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LOEWNER CHAINS AND PARAMETRIC

REPRESENTATION OF BIHOLOMORPHIC MAPPINGS IN

COMPLEX BANACH SPACES

Hidetaka Hamada∗ and Gabriela Kohr

Kyushu Kyoritsu University, Japan and Babeş-Bolyai University, Romania

Abstract. Let X be a complex Banach space and let B be the unit
ball of X. In this paper we obtain sufficient conditions for biholomorphic
mappings on B to have parametric representation. Also we study certain
properties of Loewner chains, and we obtain infinite dimensional versions
of some well known univalence criteria on the unit ball of Cn.

1. Introduction and preliminaries

Let X be a complex Banach space with respect to a norm ‖ · ‖. Let
Br = {z ∈ X : ‖z‖ < r} and B = B1. When X = C, Br is denoted by Ur

and B1 by U . If G ⊂ X is a domain, let H(G) be the set of holomorphic
mappings from G into X . If f ∈ H(B), we say that f is biholomorphic on B
if f(B) is a domain and the inverse exists and is holomorphic on f(B).

A mapping v ∈ H(B) is called a Schwarz mapping if v(0) = 0 and
‖v(z)‖ < 1, z ∈ B.

Let L(X,Y ) denote the set of continuous linear operators from X into
another complex Banach space Y . Let I be the identity in L(X,X). For each
z ∈ X \ {0} let

T (z) = {lz ∈ L(X,C) : lz(z) = ‖z‖, ‖lz‖ = 1}.
This set is nonempty by the Hahn-Banach theorem.
If f ∈ H(B), we say that f is normalized if f(0) = 0 and Df(0) = I .
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Definition 1.1. Let f : B × [0,∞) → X be a mapping. We say that
f(z, t) is a Loewner chain if the following conditions hold:

(i) f(·, t) is univalent on B, f(0, t) = 0 and Df(0, t) = a(t)I, t ≥ 0, where
a(·) is a continuous function on [0,∞) such that a(t) 6= 0, t ≥ 0, |a(·)|
is strictly increasing on [0,∞), and a(t)→∞ as t→∞;

(ii) there exists a univalent Schwarz mapping v = v(z, s, t) (called the tran-
sition mapping associated to f(z, t)) such that f(z, s) = f(v(z, s, t), t)
for z ∈ B and 0 ≤ s ≤ t <∞.

Note that the transition mapping v = v(z, s, t) satisfies the condition
Dv(0, s, t) = a(s)/a(t)I for t ≥ s ≥ 0, since Df(0, t) = a(t)I and a(t) 6= 0 for
t ≥ 0.

If f(z, t) is a Loewner chain such that f(0, t) = 0 and Df(0, t) = etI for
t ≥ 0, we say that f(z, t) is a normalized Loewner chain.

A key role in our discussion is played by the sets

N = {p ∈ H(B) : p(0) = 0, Re [lz(p(z))] > 0, z ∈ B \ {0}, lz ∈ T (z)}
and

M = {p ∈ N : Dp(0) = I}.
Recently in [Ha-Ko2] we have proved the following useful result:

Lemma 1.2. Let p ∈ M. Then for each r ∈ (0, 1) there exists M =
M(r) > 0 (which is independent of p) such that ‖p(z)‖ ≤M , ‖z‖ ≤ r.

This result leads to improvements in the existence theorem for the
Loewner differential equation (see [Pf, Theorem 2.1], [Por2] and [Gr-Ha-Ko]).

The definition below generalizes the notion of close-to-starlikeness due
to Pfaltzgraff and Suffridge [Pf-Su1] to infinite dimensions. To this end, we
recall that if f : B → X is a holomorphic mapping such that f(0) = 0, then
f is called starlike if f is biholomorphic and f(B) is a starlike domain with
respect to zero.

Definition 1.3. Let f : B → X be a normalized holomorphic mapping.
Also let g : B → X be a normalized starlike mapping. We say that f is
close-to-starlike with respect to g if

(1.1) f(z, t) = f(z) + (et − 1)g(z), z ∈ B, t ≥ 0,
is a Loewner chain such that f(·, t) is biholomorphic on B for each t ≥ 0.

Hence, if f is close-to-starlike, then f is biholomorphic on B. Using an
argument similar to the proof of [Pf-Su1, Theorem 2] (see also [Gr-Ha-Ko,
Theorem 1.10]), based on the fact that f(·, t) is biholomorphic on B for t ≥ 0,
we can show that if f is close-to-starlike on B with respect to a starlike
mapping g, then there is a map h = h(z, t) such that h(·, t) ∈M and

etg(z) = Df(z, t)h(z, t), z ∈ B, t ≥ 0.
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Letting t = 0 in the above equation, we obtain

(1.2) Re [lz([Df(z)]
−1g(z))] > 0, z ∈ B \ {0}, lz ∈ T (z).

We remark that Pfaltzgraff and Suffridge [Pf-Su1] in their original paper
used the above relation to define the notion of close-to-starlikeness in finite di-
mensional Banach spaces. They showed that the inequality (1.2) is equivalent
to the fact that f(z, t) given by (1.1) is a Loewner chain. It would be interest-
ing to see if the above relation is also sufficient to assure close-to-starlikeness
in the case of infinite dimensional Banach spaces.

Definition 1.4. Let f : B → X be a normalized locally biholomorphic
mapping and let α ∈ (−π/2, π/2). We say that f is spirallike of type α if
e−iα[Df(z)]−1f(z) ∈ N .

We showed in the finite dimensional case that f is spirallike of type α if
and only if f is biholomorphic on B and each spiral exp(−e−iαt)f(z) (t ≥ 0)
is contained in f(B) (see [Ha-Ko1]).

In this paper we shall give an alternative characterization of spirallikeness
of type α in terms of Loewner chains, and we shall obtain sufficient conditions
for biholomorphic mappings on B to have parametric representation. Also we
study certain properties of Loewner chains, and we obtain infinite dimensional
versions of some well-known univalence criteria on the unit ball of Cn. To this
end, we use the following results. For the proof of Lemma 1.5 it suffices to
combine the proofs of [Por2, Lemma, Theorems 2, 3, 5 and Corollary 2],
Lemma 1.2 and [Por3, Lemma 4.5] (cf. [Pf, Theorem 2.1]). Note that Poreda
initially required the condition ‖h(z, t)‖ ≤M(r) for ‖z‖ ≤ r and t ≥ 0, where
M = M(r) is a positive constant. This condition is now clearly satisfied in
view of Lemma 1.2.

Lemma 1.5. Let h : B × [0,∞)→ X satisfy the following assumptions:

(i) h(·, t) ∈M for t ≥ 0;
(ii) h is continuous on B × [0,∞).

Then for each s ≥ 0 and z ∈ B, the initial value problem

(1.3)
∂v

∂t
= −h(v, t), t ≥ s, v(s) = z,

has a unique solution v(t) = v(z, s, t) such that for fixed s, t, v(·, s, t) is a
univalent Schwarz mapping such that Dv(0, s, t) = es−tI. Also for each z ∈ B
and s ≥ 0, there exists the limit

lim
t→∞

etv(z, s, t) = f(z, s)

which is a holomorphic and univalent mapping on B such that Df(0, s) = esI
and f(z, s) = f(v(z, s, t), t) for z ∈ B and 0 ≤ s ≤ t <∞. Hence f(z, t) is a
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normalized Loewner chain, which satisfies the growth result

(1.4)
et‖z‖

(1 + ‖z‖)2 ≤ ‖f(z, t)‖ ≤
et‖z‖

(1− ‖z‖)2 , z ∈ B, t ≥ 0.

Moreover, if f(z, ·) is differentiable on [0,∞) for each z ∈ B, then

∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ B, t ≥ 0.

The next result is due to Poreda [Por2, Theorem 6] and is a generalization
to infinite dimensional Banach spaces of [Pf, Theorems 2.2 and 2.3] (in the
case X = C, compare with [Po, Theorem 6.2]).

Lemma 1.6. Let f : B × [0,∞) → X be a continuous mapping such that
f(·, t) is holomorphic on B, f(0, t) = 0, Df(0, t) = etI for t ≥ 0, and f(z, ·) is
differentiable on [0,∞) for each z ∈ B. Also assume that there exist r ∈ (0, 1),
t0 > 0 and M > 0 such that ‖f(z, t)‖ ≤Met for ‖z‖ < r and t > t0. Further,
suppose that there exists a mapping h = h(z, t) which satisfies the assumptions
(i) and (ii) of Lemma 1.5, such that

∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ B, t ≥ 0.

Then f(z, t) is a Loewner chain and moreover, f(z, s) = lim
t→∞

etv(z, s, t) for

all z ∈ B and s ≥ 0, where v = v(z, s, t) is the unique solution of the initial
value problem (1.3).

We close this section with a result due to Poreda [Por2, Theorem 1], which
yields that under certain assumptions Loewner chains satisfy the Loewner
differential equation (for the finite dimensional case, see [Gr-Ha-Ko]).

Lemma 1.7. Let f = f(z, t) be a normalized Loewner chain and let v =
v(z, s, t) be the transition mapping associated to f(z, t). Assume there exist the
derivatives ∂f/∂t for t ≥ 0 and ∂v/∂t for t = s ≥ 0, which are holomorphic
on B. Then there exists a mapping h = h(z, t) such that h(·, t) ∈ M and

∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ B, t ≥ 0.

2. Main results

We begin this section with the following result, which is a generalization
to infinite dimensions of [Pf, Theorem 2.1] (compare with [Por2, Lemma] and
[Be, Lemma 1]).

Theorem 2.1. Let h : B× [0,∞)→ X satisfy the following assumptions:

(i) h(·, t) ∈ N , Dh(0, t) = c(t)I, where c : [0,∞) → C is a continuous
function such that

∫ ∞

0

Re c(t)dt =∞;
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(ii) h is continuous on B × [0,∞).
Then for each s ≥ 0 and z ∈ B, the initial value problem

(2.1)
∂v

∂t
= −h(v, t), t ≥ s, v(s) = z,

has a unique solution v(t) = v(z, s, t) such that for fixed s, t, v(·, s, t)
is a univalent Schwarz mapping, Dv(0, s, t) = a(s)/a(t)I, where a(t) =

exp

∫ t

0

c(τ)dτ .

Proof. First we mention that Re c(t) > 0 for each t ≥ 0 in view of

[Su, Lemma 3] and the fact that h(·, t) ∈ N . Let α(t) =
∫ t

0

Re c(τ)dτ and

β(t) =

∫ t

0

Im c(τ)dτ . Then

a(t) = eα(t)+iβ(t) for t ≥ 0.
Clearly a(·) ∈ C1([0,∞)), a(t) 6= 0, t ≥ 0, |a(t)| → ∞ as t→∞, and |a(·)| is
strictly increasing on [0,∞). Also let

z∗ = eiβ(t)z and t∗ = α(t), for z ∈ B and t ≥ 0.
Then t is a function of t∗ and ‖z∗‖ = ‖z‖ < 1, and since Re c(t) > 0 for t ≥ 0,
we deduce that α(t) ≥ 0. Also α(t) → ∞ as t → ∞ by the assumption (i).
Moreover, it is clear that α(·) is strictly increasing and continuous on [0,∞),
and thus α(·) : [0,∞)→ [0,∞) is one-to-one.

Now let h∗ : B × [0,∞)→ X be given by

h∗(z, t∗) =
1

Re c(t)
[eiβ(t)h(e−iβ(t)z, t)− iIm c(t)z].

Then h∗(·, t∗) ∈ H(B), h∗(0, t∗) = 0 and Dh∗(0, t∗) = I for t∗ ≥ 0. Moreover
h∗ is continuous on B × [0,∞), and

Re [lz(h
∗(z, t∗))] =

1

Re c(t)
Re [lz(e

iβ(t)h(ze−iβ(t), t))] =

=
1

Re c(t)
Re [lze−iβ(t)h(ze−iβ(t), t)] > 0, z ∈ B \ {0}, t ≥ 0,

where we have used the fact that lze−iβ(t) (·) = eiβ(t)lz(·) ∈ T (ze−iβ(t)) for
each z ∈ B \ {0} and t ≥ 0.

Hence in view of Lemma 1.5, we deduce that for each s∗ ≥ 0 and z∗ ∈ B,
the initial value problem

(2.2)
∂v∗

∂t∗
= −h∗(v∗, t∗), t∗ ≥ s∗, v∗(s∗) = z∗,

has a unique solution v∗(t∗) = v∗(z∗, s∗, t∗) = es∗−t∗z∗ + · · · such that for
fixed s∗ and t∗, v∗(·, s∗, t∗) is a univalent Schwarz mapping.



60 H. HAMADA AND G. KOHR

Further, let v(z, s, t) = e−iβ(t)v∗(eiβ(s)z, α(s), α(t)) for z ∈ B and
0 ≤ s ≤ t < ∞. Then v(·, s, t) ∈ H(B), v(0, s, t) = 0 and Dv(0, s, t) =
ei(β(s)−β(t))es∗−t∗I = a(s)/a(t)I . Moreover v(·, s, t) is univalent on B and

‖v(z, s, t)‖ < 1, t ≥ s ≥ 0, z ∈ B.
Therefore v(·, s, t) is a univalent Schwarz mapping, and short computa-

tions based on (2.2) yield the following relation

∂v

∂t
(z, s, t) = −h(v(z, s, t), t), t ≥ s, v(z, s, s) = z.

Hence v(t) = v(z, s, t) is a solution of the initial value problem (2.1).
Finally the uniqueness of solutions of the initial value problem (2.2) implies the
uniqueness of solutions to (2.1). Indeed, if u(t) = u(z, s, t) is another solution
of the initial value problem (2.1), then u∗(z, α(s), α(t)) = eiβ(t)u(e−iβ(s)z, s, t)
satisfies the initial value problem (2.2), and thus u∗ must be equal to v∗. Hence
u and v are equal too, and this completes the proof.

Next, we prove that the solution of (2.1) generates Loewner chains (cf.
[Por2, Theorems 2 and 3], [Por3, Lemma 4.5]; in the finite dimensional case
compare with [Ch-Re, Theorem 2.1] and [Be, Lemma 1]).

Theorem 2.2. Let h : B × [0,∞) → X satisfy the assumptions (i) and
(ii) of Theorem 2.1. Also let v(t) = v(z, s, t) be the solution of the initial
value problem (2.1). Then there exists the limit

(2.3) lim
t→∞

a(t)v(z, s, t) = f(z, s)

for all z ∈ B and s ≥ 0. The mapping f(·, s) is holomorphic and univalent
on B, f(0, s) = 0, Df(0, s) = a(s)I, s ≥ 0, and f(z, s) = f(v(z, s, t), t),
z ∈ B, t ≥ s ≥ 0. Consequently, f(z, t) is a Loewner chain. Moreover, f(·, s)
satisfies the growth result

(2.4)
|a(s)|‖z‖
(1 + ‖z‖)2 ≤ ‖f(z, s)‖ ≤

|a(s)|‖z‖
(1− ‖z‖)2 , z ∈ B, s ≥ 0.

Further, if f(z, ·) is differentiable on [0,∞) for each z ∈ B, then

(2.5)

∣∣∣∣
1

2
lw(D

2f(0, s)(w,w))

∣∣∣∣ ≤ 2|a(s)|, ‖w‖ = 1, lw ∈ T (w), s ≥ 0.

Proof. If h∗(z, t∗) and v∗(z, s∗, t∗) are the same mappings as in the proof
of Theorem 2.1, we deduce in view of Lemma 1.5 that the limit

(2.6) lim
t∗→∞

et∗v∗(z, s∗, t∗) = f∗(z, s
∗)

exists for each z ∈ B and s∗ ≥ 0, and f∗(z, t∗) is a normalized Loewner chain.
On the other hand, taking into account (1.4) we have

(2.7)
es∗‖z‖

(1 + ‖z‖)2 ≤ ‖f∗(z, s
∗)‖ ≤ es∗‖z‖

(1− ‖z‖)2 , z ∈ B, s∗ ≥ 0.
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Further, let f : B × [0,∞)→ X be given by

f(z, t) = f∗(e
iβ(t)z, α(t)) for z ∈ B, t ≥ 0,

where α(t) and β(t) are defined in the proof of Theorem 2.1. Then it is clear
that f(·, t) ∈ H(B), f(·, t) is univalent on B, f(0, t) = 0, Df(0, t) = a(t)I ,
t ≥ 0. On the other hand, if w = w(z, s, t) is given by

w(z, s, t) = e−iβ(t)v∗(eiβ(s)z, α(s), α(t)), z ∈ B, t ≥ s ≥ 0,
then w(·, s, t) is a univalent Schwarz mapping and f(z, s) = f(w(z, s, t), t) for
z ∈ B and t ≥ s ≥ 0. Therefore, f(z, t) is a Loewner chain. Moreover, as in
the proof of Theorem 2.1 we deduce that w(t) = w(z, s, t) satisfies the initial
value problem (2.1). Therefore, w(z, s, t) = v(z, s, t) for z ∈ B and t ≥ s ≥ 0.

On the other hand, the relation (2.6) yields that

lim
t→∞

a(t)v(z, s, t) = lim
t→∞

eα(t)v∗(eiβ(s)z, α(s), α(t))

= f∗(e
iβ(s)z, α(s)) = f(z, s).

Hence (2.3) holds.
Next, from (2.7) we deduce that

eα(s)‖z‖
(1 + ‖z‖)2 ≤ ‖f(e

−iβ(s)z, s)‖ ≤ eα(s)‖z‖
(1− ‖z‖)2 ,

and since |a(s)| = eα(s), s ≥ 0, we obtain (2.4), as desired.
We omit the proof of the relation (2.5), since it suffices to apply arguments

similar to those in the proof of [Por1, Theorem 3] or [Gr-Ha-Ko, Theorem
2.14].

According to Theorem 2.2 we are now able to introduce the following
definition (cf. [Por1], [Ko], [Gr-Ha-Ko]):

Definition 2.3. Let f : B → X be a normalized locally biholomorphic
mapping. We say that f has parametric representation if there is a mapping
h : B × [0,∞) → X, which satisfies the assumptions (i) and (ii) of Theorem
2.1, such that

lim
t→∞

a(t)v(z, t) = f(z), z ∈ B,

where v = v(z, t) is the unique solution of the initial value problem

∂v

∂t
= −h(v, t), t ≥ 0, v(z, 0) = z, z ∈ B.

Further, we say that f has normalized parametric representation if
a(t) = et for t ≥ 0 (cf. [Por1], [Ko], [Gr-Ha-Ko]). Taking into account The-
orem 2.2, we deduce that if f has parametric representation (not necessarily
normalized), then f is biholomorphic on B.
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Let S(B) be the set of normalized biholomorphic mappings on B and
S0(B) be the subset of S(B) consisting of those mappings which have para-
metric representation on B. Also let S1(B) be the subset of S(B) consisting
of those mappings which can be embedded in Loewner chains (i.e. f ∈ S1(B)
if f is normalized biholomorphic on B and there is a Loewner chain f(z, t)
such that f(z, 0) = f(z), z ∈ B). Then it is clear that S0(B) ⊆ S1(B) and
we shall show that S0(B) ⊂ S1(B) and respectively S0(B) ⊂ S(B) (cf. [Ko],
[Gr-Ha-Ko]).

In the next result we prove that solutions of the Loewner differential
equation give rise to Loewner chains (compare with [Por2, Theorem 6], [Pf,
Theorem 2.3]; cf. [Cu, Theorem 2] and [Ch-Re, Theorem 2.1] when X = Cn).

Theorem 2.4. Let f : B×[0,∞)→ X be a continuous mapping such that
f(·, t) ∈ H(B), f(0, t) = 0, Df(0, t) = a(t)I, t ≥ 0, where a(·) : [0,∞) → C
is a function of class C1 on [0,∞), a(t) 6= 0, t ≥ 0, |a(·)| is strictly increasing
on [0,∞) and a(t) → ∞ as t →∞. Also assume that f(z, ·) is differentiable
on [0,∞) for each z ∈ B, and there exist r ∈ (0, 1), t0 > 0, and M > 0 such
that

(2.8) ‖f(z, t)‖ ≤M |a(t)|, ‖z‖ ≤ r, t ≥ t0.
Further, assume that there exists a mapping h = h(z, t) = c(t)z + · · · ,

which satisfies the conditions (i) and (ii) of Theorem 2.1, where c(t) =
a′(t)/a(t), t ≥ 0, and that

(2.9)
∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ B, t ≥ 0.

Then f(z, t) is a Loewner chain which satisfies the relation (2.3). Hence, if
f(z) = f(z, 0) is locally biholomorphic on B then f has parametric represen-
tation.

Proof. Let

t∗ = log

∣∣∣∣
a(t)

a(0)

∣∣∣∣ and θ(t) = arg

[
a(t)

a(0)

]
, t ≥ 0.

Also let

f∗(z, t
∗) =

1

a(0)
f(ze−iθ(t), t).

Then f∗(·, t∗) ∈ H(B), f∗(0, t
∗) = 0 and Df∗(0, t

∗) = et∗I for t∗ ≥ 0.
Also it is clear that f∗(z, ·) is differentiable on [0,∞) for each z ∈ B, and f∗
is continuous on B × [0,∞).

Obviously,

dt∗

dt
= Re

[
a′(t)

a(t)

]
and

dθ

dt
(t) = Im

[
a′(t)

a(t)

]
, t ≥ 0.
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Taking into account these relations and (2.9), we easily obtain

∂f∗
∂t∗

(z, t∗) = Df∗(z, t
∗)h∗(z, t

∗), z ∈ B, t∗ ≥ 0,

where

h∗(z, t
∗) =

1

Re

[
a′(t)

a(t)

]
{
eiθ(t)h(ze−iθ(t), t)− iIm

[
a′(t)

a(t)

]
z

}
.

As in the proof of Theorem 2.1 we deduce that h∗(·, t∗) ∈ H(B),
h∗(0, t

∗) = 0, Dh∗(0, t
∗) = I and Re [lz(h∗(z, t

∗))] > 0 for z ∈ B \ {0}
and t∗ ≥ 0. Since h(z, t) satisfies the assumption (ii) of Theorem 2.1 and a(·)
is of class C1 on [0,∞), we see that h∗ is continuous on B × [0,∞).

On the other hand, using the relation (2.8), we deduce that

‖f∗(z, t∗)‖ ≤Met∗ , ‖z‖ ≤ r, t∗ ≥ t∗0.
In view of Lemma 1.6 we conclude that f∗(z, t

∗) is a Loewner chain, and
for all z ∈ B and s ≥ 0, the limit
(2.10) lim

t∗→∞
et∗v∗(z, s

∗, t∗) = f∗(z, s
∗)

exists, where v∗(t
∗) = v∗(z, s

∗, t∗) is the unique solution of the initial value
problem

∂v∗
∂t∗

= −h∗(v∗, t∗), t∗ ≥ s∗, v∗(s∗) = z.

Using arguments similar to those in the proofs of Theorems 2.1 and 2.2,
we deduce that v(z, s, t) = e−iθ(t)v∗(ze

iθ(s), s∗, t∗) is the unique solution of
the initial value problem

∂v

∂t
= −h(v, t), t ≥ s, v(z, s, s) = z,

and further, f(z, s) = f(v(z, s, t), t) for z ∈ B and t ≥ s ≥ 0. Also since
f∗(·, t∗) is univalent on B, it follows that f(·, t) is also univalent on B. Finally,
in view of the relation (2.10), we conclude that the limit

lim
t→∞

a(t)v(z, s, t) = f(z, s)

exists for each z ∈ B and s ≥ 0. This completes the proof.
Remark 2.5. Let f be a normalized locally biholomorphic mapping. In

view of Theorem 2.2 and Definition 2.3 we deduce that if f has parametric
representation, then there is a Loewner chain f(z, t) such that f(z) = f(z, 0),
z ∈ B. This chain satisfies the following conditions: f(0, t) = 0, Df(0, t) =
a(t)I , t ≥ 0, where a(·) is a function of class C1 on [0,∞), a(0) = 1, |a(·)| is
strictly increasing on [0,∞), |a(t)| → ∞ as t → ∞, and for each r ∈ (0, 1)
there is a positive number M = M(r) > 0 such that ‖f(z, t)‖ ≤ M |a(t)| for
t ≥ 0 and ‖z‖ ≤ r.
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In the finite dimensional case, Graham, Hamada and Kohr [Gr-Ha-Ko,
Theorems 1.4 and 1.10] have recently proved that a normalized holomorphic
mapping f has normalized parametric representation if and only if there is a
normalized Loewner chain f(z, t) such that {e−tf(z, t)}t≥0 is a normal family
on B, f(z, ·) is locally Lipschitz continuous on [0,∞) locally uniformly with
respect to z ∈ B, and such that f(z) = f(z, 0), z ∈ B.

Taking into account Theorem 2.4 and Remark 2.5, we conjecture the
following result in infinite dimensions:

Conjecture 2.6. Let f : B → X be a normalized locally biholomorphic
mapping. Then f has parametric representation if and only if there is a
Loewner chain f(z, t) such that f(z) = f(z, 0), z ∈ B, and this chain satisfies
the following conditions:

(i) f(0, t) = 0, Df(0, t) = a(t)I, where a(·) is a function of class C1 on
[0,∞), a(0) = 1, |a(·)| is strictly increasing on [0,∞), and |a(t)| → ∞
as t→∞;

(ii) f(z, ·) is locally Lipschitz continuous on [0,∞) uniformly with respect
to z ∈ Br, r ∈ (0, 1);

(iii) there are r ∈ (0, 1), t0 > 0 and M > 0 such that

‖f(z, t)‖ ≤M |a(t)|, ‖z‖ ≤ r, t ≥ t0.

We conclude this section with some examples which show that in infinite
dimensions the following inclusion relations

S0(B) ⊆ S(B) and S0(B) ⊆ S1(B)

are strict (cf. [Gr-Ha-Ko]).

Example 2.7. Let X = `2 =
{
z = (z1, z2, . . . ) : ‖z‖2 =

∞∑

j=1

|zj |2 < ∞
}

and let f : B → X be given by

f(z) = (z1 + az
2
2 , z2, z3, . . . , zn, . . . ), z = (z1, z2, . . . , zn, . . . ) ∈ B,

where a ∈ C, |a| > 4
√
2. It is obvious that f ∈ S(B).

Let lz(w) =
1

‖z‖
∞∑

j=1

zjwj for z 6= 0 and w = (w1, w2, . . . ) ∈ X . Then

lz ∈ T (z) and a short computation yields that
∣∣∣∣
1

2
lz(D

2f(0)(z, z))

∣∣∣∣ = |a| · |z1z2
2 | =

|a|
2
√
2
> 2

for z = (r, r, 0, . . . , 0, . . . ) ∈ X and r = 1/
√
2. From (2.5) we deduce that

f 6∈ S0(B).
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Example 2.8. Again let X = `2 and consider the Loewner chain

f(z, t) =
( a(t)z1
(1− z1)2

,
a(t)z2
(1− z2)2

, . . .
)
, z = (z1, z2, . . . ) ∈ B, t ≥ 0,

where a(·) : [0,∞) → C is a function of class C1 such that a(0) = 1, |a(·)| is
strictly increasing on [0,∞) and a(t)→∞ as t→∞.

Also let A : X → X be a normalized biholomorphic mapping, not the
identity map, such that ‖A(z0)‖ > ‖z0‖ for some point z0 ∈ X . Such a map
always exists on `2 (otherwise, A should be the identity by [Fr-Ve, Theorem
2.3.9]) and after rotation with unitary transformations, we may assume that
there is ρ > 0 such that ‖A(ρ, 0, . . . )‖ > ρ. Next, choose r ∈ (0, 1) such that
r/(1− r)2 = ρ. It is not difficult to show that (A◦f)(z, t) is a Loewner chain,
thus A ◦ f ∈ S1(B), where f(z) = f(z, 0), z ∈ B. Moreover,

‖(A ◦ f)(r, 0, 0, . . . )‖ =

∥∥∥∥A
(

r

(1− r)2 , 0, . . .
)∥∥∥∥ = ‖A(ρ, 0, . . . )‖

> ρ =
r

(1− r)2 .

In view of the relation (2.4), we deduce that A ◦ f 6∈ S0(B).

3. Univalence criteria

In this section we shall assume that X is a complex Hilbert space with
inner product 〈·, ·〉 and B is the unit ball of X . We next apply the result
of Theorem 2.4 to obtain some univalence criteria on B. We begin with a
generalization to infinite dimensions of a result due to Brodskii [Br].

Theorem 3.1. Let c ∈ C, |c| < 1, and let f : B → X be a normalized
locally biholomorphic mapping such that

‖(1 + c)Df(z)− I‖ < 1, z ∈ B.
Then f has parametric representation on B, and thus is biholomorphic on B.

Proof. Let

f(z, t) = f(ze−t) +
(et − e−t)z

1 + c
, z ∈ B, t ≥ 0.

We prove that f(z, t) satisfies the assumptions of Theorem 2.4.
Clearly f(z, ·) is of class C∞ on [0,∞) for z ∈ B, f(·, t) ∈ H(B), f(0, t) =

0, Df(0, t) = a(t)I , where a(t) = (et + ce−t)/(1 + c) for t ≥ 0. Also it is easy
to see that |a(·)| is strictly increasing on [0,∞), a(t) → ∞ as t → ∞, and
since a(0) = 1 it follows that a(t) 6= 0, t ≥ 0.

Moreover, since f is continuous on B, it is bounded in a neighbourhood of
0, and thus there exist r ∈ (0, 1) andM =M(r) > 0 such that ‖f(ze−t)‖ ≤M
for ‖z‖ ≤ r and t ≥ 0. Since

et − e−t ≤ |et + ce−t|, t ≥ 0,



66 H. HAMADA AND G. KOHR

it is easy to see that there exists a positive number K = K(r) such that

‖f(z, t)‖ ≤ K|a(t)|, ‖z‖ ≤ r, t ≥ 0.
Indeed, since |a(t)| ≥ 1 for t ≥ 0, we deduce that

‖f(z, t)‖ ≤M |a(t)|+ et − e−t

|1 + c| r

≤M |a(t)|+ |a(t)|r = (M + r)|a(t)| = K|a(t)|, ‖z‖ ≤ r, t ≥ 0.
On the other hand, straightforward computations yield the following re-

lations

Df(z, t) =
et

1 + c
[I −E(z, t)]

and
∂f

∂t
(z, t) =

et

1 + c
[I +E(z, t)](z),

where

E(z, t) = e−2t[I − (1 + c)Df(ze−t)], z ∈ B, t ≥ 0.
Using the hypothesis, we see that ‖E(z, t)‖ < 1, z ∈ B, t ≥ 0, and hence

I −E(z, t) is an invertible linear operator.
Letting h(z, t) = [I − E(z, t)]−1[I + E(z, t)](z), we deduce that h(·, t) ∈

H(B), h(z, t) is continuous in (z, t) ∈ B × [0,∞), h(0, t) = 0, and
‖h(z, t)− z‖ = ‖E(z, t)[h(z, t) + z]‖ ≤ ‖E(z, t)‖ · ‖h(z, t) + z‖ <

< ‖h(z, t) + z‖, z ∈ B, t ∈ [0,∞).
Therefore ‖h(z, t) − z‖ < ‖h(z, t) + z‖ and this inequality implies that

Re 〈h(z, t), z〉 > 0 for z ∈ B \ {0}, t ≥ 0. Since Dh(0, t) = [(et −
ce−t)/(et + ce−t)]I , we deduce that c(t) = [(et − ce−t)/(et + ce−t)] is a con-
tinuous function on [0,∞) and it is obvious that c(t) = a′(t)/a(t) for t ≥ 0.
On the other hand, since

∫ ∞

0

Re c(t)dt =

∫ ∞

0

Re
a′(t)

a(t)
dt = lim

t→∞

∫ t

0

d

dτ
Re [log a(τ)]dτ

= lim
t→∞

log |a(t)| =∞,

we deduce that h(z, t) satisfies the assumptions of Theorem 2.1.
Further, using the above arguments, we conclude that f(z, t) satisfies the

differential equation

∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ B, t ∈ [0,∞).

Hence, in view of Theorem 2.4 we deduce that f(z, t) is a Loewner chain,
and for each s ≥ 0 and z ∈ B,

f(z, s) = lim
t→∞

a(t)v(z, s, t),
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where v(t) = v(z, s, t) is the solution of the initial value problem

∂v

∂t
= −h(v, t), t ≥ s, v(s) = z.

Therefore f(z) = f(z, 0) has parametric representation on B, and thus is
biholomorphic, as desired. This completes the proof.

We next obtain a generalization to infinite dimensional complex Hilbert
spaces of a result due to Ren and Ma [Re-Ma].

Theorem 3.2. Let f : B → X be a normalized locally biholomorphic
mapping and let c ∈ C, |c| < 1. Also let G : B → L(X,X) be a mapping such
that G(0) = I, G is holomorphic on B and G(z) is invertible for each z ∈ B.
Also assume the following conditions hold:

(i) ‖(1 + c)[G(z)]−1Df(z)− I‖ < 1, z ∈ B,
(ii) ‖ ‖z‖2{(1+c)[G(z)]−1Df(z)−I}+(1−‖z‖2)[G(z)]−1DG(z)(z, ·)‖ ≤ 1,

for all z ∈ B. Then f is biholomorphic on B and moreover, f has parametric
representation.

Proof. We only sketch some ideas of the proof, since it suffices to use
arguments similar to those in the proof of Theorem 3.1. To this end, it suffices
to consider the mapping

f(z, t) = f(ze−t) +
(et − e−t)G(ze−t)(z)

1 + c
, z ∈ B, t ≥ 0.

This mapping satisfies the assumptions of Theorem 2.4. Indeed, f(·, t) ∈
H(B), f(0, t) = 0, Df(0, t) = a(t)I , t ≥ 0, where a(t) = (et + ce−t)/(1 + c).
By the proof of Theorem 3.1, we obtain that |a(·)| is strictly increasing on
[0,∞), a(t) 6= 0, t ≥ 0, and |a(t)| → ∞ as t → ∞. On the other hand, it is
not difficult to deduce that f(z, t) satisfies the differential equation

∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ B, t ≥ 0,

where h(z, t) = [I −E(z, t)]−1[I +E(z, t)](z), and

E(z, t) = −e−2t{(1 + c)[G(ze−t)]−1Df(ze−t)− I}
−(1− e−2t)[G(ze−t)]−1DG(ze−t)(ze−t, ·),

for all z ∈ B and t ≥ 0. Using the condition (i), we see that
‖E(z, 0)‖ = ‖(1 + c)[G(z)]−1Df(z)− I‖ < 1, z ∈ B.

Also, using the condition (ii), we deduce for t > 0 that

sup
‖w‖=1

‖E(w, t)‖ = sup
‖w‖=1

∥∥∥ ‖we−t‖2{(1 + c)[G(we−t)]−1Df(we−t)− I}

+(1− ‖we−t‖2)[G(we−t)]−1DG(we−t)(we−t, ·)
∥∥∥ ≤ 1.
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Hence, in view of the maximum modulus theorem for holomorphic mappings
into complex Banach spaces (see [Hi-Ph]), we deduce that ‖E(z, t)‖ < 1 for
z ∈ B. Thus I − E(z, t) is an invertible linear operator for z ∈ B and t ≥ 0,
and h(z, t) is well defined and is holomorphic with respect to z ∈ B. On the
other hand, h(z, t) is continuous in (z, t) ∈ B × [0,∞), h(0, t) = 0 and

Dh(0, t) =
et − ce−t

et + ce−t
I, t ≥ 0.

Moreover, as in the proof of Theorem 3.1, we deduce that Re 〈h(z, t), z〉 >
0 for z ∈ B \ {0} and t ≥ 0. Therefore h(z, t) satisfies the assumptions of
Theorem 2.1. Finally, using the continuity of f and G near 0, and an argument
similar to that in the proof of Theorem 3.1, it is not difficult to deduce that
there exist some numbers r ∈ (0, 1) and K = K(r) > 0 such that

‖f(z, t)‖ ≤ K|a(t)|, ‖z‖ ≤ r, t ≥ 0.
Hence taking into account Theorem 2.4, we deduce that f(z, t) is a Loewner
chain, and since f(z) = f(z, 0) is locally biholomorphic on B, we conclude
that f has parametric representation, as desired. This completes the proof.

When G(z) = Df(z), z ∈ B, and c = 0 we obtain an infinite dimensional
version of [Pf, Theorem 2.4].

Corollary 3.3. Let f : B → X be a normalized locally biholomorphic
mapping such that

(1− ‖z‖2)‖[Df(z)]−1D2f(z)(z, ·)‖ ≤ 1, z ∈ B.
Then f has parametric representation on B, and thus is biholomorphic on B.

On the other hand, letting G(z) = Df(z), z ∈ B, and |c| < 1 in Theorem
3.2, we obtain an infinite dimensional version of a result obtained in [Ch-Re]
and [Cu].

Corollary 3.4. Let f : B → X be a normalized locally biholomorphic
mapping and c ∈ C such that |c| < 1. Assume that

‖c‖z‖2I + (1− ‖z‖2)[Df(z)]−1D2f(z)(z, ·)‖ ≤ 1, z ∈ B.
Then f has parametric representation on B, and thus is biholomorphic on B.

4. Spirallikeness of type α and close-to-starlikeness in Banach
spaces

In this section we show that spirallikeness of type α can be characterized
in terms of Loewner chains (cf. [Ha-Ko1, Theorem 3.1], [Pf-Su1]). We have
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Theorem 4.1. Let α ∈ (−π/2, π/2) and f : B → X be a normalized
locally biholomorphic mapping. Then f is spirallike of type α if and only if
f(z, t) = e(1−ia)tf(eiatz) is a Loewner chain, where a = tanα. Hence f is
starlike if and only if f(z, t) = etf(z) is a Loewner chain.

Proof. First assume that f(z, t) is a Loewner chain. Then f(z) = f(z, 0)
is univalent on B and since f is locally biholomorphic, we deduce that f is
biholomorphic on B. Also if v = v(z, s, t) is the transition mapping associated
to f(z, t), i.e.

f(z, s) = f(v(z, s, t), t), z ∈ B, t ≥ s ≥ 0,
then it is easy to see that

v(z, s, t) = e−iatf−1(e(1−ia)(s−t)f(eiasz)).

Thus v(z, s, t) is of class C∞ with respect to t for all z ∈ B, s ≥ 0, and t ≥ s,
and the derivative ∂v/∂t is obviously holomorphic on B. Further, since f(z, t)
is of class C∞ on B × [0,∞), we deduce in view of Lemma 1.7 that there is a
mapping h = h(z, t) such that h(·, t) ∈M and that

(4.1)
∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ B, t ≥ 0.

A straightforward computation yields that h(z, t) is given by

(4.2) h(z, t) = iaz + (1− ia)e−iat[Df(zeiat)]−1f(eiatz).

Since Re [lz(h(z, t))] > 0 for z ∈ B \ {0} and t ≥ 0, we deduce for t = 0
that

Re [e−iαlz([Df(z)]
−1f(z))] > 0, z ∈ B \ {0},

and hence f is spirallike of type α.
Conversely, assume f is spirallike of type α. Then f(·, t) is locally biholo-

morphic on B, f(0, t) = 0, Df(0, t) = etI , t ≥ 0, and f(z, ·) ∈ C∞([0,∞)) for
each z ∈ B. Also since f is continuous at z = 0, we deduce that there exist
some numbers r ∈ (0, 1) and K = K(r) > 0 such that

‖f(z, t)‖ ≤ Ket for ‖z‖ ≤ r and t ≥ 0.
Moreover, reversing the argument in the first step, we deduce that f(z, t)
satisfies the differential equation (4.1) with h(z, t) given by (4.2). Then h(·, t)
is a normalized holomorphic mapping on B and h(z, t) is continuous with
respect to (z, t) ∈ B × [0,∞). Since f is spirallike of type α, we obtain

Re [lz(h(z, t))] =
1

cosα
Re [e−iαlzeiat ([Df(zeiat)]−1f(zeiat))] > 0,

for z ∈ B \ {0} and t ≥ 0. Therefore h(·, t) ∈ M, t ≥ 0. Taking into
account Theorem 2.4, we deduce that f(z, t) is a Loewner chain, and moreover
f(z) = f(z, 0) has parametric representation on B. This completes the proof.
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Remark 4.2. Taking into account the proof of Theorem 4.1, we deduce
that if f is normalized starlike or spirallike of type α ∈ (−π/2, π/2), then f
has parametric representation on B. The same argument applies to close-to-
starlike mappings (see also [Ko], [Gr-Ha-Ko]).

The following result provides a sufficient condition for close-to-starlikeness
on the unit ball of X in some special case. To this end, let H(B,C) be the
set of holomorphic functions from B into C.

Theorem 4.3. Let φ, ψ ∈ H(B,C) be two functions such that φ(z) 6= 0
for z ∈ B \{0} and φ(0) = ψ(0) = 1. Let f(z) = zφ(z) and g(z) = zψ(z), and
assume that f is locally biholomorphic on B and g is starlike. Also assume
that f(·, t) is locally biholomorphic on B, where f(z, t) is given by (1.1), and

(4.3) Re [lz([Df(z)]
−1g(z))] > 0, z ∈ B \ {0}, lz ∈ T (z).

Then f is close-to-starlike with respect to g.

Proof. In view of [Pf-Su2, Theorem 2] the condition of starlikeness of g
is equivalent to

(4.4) Re

[
1 +

Dψ(z)(z)

ψ(z)

]
> 0, z ∈ B.

On the other hand, an argument similar to that in the proof of [Pf-Su2,
Theorem 2] yields that (4.3) is equivalent to the following relation

(4.5) Re

[
φ(z) +Dφ(z)(z)

ψ(z)

]
> 0, z ∈ B.

Hence

Re

[
e−tφ(z) +Dφ(z)(z)

ψ(z)
+ (1− e−t)

ψ(z) +Dψ(z)(z)

ψ(z)

]
> 0,

for all z ∈ B and t ≥ 0. Next, let h : B × [0,∞)→ X be given by

h(z, t) = z
[
e−tφ(z) +Dφ(z)(z)

ψ(z)
+(1−e−t)

ψ(z) +Dψ(z)(z)

ψ(z)

]−1

, z ∈ B, t ≥ 0.

Then h(·, t) ∈ M, h(z, t) is continuous in (z, t) ∈ B × [0,∞), and it is not
difficult to deduce that

∂f

∂t
(z, t) = Df(z, t)h(z, t), z ∈ B, t ≥ 0.

Recall that f(z, t) = f(z) + (et − 1)g(z), z ∈ B, t ≥ 0.
On the other hand, it is obvious that there are r ∈ (0, 1) and K = K(r) >

0 such that

‖f(z, t)‖ ≤ K(r)et, ‖z‖ ≤ r, t ≥ 0,
in view of the continuity of f and g at the origin. Therefore, taking into
account Lemma 1.6, we deduce that f(z, t) is a Loewner chain. Finally since
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f(·, t) is locally biholomorphic on B, we conclude that f(z) = f(z, 0) is close-
to-starlike. This completes the proof.

We close this section with an example, which is a direct application of
Theorem 4.3.

Example 4.4. Let X = `2 and let f1 be a normalized close-to-convex
function with respect to a normalized convex function g1 on the unit disc
U . Also let ψ(z) = g′1(z1) and φ(z) = f1(z1)/z1 for z = (z1, z2, . . . ) ∈ B.
Since g1 is convex on U , the relation (4.4) holds, and hence g(z) = zψ(z) is
starlike. Let f1(z1, t) = f1(z1) + (e

t − 1)z1g′1(z1) for t ≥ 0. Then f1(z1, t) is a
normalized Loewner chain on U . Since

Df(z, t) =
f1(z1, t)

z1

(
I + z

z1f
′
1(z1, t)− f1(z1, t)
z1f1(z1, t)

〈·, e1〉
)
,

it follows that [Df(z, t)]−1 exists if and only if f1(z1, t)/z1 6= 0 and

1 +
z1f

′
1(z1, t)− f1(z1, t)

f1(z1, t)
6= 0,

for |z1| < 1 and t ≥ 0. Since f1(·, t) is a normalized Loewner chain on
U , these conditions are satisfied. Thus [Df(z, t)]−1 exists, and hence f(·, t)
is locally biholomorphic on B for each t ≥ 0. Finally, since f1 is close-to-
convex with respect to g1, the relation (4.5) holds, and hence the relation
(4.3) holds. Consequently, f(z) = zf1(z1)/z1 is close-to-starlike with respect
to g(z) = zg′1(z1).
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