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ABSTRACT. A D(—1)-quadruple is a set of positive integers {a, b, ¢, d},
with a < b < ¢ < d, such that the product of any two elements from this
set is of the form 1+n? for some integer n. Dujella and Fuchs showed that
any such D(—1)-quadruple satisfies a = 1. The D(—1) conjecture states
that there is no D(—1)-quadruple. If b=1+4+72,c=1+s2and d =1+,
then it is known that 7, s,t, b, c and d are not of the form p* or 2p*, where
p is an odd prime and k is a positive integer. In the case of two primes, we
prove that if r = pg and v and w are integers such that p?v—q¢?w = 1, then
4vw — 1 > r. A particular instance yields the result that if r = p(p + 2)
is a product of twin primes, where p = 1 (mod 4), then the D(—1)-pair
{1,1+72} cannot be extended to a D(—1)-quadruple. Dujella’s conjecture
states that there is at most one solution (z,y) in positive integers with
y < k—1 to the diophantine equation 2 — (1 + k2)y? = k2. We show that
the Dujella conjecture is true when k is a product of two odd primes. As a
consequence it follows that if ¢ is a product of two odd primes, then there
is no D(—1)-quadruple {1,b,c,d} with d = 1 + t2.

1. INTRODUCTION

Let n be a nonzero integer. A diophantine m-tuple with the property
D(n), is a set of m positive integers, such that if a,b are any two elements
from this set, then ab 4+ n = k? for some integer k. We will look at the case
n = —1. The cases n = 1 and n = 4 have been studied in great detail and still
continue to be areas of active research. For more details on this subject the
reader may consult [1], where a comprehensive and up to date list of references
is available.
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In the case of n = —1, it has been conjectured that there is no D(—1)-
quadruple. The first significant progress was made by Dujella and Fuchs ([2]),
who showed that if {a, b, ¢,d} is a D(—1)-quadruple with a < b < ¢ < d, then
a = 1. Subsequently, Dujella et. al. ([3]) proved that there are only a finite
number of such quadruples. Filipin and Fujita ([4]) showed that if {1,b,c} is
D(—1)-triple with b < ¢, then there exist at most two d’s such that {1,b, ¢, d}
is a D(—1)-quadruple.

Filipin, Fujita and Mignotte ([5]) showed that if b = 72 + 1, then in each
of the cases 7 = p*, r = 2p*, b =p and b = 2p*, where p is an odd prime
and k is a positive integer, the D(—1)-pair {1,b} cannot be extended to a
D(—1)-quadruple {1,b,¢,d} with b < ¢ < d. In [13] we showed that this also
holds for ¢ = 1 + s2, that is, if s = p*, s =2p*, ¢ =p or ¢ = 2p*, then the
D(—1)-triple {1, b, c} cannot be extended to a D(—1)-quadruple (one of the
referees pointed out that this result was essentially proved in [5]). It is also
known that the results mentioned above for b and ¢ also hold for d = 1 + ¢2
(see discussion following Conjecture 1.3). Note that b, ¢ and d cannot be of
the form p* with k£ > 1 and p prime (see [8]). In the case of a product of two
primes, we showed in [13] that if » = pq then p*, ¢* > r. The following result
gives further conditions in this case.

THEOREM 1.1. Let {1,b,¢,d} with 1 <b < ¢ < d be a D(—1)-quadruple
with b = 1412 where r > 0. Let r = pq, where p and q are distinct odd primes,
and let v and w be integers such that p*v — ¢*>w = 1. Then 4vw — 1 > 7.

COROLLARY 1.2. Let b = 1 + 72 and r = p(p + 2) where p and p + 2
are both primes and p = 1 (mod 4). Then the D(—1)-pair {1,b} cannot be
extended to a D(—1)-quadruple.

The following conjecture made by Andrej Dujella is closely related to the
D(—1) conjecture.

CONJECTURE 1.3. (Andrej Dujella) Let k > 2. Then there exists at most
one solution (x,y) in positive integers to the equation z* — (k* + 1)y* = k?
with y < k — 1.

In [9] the authors studied the equation 22 — (k% +1)y? = k2, calling it the
Dujella equation and the conjecture above, which they called the unicity con-
jecture. They used a continued fraction approach and gave some interesting
equivalent conjectures.

It is known that Dujella’s unicity conjecture implies the D(—1) conjecture
(see [9, Section 17]). Indeed the result [5] on the D(—1) conjecture mentioned
above, is based on [5, Lemma 6.1], which states that Conjecture 1.3 is true
for the same cases, namely, when k? +1 = p,2p", or k = p™, 2p", where p
is an odd prime and n is a positive integer. It follows, also from [5, Lemma
6.1], that the D(—1) conjecture holds in the case when t or d = 1 + ¢? is
of the form p™ or 2p™, where p is an odd prime and k is a positive integer.
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K. Matthews communicated to the author an unpublished short proof (along
with J. Robertson) of Conjecture 1.3 in the case when k? + 1 is divisible by
exactly two odd primes. We show that Conjecture 1.3 is true when k is a
product of two odd primes.

THEOREM 1.4. Let k = pq where p and q are distinct odd primes. Then
the equation x® — (1 + k?)y? = k? has at most one solution (x,y) in positive
integers with y < k — 1.

An immediate corollary is the following.

COROLLARY 1.5. If x is a product of two distinct odd primes and d =
1+ 22, then there is no D(—1)-quadruple {1,b,c,d} with 1 <b < c < d.

2. BINARY QUADRATIC FORMS

In this section we present the basic theory of binary quadratic forms. An
excellent reference is [11], where Sections 4 to 7 and Section 11 of Chapter 6
pertain to the matter at hand.

A primitive binary quadratic form f = (a,b,c) of discriminant d is a
function f(z,y) = az?+ bry + cy?, where a, b, c are integers with b? — 4ac = d
and ged(a, b, ¢) = 1. Note that the integers b and d have the same parity. All
forms considered here are primitive binary quadratic forms and henceforth we
shall refer to them simply as forms.

Two forms f and f’ are said to be equivalent, written as f ~ f’, if for
some A = ?; ? € SLy(Z) (called a transformation matrix), we have

f(z,y) = flax + By, vz + oy) = (d/, V', ), where a’, V', ¢ are given by
(2.1) a' = f(a,7), V' =2(aaB +cyd) +blad + Bv), ¢ = f(B,9).

It is easy to see that ~ is an equivalence relation on the set of forms of
discriminant d. The equivalence classes form an abelian group called the
class group with group law given by composition of forms. The identity form
is defined as the form (1,0, %l) or (1,1, %l), depending on whether d is even
or odd respectively. The inverse of f = (a,b,c) denoted by f~!, is given by
(a,—b,c).

A form f is said to represent an integer m if there exist integers x and y
such that f(z,y) = m. If ged(x,y) = 1, we call the representation a primitive
one. Observe that equivalent forms primitively represent the same set of
integers, as do a form and its inverse. Hence, sometimes we will refer to a
class of forms that represents an integer.

We end this section with two elementary observations about forms.
Firstly, if a form f represents primitively an integer n, then f ~ (n,b,c)
for some integers b, c. This follows simply by noting that if f(«,v) = n with
ged(a,v) = 1, then there exists a transformation matrix A as given above such
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that (2.1) holds. Secondly, if b = b’ (mod 2n), then the forms (n,b,c) and
(n,b',c’) are equivalent. This equivalence follows using the transformation

matrix A = <(1) (15> where V' = b + 2nd.

3. THE DIOPHANTINE EQUATION z2 — dy? =n

For any positive integer d that is not a square, all representations (z,y) of
an integer n by the form (1,0, —d) may be put into equivalence classes using
the following notion of equivalence.

DEFINITION 3.1. Two solutions (x,y) and (2',y') of X?> —dY? = n are
said to be equivalent, written as (x,y) ~ (2',y’) if the following congruences

(3.1) xz' =dyy’ (mod n), xy' =yr’ (mod n)
are satisfied.

The result given below is used at several places, and hence we isolate it
as a lemma.

LEMMA 3.2. Let k be an odd integer. If a solution (x,y) of the equation
22 — (14 k?)y? = k? satisfies (z,y) ~ (z,—y), then k divides x and y.

PROOF. If (x,y) ~ (z,—y), then (3.1) gives 22 = —y? (mod k?). More-
over, from the Dujella equation, 2% = y? (mod k?), hence k divides x and y.
O

The following lemma connects primitive representations of 22 — dy? = n and
forms that represent n and is crucial for our proofs.

LEMMA 3.3. Let n be a positive integer such that ged(n,2A) = 1 and
suppose that n is primitively represented by some form of discriminant A.
Then the following claims hold.

1. If A= {(n,b,¢);0 < b < 2n} and w(n) is the number of distinct primes

dividing n, then |A| = 2w,

2. There is a one-to-one correspondence between the set of equivalence

classes of primitive solutions (x,y) of the equation X? — dY? = n
and the set Ag = {(n,b,c¢) ~ (1,0,—d);0 < b < 2n} of forms in A
equivalent to the identity form.

PROOF. As n is primitively represented by some form of discriminant
A, there is a solution to the congruence A = 22 (mod 4n) ([11, Solution of
problem 1]). Tt follows from a classical result (see for instance [14, Chapter
V, §4 ] or [7, Theorem 122]) that there are 2(™+1 solutions modulo 4n. As
x and —z are both solutions to A = 2 (mod 4n), there are 2*(") solutions
to the congruence A = 22 (mod 4n) with 0 < 2 < 2n. The first part of the
lemma now follows from [11, Solution of problem 2], where it is shown that
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there is a one-to-one correspondence between the set A and solutions to the
congruence A = x? (mod 4n) with 0 < 2 < 2n.

The second part of the lemma follows from the following facts that are
given in [11, Solution of problem 3|. Each primitive representation (z,y) of
X2 —dY? = n corresponds to a unique form (n, b, ¢), where 0 < b < 2n. If two
such representations correspond to the same form, then the representations are
equivalent. Moreover, each form in set Ay corresponds to a unique equivalence
class of primitive representations (x,y) of X? — dY? = n, and hence the
correspondence in part 2 of the lemma follows. O

The next lemma has been used by several authors in the study of the
current problem, such as [5, Lemma 6.2] and [13, Lemma 3.2].

LEMMA 3.4 ([6, Lemma 2.3]). Let n be an integer such that 1 < |n| < k.
Then there are no primitive solutions (z,y) such that z? — (k? + 1)y? = n.

A useful consequence of the above lemma is the following result.

LEMMA 3.5 ([13, Lemma 3.3]). Let k = ff be a positive integer such that
1< f<k. Ifz?— (k2 +1)y* = f? for some coprime integers x and y, then
f' is not an odd prime power.

4. PROOFs

Throughout this section the following terminology will be used.
Let {1,b,¢,d} be a D(—1)—quadruple with 1 < b < ¢ < d. Set

b=1+7r% c=1+s% d=1+2>

and
bd=1+1y> cd=1+42% bec=1+1%
Then
(4.1) 2 — (L+rH)s? =r?
and
(4.2) t2 — (1 4+ sH)r? = 5%

It is easy to see (using (3.1)) that the equation X2 — (r? + 1)Y2 = r? has
the inequivalent solutions (r,0) and (r? + 1 — r,&(r — 1)). In [5], solutions
equivalent to these three solutions were called regular solutions and it was
shown that (¢, s) is not a regular solution.

LeEMMA 4.1 ([5, Corollary 1.2]). The solution (t,s) of X2 —bY? = r? is
not equivalent to any of the solutions (b —r,£(r — 1)) and (r,0).

LEMMA 4.2. Let r = pq where p and q are distinct odd primes. Then
there are exactly four inequivalent classes of primitive representations of r?
by the form (1,0, —(1+7?)), namely, (b—r,+(r —1)) and (t,+s). Moreover,
r2 is primitively represented only by the identity class.
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PROOF. Let ged(t,s) = n. As r = pq, from (4.1) we have n = 1,7,p or q.
Observe that by Lemma 3.5 the cases n = p and n = ¢ are not possible. If
n = r, then ¢t and s are divisible by r. It follows by equivalence of solutions
(Definition 3.1) that (¢, s) ~ (r,0), which is not possible by Lemma 4.1. Hence
ged(t, s) = 1, and it follows from Lemma 3.2 and Lemma 4.1 that (b—r, £(r—
1)) and (¢, £s) are inequivalent primitive representations. By Lemma 3.3, the
set Ag (given therein) has at least 4 elements. Moreover, by the same lemma,
the set A has exactly 4 elements and therefore A = Ay as Ag C A and hence
there are exactly four inequivalent classes of primitive representations of 72
by (1,0, —b), namely the ones given above. O

The second part of the following lemma follows on application of [12, Theorem
1] (a converse to Nagell’s theorem). However, the article mentioned above only
provides an outline of the proof and we are grateful to a referee for the details
given below.

LEMMA 4.3. Let k = pq, where p and q are distinct odd primes. Then the
following hold.

1. Any solution («, ) of X% — (1 + k?)Y? = k% with 0 < B < k satisfies

ged(a, B) = 1.

2. Let (x,y) and (z',y") be two equivalent solutions in positive integers
to X2 — (1 +k%)Y? = k? that satisfy y,y' < k —1. Then x = 2’ and
y=y.

PROOF. As seen in the beginning of the proof of Lemma 4.2, either
ged(a, ) = 1 or k divides both « and S, the latter of which is not possi-
ble as 0 < 8 < k and hence ged(a, ) = 1.

For the second part, observe that (2k2+1, 2k) is the fundamental solution
of the Pell equation X2 — (1 + k?)Y?2 = 1. It is well known (see for example
[12]) that if (z,y) and (2/,y’) are equivalent, then

(4.3) 2 +y'Vd = +(x+ yVd)(2k* + 1+ 2kVd)",
for some integer n. Since ¥? — dy? = k2, we may rewrite (4.3) as
(4.4) (2 + y'Vd)(z — yVd) = +k2(2k* + 1 + 2kVd)" = A+ BVd.

It is easy to see that 2k3 divides B in the above equation and hence it also
divides zy’ — ya’. Observe that since y and y’ are positive integers less than
k—1, it follows from the Dujella equation that = and 2’ are less than k% —k+1.
Hence, as zy’ — ya' is divisible by 2k3, we have zy’ = ya’, which gives = 2’
and y = ¢/, since from part one of the lemma ged(x,y) = ged(2/,y') =1. O

PROOF OF THEOREM 1.1. Let v and w be integers such that vp? —wq? =
1 and let h be the form (72, 4q?w+ 2, 4vw — 1), where r = pq. It is straightfor-
ward to see that h is a form of discriminant 4b and that 4vw—1 > 0. Moreover,
h primitively represents r? and thus, by Lemma 4.2, we have h ~ (1,0, —b).
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Furthermore, h also primitively represents 4vw — 1 and hence, by Lemma 3.4,

we have dvw — 1 > r. O

PrROOF OF COROLLARY 1.2. Note that if v = pTJFB and w = %7 then
we have vp? — w(p + 2)? = 1. Moreover, 4vw — 1 = (p+ 3)”T_1 —1<p(p+2)
and the corollary follows from Theorem 1.1. O

PROOF OF THEOREM 1.4. Let (z,y) be a solution of the Dujella equa-
tion 22— (1+k%)y? = k?, with x,y > 0 andy < k—1. Then z = |z| < k> —k+1
and 0 < 2 +y < k2. Now suppose that (z,y) ~ (1 + k? — k,4(k — 1)). Then
(3.1) gives

(4.5) r=+y (mod k?),

which is not possible, as we have shown above that 0 < z +y < k2. There-
fore (z,y) is not equivalent to either of the solutions (1 + k? — k, £(k — 1)).
Furthermore, using Lemma 3.2 and Lemma 4.3, part 1, it follows that the
solutions (z,+y) and (1 + k% — k, £(k — 1)) are inequivalent primitive solu-
tions. Therefore |Ag| > 4, where Ay is as given in Lemma 3.3. From the same
lemma we have |A| = 4 and as Ag C A it follows that Ag = A. Thus there
are exactly four inequivalent classes of primitive solutions, namely the classes
represented by (z,4y) and (1 + k? — k, +(k — 1)). Now, if (2/,y’) is another
solution in positive integers to the Dujella equation satisfying iy’ < k—1, then
it must be equivalent to one of (x,+y) (since we have shown above that any
such solution is not equivalent to (1 + k? — k,+(k — 1))). From Lemma 4.3
part 2, we have (z,y) = (2/,y'), and hence there is at most one solution in
positive integers (x,%) with y < k — 1 to the equation X2 — (1 +k?)Y? = k2,
and the theorem is proved. 0

PROOF OF COROLLARY 1.5. By Theorem 1.4, if = is a product of two
distinet odd primes, then the equation a? — (1 + 22)3% = 22 has at most one
positive solution («, 8) with 5 < # —1. In other words, the Dujella conjecture
holds for this equation and as shown in [9, Section 17|, this implies that the
D(—1) conjecture is true. O
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