, we added to exclusion criteria the early stages of melanoma (melanoma in situ (MIS) and Breslow I tumors) when they would have been unlikely to produce metastases. After the exclusion of all MIS and Breslow I tumours, 75 melanoma cases in the case group and 963 cases in the control group remained (Table 2).

After exclusion of all MIS and Breslow I melanomas, the results also showed no significant difference in tumor thickness (\(P=0.776\)) and follow-up period (\(P=0.882\)) between MPM and SPM, as well as no significant difference in the age of patients (\(P=0.077\)) (Table 2). In addition, disease progression in the control group (SPM) occurred in 189 out of 963 cases (19.62%), whereas in the case group (MPM), disease progression occurred in 5 out of 75 cases (6.67%). The difference in the occurrence of disease progression between these two groups was still statistically significant (\(P<0.001\)) (Table 2).

The difference in the occurrence of MPM according to gender distribution was statistically significant before and after excluding early stage melanomas (\(P=0.001\) and \(P=0.012\), respectively), with MPM occurring significantly more often in male than in female patients (Table 1, Table 2).

DISCUSSION

Patients who have already been diagnosed with one primary melanoma have a substantially increased risk of developing further primary melanomas, ranging from 0.6% to 12.7% in different studies (1,3,4,8,10,14,15). The most important risk factors associated with the development of MPM seem to be positive family history of melanoma and the presence of atypical nevi (7,16-18). Generally, people with numerous atypical moles and a family or personal history of melanoma are at the greatest risk for developing cutaneous melanoma. Patients from this population tend to develop melanoma approximately 10 years earlier than the general population and have an increased risk for developing MPM (19). It has been shown that the risk of subsequent melanoma is the highest within the first two years after the first melanoma being diagnosed (8,10).

Even though the occurrence of MPM is a well-documented phenomenon, studies on the prognostic implications in such patients are rare (13,20). Only a few studies exist analyzing a large number of cases, all of which observed that patients with MPM have the same, or even better prognosis compared to their SPM counterparts (10,13). This has always been very confounding, as it would be reasonable to expect that two independent malignant diseases would be more prone to progression and poor outcome than a single one. This was attributed mainly to the assumption that, after being diagnosed with the first primary melanoma, patients remain under regular dermatological follow-up and self-examination, and generally behave more photoprotectively. Therefore, subsequent melanomas in such patients would be discovered at early stage of the disease, when chances for disease progression would be accordingly smaller (21-23).

In the current study, we analyzed the frequency of disease progression (defined by the detection of regional lymph nodes or distant cutaneous, subcutaneous, or visceral metastases) in a large, relatively homologous cohort of MPM and SPM specimens with defined histological features, clinical data, and follow up.

In our research, we tried to circumvent the potential bias of early melanoma detection by exclude-
ing all the melanoma cases in early stages, leaving melanoma cases of similar mean thickness and Breslow stage in both the case (MPM) and control (SPM) groups. Additionally, we focused on melanoma cases per se rather than on the number of patients with melanoma, as it provided us with an opportunity to assess the frequency of propagation for each individual tumor. This enabled us to investigate the curious finding that there is no difference in disease-free survival between patients with a single malignant tumor and those with two or more. Clearly, this is surprising, as every subsequent tumor that the patient acquires should deteriorate the chance of long-term disease-free survival. The results of our study suggest that melanomas which occur in people with MPM metastasize statistically significantly less frequently than tumors in people with SPM.

The latest multicenter study which explored survival in a large population-based sample of patients with SPM and MPM of any stage reported an increased risk of death with increasing tumor thickness (which was the main determinant of fatality in the analysis) which was higher in patients with SPM than in patients with MPM (13). Although overall fatalities due to SPM and MPM were similar, relative fatality for thicker SPM was greater than for thicker MPM. This finding may indicate that the difference in the outcome between patients with SPM and MPM might be related to factors other than closer surveillance and earlier diagnosis (13). However, in our study, no statistically significant difference in tumor thickness between SPM and MPM cases was found (which could have influenced the difference in the occurrence of metastases), however, the incidence of disease progression was significantly higher in the cases of SPM than in MPM. On the other hand, other clinicopathologic parameters, such as anatomical localization of the primary tumors, mitotic rate, and ulceration were not included in the current study and might play a role in the differences seen between the analyzed groups.

Additionally, the results of our study showed that MPM cases occur significantly more often in male than in female patients. This was not deemed a potential source of bias when assessing the differences in disease progression, as male sex was found to be a risk factor leading to worse outcome of the disease (20), and in our research we saw a tendency towards better outcomes in the group with a higher percentage of male patients. It is also uncertain why there would be a higher occurrence of MPM in male patients, and other studies have not duplicated this finding (10,11). It is unlikely that this is a result of higher disease awareness in females or better follow-up after first melanoma, as this has no effect on the development of the next melanoma, influencing rather its discovery in the early stage. It is possible that the significant difference in gender distribution of MPM frequency is a result of better sun protection and self-examinations in female patients after being diagnosed with their first melanoma.

CONCLUSION

The reason as to why two tumors, otherwise considered to be equally aggressive, would behave differently in people that have only one of them than in people with two or more tumors of the same type, is uncertain. Possibly, the genetic error in the cascade that leads to melanoma development is different, in one variety leading to one more malignant tumor and to multiple less aggressive tumors in another. Another explanation might be that the immune system learns from the first melanoma, which enables it to react more efficiently to the next one. A possibility has been suggested that patients with rapidly progressing single primary melanoma die before they have had enough time to develop subsequent melanomas, skewing the statistics towards poor outcome in SPM (10). Either way, further research is needed to clarify this intriguing prognostic finding in patients with MPM, as well as the fact that MPM seems to be occurring more often in male than in female patients.

References:

Buljan et al.
Disease progression in multiple primary melanoma