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ABSTRACT. In this paper we determine the poles (in the right half-
plane) with their order of the degenerate Eisenstein series attached to the
representations induced from a character of the Siegel maximal parabolic
subgroup of a symplectic group. We explicitly determine the image of the
Eisenstein series and thus determine an automorphic realization of certain
irreducible global representations of Span(Ag).

1. INTRODUCTION

The Eisenstein series are an important tool in the theory of automor-
phic forms, from the work of Selberg ([29,30]) till the most recent work of
Arthur ([1]). They were, beside theta-series, one of the few tools to provide
explicit realization of the global representations in the spaces of automorphic
forms. They were used in the construction of L—functions on classical groups
([10,18]), and they play a prominent role in Arthur’s work on the trace formula
in the last thirty years ([1-5]). Also, they were used to construct explicitly,
without using trace formula, some representations with the prescribed Arthur
parameters, or to resolve some local issues about the unitarity of representa-
tions; we mention these instances from the work of Speh and Tadi¢ ([33,35])
to the work of Badulescu and Renard ([7]) and Mui¢ ([25, 26]), just to name
some. The classical Eisenstein series on the real reductive groups have a great
importance in number theory, so applying the results from the global to the
classical setting really highlights the use of representation-theoretic methods
in number theory.
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The Eisenstein series for the symplectic groups were treated in many pa-
pers from Piatetski-Shapiro and Rallis ([10]), to Kim ([16]) and Kim and
Shahidi ([17]). The explicit results in these papers rely on heavy combinato-
rial computations regarding residues along the singular hyperplanes. In this
paper, we avoid this approach by analyzing in detail all the features appear-
ing in the constant term of Eisenstein series. We analyze the composition
series of the induced representations at local places, and describe the images
of the local intertwining operators. Also, we have done some very non-trivial
combinatorial work to handle certain sums of normalizing factor

In our paper we treat the Siegel case (in the right half plane) of the degen-
erate Eisenstein series for a symplectic group, as this is the basic step toward
the general case of the degenerate Eisenstein series for a symplectic group.
The Siegel case for the symplectic group was treated in several occasions be-
fore; let us mention the classical work of Kudla and Rallis ([20]). The location
of poles we obtained is thus not new, but the technique we employed differs,
as noted above, form the techniques of Kudla and Rallis. The results in [20]
are formulated in a way to fit in with the theta correspondence and depend on
it. Our approach gives us a direct description of the image of the Eisenstein
series, thus the automorphic realization of irreducible global representations.
We believe that our method, both the combinatorial calculations and proofs
of the holomorphy of the local intertwining operators, allows a direct gener-
alization to the non-Siegel case. To treat the non-Siegel case, one needs more
information about the composition series at the archimedean places. That
is still unavailable and we plan to address this problem in future. We plan
to apply the results of this paper in number theory, by attaching classical
Eisenstein series to the automorphic one. This is not a straightforward issue
(cf. the fourth section of [14]).

One of the most interesting results in our approach is a certain circularity
of normalizing factors, which, we hope, can be generalized to the non-Siegel
case. Namely, we look at the points in the right half plane where the normaliz-
ing factors appearing in the expression for the constant term of the Eisenstein
series have a pole of very high order. The contributions of these normalizing
factors, due to certain circularity, cancel each other, giving, at the end, only
a pole of order at most one. Not only that, but we believe that this is a
feature shared with all the classical groups. Also, we prove the holomorphy of
the relevant local intertwining operators in a way that allows generalizations
to the non-Siegel cases, and to the analogous situations with other classical
groups as well.

We give here the main result in the most interesting and difficult case of
x? =1 and "T’l — 5 € Z>0. The Eisenstein series act on the representation

(1.1) I(s) = Ind?% " (x|det|*Laz, (ag));

where P, is the Siegel parabolic subgroup of Spay,(Ag).
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THEOREM 1.1. Assume x? =1 with XYoo = 1 and n > 3 with an —s €
Z>o. Then the Eisenstein series (2.3) with Ag as in (8.1) has a pole of order
one on I(s).

1. Assume 0 < s < 251 f = @p<oofp € I(s) and let S be a finite
set of finite places, and for p ¢ S, let f, be the normalized spherical
vector. For Sy C S, we pick f, € a1, and for p € S := S\ S1, we
take f, € 02,. Then, for such f, (2.3) is holomorphic if |Ss| is odd,
and if |Sz2| is even it has a pole of order one. In the latter case (2.3)
gives an automorphic realization (in the space of automorphic forms
A(Sp2n(Q) \ Span(A)) of a global irreducible representation having a
local representation o2, on the places from Sz and o1, as a local com-
ponent elsewhere on finite places (01, is spherical for p ¢ S, p < o).

2. Assume s = an If x = 1, then for any choice S of a finite set of
finite places such that if f = Qp<cofp, with fp normalized spherical for
fp € S, the Eisenstein series has a pole of the first order. Thus, (2.3)
gives an automorphic realization of the unique spherical (global) sub-

representation of Ind;ZZXS(A) (A_s), having local components isomorphic

to L(vp~t, ... vhvp @ 1). If x # 1 we have the following. Assume S
is a finite set of finite places such that f, is normalized spherical for
fp & S. We pick a subset So C S such that for p € Sa, xp # 1 and f,
belongs to 02, and for p € S\ Sy either x, =1 and f, belongs to the
spherical quotient L(v)—',...,vk;v) 1) or x, # 1 and f, belongs to
01,p- Then the Eisenstein series has a pole of order one if |Sa| is even,
and is holomorphic if |Sa| is odd, so in the former case, (2.3) gives an
automorphic realization of an irreducible global representation we have

just described.

Here, for p < oo, if xp = 1 then

G1p = L(VanlJFS,VnT*SJFS’,”’yn“ 571/7'51*571/715175,...,1/ 0 x 1),
and
@ _ L(yn;lJ’,S’I/?L;g'J’,S’ L V"TH,S’ V%isﬂ/%isa ,1/2,1/2,1/1;T2N)
If xp # 1 then
Tip =L(VREIJFS,V?JFS,...,u"%_s,u%_s,v%_sw--7V17V1§Ti0)a

for i = 1,2. The tempered representations Ty, T, T are described in Lemma
4.7 and Corollary 4.8.

Note that an assumption in the theorem above is that f. is the normal-
ized spherical. This assumption is unrelated with the facts that only poles
of the at most order one appear and that the relevant intertwining opera-
tors appearing in the constant term of Eisenstein series are holomorphic and
non-zero. We placed this assumption only in order to be able to explicitly
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express the image of the Eisenstein series since there is less information about
the images of intertwining operators on the archimedean places than about
the ones on non-archimedean places. Also, this is partly the reason to use Q
instead of more general number field. The other reason is a simpler use of
global results in the future application in number theory, as explained above.

We now briefly describe the content of the paper. In the second section
we recall the groups we work with, the Weyl group and its description in the
case of a symplectic group. Then, we recall the (degenerate) Eisenstein series
attached to the representation (2.2) and its constant term.

In the third section we specialize to the Siegel case and analyze normal-
ization factors that occur in the expression for the constant term of Eisenstein
series. We note the cases in which these normalization factors have possible
poles of higher order. Then, in the subsection 3.1 we give an expression for
certain sums of these normalizing factors, which turn out to have poles of
much smaller order than each normalizing factor separately. It will become
clear in the fifth section why these sums occur.

In the fourth section we give composition series of the local induced rep-
resentations of type (1.1) in a form which we use later. The lengths of these
composition series were known before ([12,19]).

In the fifth section we prove that all intertwining operators appearing in
the expression for the constant term of Eisenstein series are holomorphic, and
prove that (normalized) intertwining operator attached to the longest element
of the Weyl group is non-zero and also explicitly describe its image.

In the last section we prove that the intertwining operators belonging to
the so called orbits have very similar actions, justifying grouping the normal-
izing factors in the sums in the third section. We also explicitly describe the
image of the Eisenstein series.

We thank G. Muic¢ for his encouragement to study this problem and to N.
Grbac and M. Tadi¢ for useful conversations. Also, we thank J. Schwermer and
Erwin Schrodinger Institute for their hospitality during conference Advances
in the Theory of Automorphic Forms and their L-Functions, where this work
begun.

2. PRELIMINARIES

For n € Z>1, we define J,, as a n x n matrix with 1’s on the opposite
diagonal, and zeros everywhere else. We realize the group Sps, as a matrix
group in the following way:

Spu) = {a e 6Lantr) o | 0]a=| 5 0|}

For us F € {Q,Q,,R,A}, where A is the ring of adeles of Q. Let K, =
Spon (Zp) for p < 0o and let K, be the fixed point set of a Cartan involution
(e.g. transposed inverse) on Spa,(R). It is well-known that Ko, = U(n). We
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note that K, p < oo are maximal compact subgroups in the corresponding
groups. Denote K =[] . K.

The upper triangular matrices in Sps, form a Borel subgroup B, which
we fix. The standard parabolic subgroups are those containing this Borel
subgroup. The diagonal matrices in the Borel subgroup form a maximal
torus, which we denote by T. Thus

T(F) = {diag(t1,ta, ...ttty bty Lt )ty oty € F* )

The unipotent matrices in B form the unipotent radical of B. Let W be the
Weyl group of Spa, with respect to T It is well-known that W = S,, x Z%,
where S, denotes the symmetric group of n letters. We call Weyl group
elements corresponding to S, permutations, and to Z, sign changes. The
action of p € S, is given by

p(diag(tl,tg, R ,tn,tT_Ll, . .t;l,tl_l)) = (tp—l(l),tp—1(2)7 R 7tp—1(n), o .),
and the action of € = (e1,¢€2,...,6,) € ZY is given by

e(diag(ti,ta, .. tn, .ty e 1Y) = diag(65, 452, ..., 50, .. ).

»bm

Note that for p € S,,, we have

p(El,Eg, . ,En)p71 = (Ep—l(l), Ep=1(2)s -+ s Ep—l(n)).
Note that the action of the Weyl group on maximal torus 7" extends to char-
acters on this torus, namely if ¢ is a character on T', we have, for w € W and
teT, (we)(t) = p(w~t). In more words, if w = pe and ¢ = ¢p1 R P2 @+ - R Py,
we have

2.1) Pe($1 @B ® @) = B0 (1) @ @7

For calculation of the normalization factors of the intertwining operators,
we have to introduce certain subsets of the Weyl group. Recall that, to
our choice of maximal torus 7" and the upper triangular Borel subgroup B
corresponds set A of simple roots, given by

oi(diag(ty, ta, ... ta ty .ty T )) = it i =1,2,...n— 1,

an(diag(ty, ta, ... to,tn bty 7)) = 2.
We also use e; — e;+1 to denote oy, i =1,...,n—1 and 2e,, to denote a,,. In
the same way, we can describe the set of all positive roots (with respect to B)
as Xt ={e;—e;,1 <i<j<n}U{e;+e;,1 <i<j<n}uU{2,:1<i<n}.
For «; € A we denote
W ={w=pe e W : wa; >0}.

Then, for @ C A we put [W/Wq] = NacaW* (as is well known, this is indeed
a set of representatives of left cosets of W modulo its subgroup Wg). The
description of [W/Wa\(a,}], where «; is a simple root is given, e.g., in Lemma
4.4 of [36).
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We use Zelevinsky notation for the parabolic induction in the case of
classical groups. For such groups we know that Levi subgroups are isomorphic
to GLg, Xx GLg, X -+-GLy, x G', where G’ is a group of smaller rank, but the
same type as G. Thus, if 7 is an irreducible representation of an Levi subgroup
M, then m &2 7 @M ®---m @ 7', where 7; is an irreducible representation of
GLy,, i =1,...1 and 7 is an irreducible representation of G’. We extend =
trivially over the unipotent radical NV of the corresponding parabolic subgroup
P = MN and the normalized parabolically induced representation Indg(w)
is then denoted by m X mg X «+- x m x 7.

For p < 0o, and a,b € R, b—a € Zx( we denote by ((xv®, x*) the unique
irreducible subrepresentation of the representation yv® x xyv%t! x - .. x yvb.
Here v denotes a character |det(-)|p of GL,(F), where |- | denotes the usual
norm on F. Note that ((yv®, xv?) = v laL,_uyi(@,) (We again use here
Zelevinsky notation for the general linear groups).

Using the notation from [24], for p < oo, we denote the unique (essentially
square integrable) irreducible subrepresentation of the induced representation
vpx v lpx .o xvThp of GL,+1,41)6(Qp) by S([v~p,v'2p]). Here p is a
unitary supercuspidal representation of GL(Qp), li,l2 € R, la+11+1 € Z>;.

2.1. Siegel Eisenstein series and normalizing factors. Let x be a Grossen-
character of A*. It induces a character of GL,,(A) given by = — x(det z). Let
P, be a maximal standard parabolic subgroup of Sps, such that its stan-
dard Levi subgroup M, is isomorphic to GL,,. Let P, = M,U, be its Levi
decomposition. We consider the usual induced representation for s € C

(2.2) I(s) = Ind 2 (x|det " Tz, (ao):

It is realized on the space of all C* and right K — finite functions on Spa, (A)
which satisfy
f(zug) = |deta|*x(det 2)5 () (9),

where € M, (A),u € U,(A), g € Span(A) and dp, is the modular char-
acter of P,. We construct holomorphic sections f; € I(s) using compact
picture with our choice of a maximal compact subgroup K. This means
that we consider fs belonging to the space of automorphic forms denoted
by A(M,(Q)U,(A) \ Span(A),|det(-)|*x(det(:))) in the notation of [23], II.
1.1. This space of automorphic forms can be canonically identified with
IndJ\K/jn( mnk (x(det(+))) (cf. [23]). This construction is also explained in detail
in e.g., [25] (the second section). The degenerate Eisenstein series

E(fs)(g): Z fs(’yg)
YEPm(Q)\Sp2, (Q)
converges for Re(s) sufficiently large, and there the convergence is absolute
and uniform in (s, g) on compact sets. In the case at hand, by the result of
Godement (cf. [9, 11.1 Lemmal), this Eisenstein series converges for Re(s) >
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"TH. It continues to a meromorphic function in s. Outside of poles, it is an
automorphic form on Sps,(A). We usually write E(s, f) instead of E(fs).
We say that this Eisenstein series has a pole of finite order | > 0 for s¢ if
s+ (s — 509)'E(s, f) is holomorphic near sy for each f, € I(s) and non-zero
for some such fs. Then, the mapping

Feor(5=50) E(f)]a=sg

(2.3) I(So) A(Sp2n((@) \ San(A))

is an intertwining operator. The poles of this Eisenstein series are the same
as the poles of it constant term along the Borel subgroup

Econst(saf)(g) = / E(Saf)(u.g)dua
U@Q\U(A)

where U is the unipotent radical of the Borel subgroup we have fixed above.
We can write down this constant term using standard unfolding. To do that,
we introduce a character of T(Q) \ T'(A) (depending on s € C):

Ac=x [T @xl T @ @xl T
We trivially extend this character across U(A) and obtain a character of
B(A). Then we form an induced representation Indg]a’;(m (As). Note that,
as an abstract representation, a representation (2.2) is a subrepresentation of

Indg’&”)m) (As) (this is explained in the second section of [25]). Let w € W.

We denote by U the lower triangular unipotent matrices in Spa,. We formally
define a global intertwining operator

M (A, w) : Indg2n ™ (A,) = Ind222n™ (w(A,))

by
Mwwfe) = [ g tngdn
U(A)NwU (A)w—1

Here w denotes a choice of a representative of an element w of the Weyl
group, but the integral does not depend on this choice. Again, this intertwin-
ing operator converges in some right half-plane, and admits a meromorphic
continuation. This global intertwining operator factors as a product of the
local intertwining operators

M(As,w) f = @pA(As p, w) fp,

if f = ®p<oofp, where for almost all p, f, is the normalized spherical vector.
Indeed, we use precise normalizations of Haar measures in the definition of the
intertwining operators (we follow [31]), so that for f which is a pure tensor, by
using Tamagawa measure, integration over U (A)NwU (A)w ™!, comes down as
integration over corresponding local counterparts and, formally, outside the
poles, expressions for the local intertwining operators appear. The resulting
vector is again in the restricted tensor product, since we get an expression
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which is at almost all places again normalized spherical vector multiplied by
an expression containing the partial L-functions (cf. [10], pp. 21-28 or [11],
Chapter I, Section II). Let 9 be a non-trivial additive character of Q\ A. The
normalization factor for A(A; ,, w) is given by

L(1,As 0 d)e(1l,Asp 0 &, 1)
As — ’ P ) P > 7P
r(Bap ) 11 L(0,Asp o @) ’
aeXt w(a)<0 ’

where & is the coroot corresponding to a root a. We define the normalized
(local) intertwining operator by

(2.4) N(Asp,w) =r(As p, w)A(As p, w).

We know that the set of roots A\ {a,} determines the Siegel standard para-
bolic subgroup P,. We have the following expression for the constant term
(2.5)

Econst(sa f)(g) = Z T(Asa w)71(®p€SN(A5,P7 w)fp)®(®p¢5fwﬁp)'
weW,w(A\{on})>0

Here, f = ®p<oofp is a pure tensor, and for all p ¢ S (S is a finite set of places,
including the archimedean place) f, is the normalized spherical vector with

fple) = 1. Also, fy,p denotes the normalized spherical vector which belongs

to the representation space of Indizza;()Qp)(w(Asm)), where A;, denotes the

local component of the character A; at a place p. We use well-known property
of normalization: for f, normalized spherical, N(As p,, w)fp = fuw,p- We also
denoted above

o L(0,Aq 0 &)
(2.6) rde o)™ = ] L(1,Ay0d)e(l,A0 )

aeXt w(a)<0

Note that the sum in (2.5) is over the set which we denoted by [W/Wa\ta,1]
in the previous subsection.

3. THE NORMALIZING FACTORS

From this section till the end of this paper, we deal only with the Siegel
case of the induced representation (2.2).

In this section we analyze the global normalizing factors (2.6). After that,
we calculate certain sums of global normalizing factors which appear in (2.5);
namely we group those ones corresponding to those elements of [W/Wa\ 1]
which have the same image w(A;), so that their contributions belong to the

same space Ind?()f{;(m (w(As)). These sums we can obviously use in the spher-

ical case (i.e., when all the components f, are spherical), but, as will turn out,
also in the general case. Note that in this (the Siegel) case, a global character
Ag is equal to

n—1

(3.1) Ae=x|- 7T @x|- T e o [T,
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Then, by Lemma 4.4 of [36], [W/Wa\{a,}] is a union of all Y;* (where 0 <
J <n) such that w = pe € Y;" if and only if

1. k—1f0r1<kz<37

2. p(k1) < p(kg) for 1 < ky < ko < j;

3.ep=—1forj+1<k<m;

4. p(k1) > p(ke) for j+1 <k <k <n.

We can thus think of p (such that pe € [W/Wa\a,1]) as having the following
form:

(3.2)

1 . j—1 J J+1 J+2 ... n
Pl << pG-1D < p() pGHD> p(G+2) >..> pln)
From now on, we study only the case s € R (since the imaginary part
of s can be absorbed in x) and s > 0. For s = 0 the well-known result of
Langlands guarantees the holomorphy of the Eisenstein series.

We now calculate (the global) normalizing factor, given in (2.6), for w €
[(W/Wa\{an}]- We determine all &« € ¥F such that w(a) < 0. Assume that
w € Y]". Then, we easily get

{a e X", wla) <0} ={2e:j+1<k<n}U
{ekte k<, 1<k<j, j+1<1<n, p(k)>pl)}U
{ex+e:j+1<k<i<n}

This means that the normalizing factor becomes

- L(s— 21 4+ k-1,
(3.3) r(Agw)™ = ] n_(f 2 n—)f) '
L(s — 5= + k,x)e(s — "5~ + k, x)

L2s+k+1—n—1,x%)
A4
(34) ]-;-[1 l_H L2s+k+1—n,x?)e(2s+k+1—n,x?)

p(K) (1)
L2s+k+1—n—1,%x?)
(3:5) H L(2s+k+1—- 2s+k+1—mn,x2)
s, D28 n,x*)e(2s +k +1—n,x?)
k<l

Note that if j = n, Y* = {id}, so from now on we assume that j < n. If

j =0 the set YY" is also a singleton, consisting of w = pe, where
1 2 ... n—1 n
(3.6) {n n—1 ... 2 1



298 M. HANZER

Now we analyze this expression factor by factor. When we apply the functional
equation on the denominator, the factor (3.3) (which exists if j < n) becomes

n—1 S

ﬁ L)
(i1 L(~1,x)
To deal with the factor (3.4), we first fix k¥ < j. Then, we look at the set
of all I > j + 1 such that p(k) > p(l). If the set of such I’s is non-empty, it
is of the form lg,lx + 1,...,n. Also, if set of these I’s is non-empty for some
k, then it is non-empty for k£ + 1. So, the set of all such k’s is of the form
kp,kp+1,...,j (a subscript p indicates the dependence on the permutation
p). There is only one w = pe from Y;" for which this set of I’s is empty for
every k; it has p(i) =4, i = 1,...,j. There is no factor (3.4) if j = 0. Now
assume 0 < j < n. Then (3.4) becomes

j n 2
L2s+k+1—-n—1,x°)
(37) HHL(2s+k+lfnx)(25+k+lfn,x2)'

There is an easy recursion for [, but we can use known results to calculate
it. We attach to a permutation p of (3.2), a permutation p’ of the following
form
(3.8)

,[1 j—1 j o j+1 Jj+2 n
P << pG-1< pG) pr) < pn—1) <...< p(i+1)

ie. p'(i)=p@)fori=1,...,5and p'(i) =p(n+j+1—i)fori=j+1,...,n

Then, a condition p(ly — 1) > p(k) > p(lx) transforms into p'(n+j+1 —
Ig) <p'(k) <p'(n+j+2—1). Permutations of the form (3.8) were studied
before Lemma 6.9 in ([14]). In that notation, for similarly introduced jj for
the permutation p’ we obtain jp = n+ j + 1 — [}, and there an expression for
jr = p'(k) — k + j is obtained, giving I, = k — p’(k) + n + 1. Also, the index
m,, was introduced there, we have denoted it here by k,. After the obvious
cancelations, and using expression for I, (3.7) becomes

(3.9)

)

L L(2s + 2k — p(k), x°

i L(2s+ k,x?)(*

where (%) denotes the product of e factors. The expression (3.5) becomes,
after cancelations, equal to

n—1

L(2s + 2k — n, x?)
(3.10) H L(2s + k, x2)(*x)
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where again (xx) is a product of e-factors (note that this factor is trivial (= 1)
if j =n—1). Now we have

r(Ag,w) ™t =
noly g

: L(l, x)

3.11 Bl UV, 28

(311 JVON Ty

I=— (252 —s—j)

L L(2s+ 2k — p(k),x2) "o L(2s + 2k — n, y2
(3.12) H ( g ) H ( S )
mr L@2s+ kX)) (%) S L@s+k,x?)(xx)

L(s—251+j,x)
L(s+242 %) (+%)”
() is a product of some e—factors. Since we assume that s > 0, this factor
can have a pole only if j = "T’l —s+4, €{0,1} and x = 1, so in order to
have a pole from the first factor we must have 251 — s € {—1,0,...,[%51]}
and x = 1. For such s, the pole of this factor occurs for at most two j’s,
so that for given w it is at most of the first order (since w belongs to Y
only for one j). Note that the appearance of this pole depends only on Y
and not on a particular w in it. The same conclusion follows for the third
factor, where a pole appears only if y2 = 1 and it is at most of the first
order. The second factor can have a pole only if s < ”T_l and x? = 1, (and,
as for the other factors, 2s € Z) but the order of the pole might be quite
high. Analogously as in ([14]), Lemma 6-9, we get that the order of a pole is
bounded by min(j,n — j — 2s 4+ 1) — k, + 1. For Re(s) > % the Eisenstein
series converges so we do not have to examine L—functions for the poles.

In the next subsection we show that different contributions from normal-
izing factors can cancel each other to obtain a pole of a much smaller order.
These calculations will become fully motivated by the analysis of the actions

of the intertwining operators in the subsequent sections.

It it not difficult to see that we can write down (3.3) as where

3.1. A circular result. Throughout this section we assume n > 3, since
the case of SLs is well-known and for the degenerate Eisenstein series for Spy
we refer to [13].

COROLLARY 3.1. Assume x? = 1 and s > 0. Then w(As) = Ag for
w € [W/Wa\{a,3] if and only if w =id or s =0 and {w} =Y (¢f. (3.6)).

PRrROOF. Straightforward. O

We continue to assume s € R, s > 0 (unless otherwise specifically empha-
sized). For given w € [W/Wa\{a,}]; we denote [w] = {w" € [W/Wa\ia,1] :
w(As) = w'(Ag)} and call the orbit of w (this notion obviously depends on s).
We want to describe [w] for given w. Next, we calculate 3, ¢, 7(As, w')~!

for those s for which Hi:kp %W has a pole for some £k and this
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w = pe. Namely, we show how the poles coming from the Weyl group elements
in the same orbit cancel each other, up to a pole of the order one.

PROPOSITION 3.2. Assume that x> =1 and 2s € Z with 0 < 2s < n — 1.
Then, assume that for wy = pie1, wa = paea € [W/Wa\(an}], w1 # w2 we
have wi(Ag) = wa(Ag). Then, one of the following holds:

e wi,wy €Y/ for some 0 < j <n. Then, for every k € {1,2,...,n} we

have p1(k) = pa(k) or p1(k) = pa(n+1—2s—k). In the latter case, for
1 <k <j we must have k < min{n — 2s — j,j} and for j+1 <k <n
we must have n+1—2s —j < k <n — 2s.

o wy €Y/ and wy € Y]} with j1 < j2. Then, jo =n —2s — j1 and we

have

p1(k) = p2(k) or pi(k) = pa(n+1—=2s — k), 1 <k <,
pi(k) =p2(n+1-2s—k), j1+1<k<jo
p1(k) =p2(k) orpi(k) =p2in+1—-25s—k), jo+1<k<n.

o If wy = wo (where wg is described in (3.6)), then we = pe, where
wy €YY 5o and p(i) =2s+4, 1 =1,2,...,n—2s and p(i) =n+ 1 —
t,i=n—2s+1,...,n.

PRrROOF. Straightforward calculation. O

REMARK 3.3. With the assumptions of the previous proposition:

e Note that if wy € V", for j > n—2s+1and wy (As) = wa(Ay) for some
wy € [W/Wa\(a,}], then wz = wy. Thus, if w € Y*, with j > n—2s+1,
then [w] = {w}.

e Note that if j > n—2s+1and w € Y}", then r(As, w)~! is holomorphic
(this follows form the discussion at the end of the previous section).

Now we want to examine possibilities occurring in the previous propo-
sition more thoroughly, since this is the situation in which the poles (of the
higher order) of the global normalizing factors might occur; so we continue to
assume 2 =1, 2s € Z with 0 < s < "T_l Note that, in that case, the ¢ fac-
tors in (3.12) are trivial when they occur for y? since now we assume y? = 1
(and we assume throughout that F' = Q). We can write [w] = [w]’ U [w]” ,
where now, for w € Y, [w]" denotes part of the orbit of w in Y* and [w]”
part of it in ¥, 5. .. Assume now that j < n —2s—j and denote j; = j and
jo = m — 2s — j;. Firstly, there is an easy-describable bijection between [w)]’
and [w]”.

LEMMA 3.4. Assumex? =1, 2s € Z with0 < s < "T_l andw = pe € Yj,.
Assume that j; < "T’l — s (so that jo > "TH —s>5h+1).

1. Assume that p(j1) < p(j2). The bijection mapping elements from Y]} N

[w] = [w]" to Y] N [w] = [w]" is given as follows: if w1 = p1e1 € [w]
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then wy — wy = paeg € [w]” with pa(i) = p1(i), i = 1,2,...,71 and
i=jJo+1,...,n and p2(i) =p1(n+1—2s—1) fori=j1+1,..., 2.
Any element from [w]" attains the same values on j1 +1,...,j2 as wy
(i.e., as w) and every element in [w]" attains the same values as we
on these places (namely p1(n+1—2s—14), i =j1+1,...,j2). These
attained values are n,...,2j1 + 2s + 1 (in that order)

2. Assume that p(j1) > p(j2). Then, we define iy < ji as the largest index
(< j1) such that the following holds:

p1(j1 + 2 +1—1) > pi(is — 1),

3.13 : o '
319 p1(i¢) > p1(J1 + Jo + 2 —i¢).

Then, w1 — wo = paga € [w]” is given by p2(i) = p1(i), i =
1,2,...,i;—1andi =n+2—-2s—1i,...,n and p2(i) = p1(n+1—2s—1)

fori=iy,...,n+1—2s—1i;. Any element from [w] attains the same
values as wy onig,...,n+1—2s—1i, and every element in [w]" attains
the same values as wo on these places (namely py(n+1—2s—1), i =
jl + ]-a"'an)‘

PROOF. From the form of w = pe € Y]} (cf. (3.2)), it follows that if
p(j1) < p(j2), then p(j1+1),...,p(j2) are the biggest elements in {1,2,...,n},
ie, p(j1+1) =n,...,p(j2) = n+j1 +1—j2 =241 +2s+ 1. To each py
such that piey is from [w])’, we can attach a permutation p] like in (3.8)
(analogously for elements from [w]”). In this way, we can describe elements
of [w]" in terms of Weyl group elements for the group GL,, which turn the
roots W/(A’'\ {e;, —ej,+1}) to positive roots (W' stands for the Weyl group
for GL,). We discussed similar issues for GL,, groups in [14]. Now, for
this w = pe € Yj,, we can describe all the elements from [w]" with using so
called ”intervals of change” (as defined in [14, Section 7.1]). If p(j1) < p(ja2),
then intervals of change for w end with ji, so all the elements in [w] can
be described by change on the first j; elements, and consequently, elements
n+l—-2s—j1=jo+1,...,n+1—2s—1=mn—2s (cf. Proposition 3.2).
Thus, the values of permutations in [w]’ on elements j; + 1,...,j2 are all
the same (and equal to n,...2j; + 2s + 1). Analogously, in the second case
(p(41) > p(42)), our description of i; says that the possible intervals of change
end with i; — 1 and the second claim follows. O

REMARK 3.5. Note that in the case p(j1) > p(j2) of the above lemma,
the values of p; attained on 4y,...,n+1—2s—1i; are the biggest possible (but
not necessarily in the increasing or the decreasing order); this follows from
the conditions (3.13).
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LEMMA 3.6. We retain the assumptions of Lemma 3.4. Let wy € Y/ and
let wo € Y]} be its bijective image described in Lemma 5.4. We denote

-1
"LT+5

L(l, x) 1
A — .
' nH CL(-Lx) TI'Z) L(2s+k1)
I=—("5=—s—j1) P1
J1 n—1 J2—j1
I] L@s+2k—pi(k), 1) J[ L@s+2k—n,1) [ Lk 1).
k=kp1 k=ja2+1 k=2
Then
li L(2t,1 o — J1 1
B1) et =y [0 COD i e
lims o L(2t +1,1)  j2 — 41 is odd,

1 Jo — J1 S even,

j2 —j1 >3 is odd or
je—ji=1and x #1
-1 jo—j1=1and x=1.

-1 _ . .
(3.15)  r(As,w2) fAlth_r%L(QtJrl,l) 1

PROOF. We first examine (3.11). We easily obtain the following: if jo —j1
is even, then (3.11) for wy is equal to (3.11) for wy and holomorphic. If j3 — j;
is odd, then, if x # 1, (3.11) for w; is equal to (3.11) for wy (and non-zero
and holomorphic). If jo — j; > 3 is odd, and x = 1, (3.11) for w; and ws
are non-zero, holomorphic and the same. But if jo — j; = 1 and x = 1, then
(3.11) for wo and wy have a pole of the first order and one is negative of the
other. Now we compare (3.12) for w1 = p1e1 and wy = paoesy. First assume
that p1(j1) < p1(j2). Note that if k,, (introduced after (3.8)) exists, then
kp, = kp,. Assume firstly that k,, exists. Then (3.12) for w; becomes

n—1
1
(3.16) —— L(2s4+2k—p1(k L(2s4+2k—mn,1).
szi,, L(2s+k,1) = H . 1;[“

Now we analyze the second factor as above, but for wy. We have
J2

IT Z(@s+ 2k - pa(k), 1)

k=kp,
J1 J2
= JI 2@s+2k—pa(k), 1) J] L(2s+2k—pa(k),1)
k=kp, k=j1+1
J1 J2
= [ LZ@s+2k—pi(k),1) J] L@2s+2k—pi(n+1-2s—k)1).

k=kp, k=j1+1



DEGENERATE EISENSTEIN SERIES 303

According to Lemma 3.4, case 1., the last product becomes Hf:jﬁrl Lk -
Jj1, 1), so that (3.12) for ws becomes
1 J1
— L(2s+ 2k — p1(k),1)
[Tilr,, L(2s + k1) kl_k[pl

(3.17) .

J2 n—1

I zte—si,1) J] L(2s+2k—n,1).

k=ji+1 k=ja+1

To see how (3.16) and (3.17) are related, it is enough to compare

J2 J2
I ces+2k—n1) and [ LG -ji,1).
k=j1+1 k=j1+1

Note that both sides have a pole of the first order. On the right hand side it is
obtained for k = j; + 1, and if we write s = t+ sg, where n —2sg = j1 + j2 and
see what happens for ¢t — 0, when we recover L(2s+2k —p1(n+1—2s—k), 1)
we see that we actually have lim;_,o L(2t+k—j1, 1), so that the right-hand side

becomes lim;_,o L(1 + 2¢,1) f:jlw L(k — j1,1). The left-hand side becomes

limy_sg H?:lerl L(2t + 2k — j1 — j2,1). Now we apply functional equation for
the negative arguments in this product. We get

1. limy o L(2t, 1) T[22 Lk, 1), if jo — j1 is even,
2. limy o L(2t +1,1) T[22 L(k, 1), if jo — j1 is odd.

If k,, does not exist, i.e., p1(i) =i, ¢ = 1,...,71 we have that r(As,wy)™!
consists of (3.11), and it has only the second factor from (3.12). But then it
is easy to see that k,, = 71 + 1, and we get the same results as in the previous
case.
Now assume that p1(j1) > p1(j2). We again have that (3.11) is the same
1

S S S
for w; and wo. Also, we can factor out H;;;pl LR from r(As,w;) "1, @

1,2. We immediately see that the product

ie—1 n—1
(3.18) I Z@s+2k—pi(k), 1) J] L(2s+2k—n,1)
k=kp, k=ja+1

is common for r(Ag,w1)~! and 7(Ag,ws) 1. Thus, we have to compare the
product (belonging to 7(Ag,w;) 1)

J1 J2
(3.19) II L@s+2k—pik),1) J] L(2s+2k—n,1)
k=i k=j1+1
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and the product (belonging to r(Ag,ws2)™ 1)

(3.20) ﬁ L(2s + 2k — pa(k), 1)

k=i,

We now comment on poles in (3.19) and (3.20). We prove that
s, L(2s + 2k — pi(k),1) from (3.19) does not have a pole, and that
(3.20) has a pole of the first order. Note that we have already discussed
i2=j1+1 L(2s + 2k — n,1) (this expression does not depend on the permuta-
tion p1, but just on j; and j3).

Now we analyze [[;L;, L(2s + 2k — p1(k),1). We prove that it is holo-
morphic analogously to the proof of [14, Lemmas 7-16]. We remind the
reader that ' means that the corresponding permutation is adjusted to ap-
ply GL-considerations from the seventh section of ([14]). Let us briefly ex-
plain. Assume that the last interval of change for py is [8,i; — 1]. If we
assume that 2s + 2k — py(k) = 0 for some k € [it,j1], this would mean
Jjk = j1 + 2s + k (we remind the reader of the definition of j; for p) given
above (3.9)). It follows that pi(k — 1) > p{(j1 + 2s + k), otherwise, we could
change p1(k) <> p1(n+1—2s—k) = pi(j1+ 25+ k). We inductively conclude
that p1(k — j) > pi(j1 + 2s+ k — j + 1), when we do not have a beginning
of some interval of change in k — 5 + 1. We do have the beginning of such an
interval for k — 7 + 1 = 3, but this interval of change does not have an end in
k but in ¢; — 1. Similarly, a case 2s + 2k — p1(k) = 1 leads to the condition
pr(k+t+1) < pi(j1+2s+k+t). If we would take k+¢ = ji, then obstruction
to the interval change would disappear, but we do know that cannot have the
ending of the last interval of change to be at j;.

We claim that [];2; L(2s 4 2k — p2(k), 1) has a pole of the first order,
obtained for k = i;. We know that py(i;) = 2s+2i;—1orp1(n+1—2s—4;) =
2s + 2i; — 1. Indeed, as we saw in Lemma 3.4, case 2. the permutation p;
attains on the set {1,2,...,4; —1}U{n+2—2s—1;,...,n} the smallest values
in {1,2,...,n}, and there are exactly 2s + 2i; — 2 those numbers. So, the
value 2s + 2i; — 1 is the smallest value that can be attained on the rest of the
indexes and the conclusion follows. But if we would have p; (i) = 25+ 2i; — 1,
the function L(2s+ 2i; — p1(i¢), 1) would have a pole, and we proved that this
cannot be the case by the preceding paragraph. We just have to show that
there are no poles for k£ > i;. From the fact that we cannot change interval
for p; in 4; and then in i; + 1 we get

pl(n—i— 1—2s— (Zt —+ 1) — 1) <p1(it —+ 1),
and then, inductively, as long as it makes sense, we get

pin+1—2s— (it +k+1)) <pi(ixr+ k), k>0.
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It makes sense for i; + k& < ji, so that the last relation becomes pa(i; +
kE+1) <pa(n+1—2s— (it + k)), and then using j;,+r for p), we get that
pa(ie+k+1) <2s+2(iy +k+1)—2, so that L(2s+ 20— p2(l), 1) cannot have
a pole for | =i, + k + 1. This proves that L(2s + 2k — pa(k), 1) cannot have
a pole for k =4, +1,...,j1 + 1. As for k > j; + 2, we simply observe that
jr < n (here ji is attached to p,). Then, as we know, ji = ph(k) — k + ja,
which gives 2s + 2k — p5(k) = 2s + 2k — pa2 (k) > 2.
We conclude that (3.19) becomes

J1 J2—J1
[T L@s+2k—pi(k),1) J] Lk 1A,
k=i k=2

where A = limy_, L(2t, 1) if jo — 71 is even, and lim; o L(2¢ + 1,1) if jo — 51
is odd. We also saw that (3.20) becomes B Hf:itﬂ L(2s+2k—pi(n—2s+
1—k),1), where B = lim;,o L(2t + 1,1). Note that all of these expressions,
except A and B, are holomorphic. We now prove that these holomorphic
parts are equal. To do that, we shall completely turn this into GL situation

in the following way. As we saw above, p1(it),...,p1(n +1 — 2s — i;) attain
values on the set {2s + 2i; — 1,...,n}. So, we denote m’ = j; —4; + 1 and
n' = jo — iz + 1 (thus, m’ +1 < n’) and introduce a new permutation on the
set 1,2,...,n+2—2s —2i; =m’ +n’ as follows:

(3.21) PIG) = pritir—1)— (28 + 20, —2),i =1,2,...,m/,

(3.22)

pl() =p1(2m' +n' +ip —i) — (25 + 20y — 2),i=m'+1,...,m" +n'.

We easily see that pf is increasing on the first m’ and on the last n’ places.
In terms of pY, the holomorphic part of (3.19) discussed above becomes

/

(3.23) [L@i-pi6),1) 1:[ L(k,1)
i=1 k=2

and holomorphic part of (3.20) becomes

(3.24) HL(QZ‘ —p{(m +1i),1).

Note that p{(m’+1) = 1 and that the changes in p; p1(i) <> p1(n+1—2s—1)
now become pf (i) < pj(m’ + ). Note that our conditions imply that there
are no changes for pf either. This means that for any ¢ € {1,...,m'}, the
interval {1,,...,4} cannot be an interval of change. We easily get from this
that p”(i) > p{(m’ +i+ 1), ¢ = 1,...,m' which leads (again using j; for
pY) to the condition p{(i) > 2i + 1, ¢ = 1,...,m/. Thus, the arguments in
[T, L(2i — p{(i),1) from (3.23) are negative, and we use L(2i — p//(i),1) =
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L(p] (i) —2i+1,1). We also immediately have p{(m’+2) = 2. Now, to resolve
(3.24) we write elements {2,...,m' +n'} in the increasing order:
plll(ml + 2)7 s 7plll(]1)aplll(1)7plll(]1 + 1)7 s 7plll(]2)aplll(2)7

.- 7p/1/(k)7p/1/(]k + 1)7 s aplll(jk+1)7p/1/(k + 1)) s
This sequence ends with ...pJ(m’), or with ...p{(m’ 4+ n’). We discuss the
first case; the second is quite analogous. Note that the beginning part p// (m’+

2),...,pY(j1) contributes to (3.24) as fiél)_l L(i,1). Now we use that j =
p{ (k) — k +m’ to obtain that (3.24) becomes

(3.25)

py(1)-1 m/—1pY (k+1)—k—1
IT o] I LGk,
=2 k=1 p{(k)—k+1
since pi (e +1) = p{ (k) + 1 =p{ (k) = k+ 14k =+ = p{ (jr+1) = p{ (k+1) —

k—14Fk=i+k, for all i between ji + 1 and jg11. Then L(2i — (i + k),1) =
L(i — k,1). Note that the last factor of the product above corresponding
to k, is the first factor in the product corresponding to k + 1. Thus, we
have some repetitions and the product above becomes L(2,1)...L(n' —m’ +
1,1) Zi;l L(p/ (k) —2k+1,1). Now we use that p{(m’) = m’ +n’ to obtain
the equality with (3.23). O

It will turn out that, when analyzing the constant term of Eisenstein se-
ries (2.5), the contributions coming from the global intertwining operators at-
tached to the same orbits of the Weyl group elements, will contribute in a sim-
ilar way, so we shall need 3=, 1, 7(As, w') ™! and Zw,e[w]m,ﬁ r(As,w' )"t —

Zw”e[w]ﬂY." r(As,w”)™1. As we have seen in Lemma 3.6, it is enough to cal-
J2

culate Zw’e[w]ﬂYj’i r(Ag,w')" L.
LEMMA 3.7. We retain the assumptions from Lemma 3.6. Let j; < "T_l —
s and w € YI. Then, 3_ rcp)nyn r(As,w')~t has a pole of (at most) the first
J1
order; unless x = 1 and jo — j1 = 1; then it has a pole of (at most) the second
order.

PrOOF. Note that in the expression A; of Lemma 3.6, only Hilzkp L(2s+
2k — p1(k),1) depends on w = pie1; all other parts depend only on j;. So,
in the sum > /¢ uynyn 7(As, w’)~! we can factor out all other factors, which

J1

are holomorphic (and non-zero), except maybe (3.11), which is holomorphic

unless y =1 and j; = an — s. So, we are interested in the sum

(3.26) > ﬁ L(2s + 2k — p1(k), 1).

w’:plele[w]ﬁYﬁ k=kp,
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These kinds of sums are calculated in [14, Section 7.2]. We again make a
transition p; — p} (as in (3.8)). In [14, Section 7.2] the sums of products of
the form L(s'+ % +2k—p(k), 1) are studied, with m’ = j;, n’ =n—ji, so
that we want 2s = s’ + ”';m/. We get s’ = s— % The results in [14, Section
7.2] are given for s’ > 0, so we can directly apply them if j; > % — 2s. The

m/+n’

value o = — &' becomes o = jo. Then, n’ = n — j; > a = jz, and
a+1>m' = ji, so [14, Lemmas 7-15] guarantee that the sum (3.26) is
holomorphic. Assume for a moment that x # 1 or j; < "771 — 8. Then, we
conclude that Zw’e[w]ﬁYﬁ r(As,w’)~! has a pole of (at most) the first order.

Now we examine what happens in s < j2§j1, ie. j1 < 5 —2s. We
again use the same results, but we have to look closely what’s happening.
Note that (recall that we are now examining only w’ € [w]’) the changes are
i n+1—2s—1, so the values in p1(j1 + 1),...,p1(J2) cannot correspond
to any changes. For example, if p1(j1) < p1(j2), then only the values at
the place {1,...,j1} U {j2 + 1,...,n} might vary; on other places we have
p1(j1 +1) = n,... (cf. Lemma 3.4). We just remove indexes j; + 1,..., jo
from the considerations. So, instead of the permutation p}, we have the
permutation py (i) = pi(i) = p1(d), i = 1,...,71 and instead of p|(i) =
pl(n +1 +]1 - Z)a i = jl + ]-a' -.n, we have plll(z) = pll(Z +]2 - jl)a {
ji+1,...,n—(j2—j1). Now, m' = j1, ' =n—jo. We get s’ = s and o = jq,
and we can again use Lemma 7-15 of ([14]) to conclude that the sum (3.26) is
holomorphic (note that we could reason like this even in the case s > %)
Now, if p1(j1) > p1(j2) the values on the indexes iy, ..., j1 are fixed for every
w' € [w]NY]! (cf. Lemma 3.4) and

J1 J1
> [T Z@s+2k—pi(k),1) = J] L2s+ 2k — pi(k), 1):
w’:plsle[w]ﬂYj’i k=kp, k=1,
2t —1
(3.27) > I Z(2s+2k = pi(k), 1).

w’'=pre1 €[w] Ny k=kp,

Note that we have proved that [[;L, L(2s + 2k — p1(k), 1) is holomorphic
in the proof of Lemma 3.6. As we saw from that proof, the smallest values
{1,2,...,2s+ 2i; — 1} are attained on the places {1,2,...,i; —1}U{n+2—
25—, ...,n}. Thus, we take m’ =iy — 1, n’ = 2s+1i; — 1 and s’ = 5. We get
a=m' =1i; — 1, thus again
ir—1
> II Z(2s+2k—pi(k),1)

w’:plele[w]ﬁYj’; k=kp,

is holomorphic by [14, Lemmas 7-15]. O
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4. COMPOSITION SERIES OF LOCAL REPRESENTATIONS

4.1. Non-archimedean case. In this subsection we assume that F' is a
non-archimedean field of characteristic zero.

The lengths of the composition series for the degenerate principal series at
a local non-archimedean place of the form we are studying were studied in the
work of Gustafson ([12]) and Kudla nad Rallis ([19]). Gustafson was concerned
with the unramified case and Kudla and Rallis covered other situations. We
analyze this degenerate series using the Aubert involution, and then it will
turn out that some of the subquotients of the degenerate principal series are
Aubert duals of some discrete series representations. We do that because we
will use some of the basic theory of the discrete series for classical groups in
the last section, in Lemma 6.4.

In [19] these representations are analyzed in a form adjusted to fit in
with the theta correspondence. We end this section by giving the explicit
description (as the Langlands quotients) of the subquotients of this degenerate
principal series which will show up in the description of the images of the
Eisenstein series.

For an irreducible admissible representation o of a connected algebraic
group over a non-archimedean field F| let & denote its Aubert dual (a genuine)
representation, as defined in [6]. So, ¢ for us denotes the Aubert dual (which
is defined on the level of the Grothendieck group), but multiplied with +1 to
obtain a genuine representation. The following is a well known fact (cf. [6]).

LEMMA 4.1. Let o be an irreducible admissible representation of GLy(F)
and 7 an irreducible admissible representation of Spam(F). Then, in the
appropriate Grothendieck group (of finite-length, smooth representations of
Spa(k+m) (F)) the following holds

TXNT =6 X7

Note that the Aubert dual of a trivial representation 1g, () is the
Steinberg representation Stqgr, (r); this extends to the twists of these rep-
resentations by characters. We use Lemma 4.1 to be able to determine the
length the representation xv° x 1 in terms of the length of the representation
xv*Star, (ry ¥ 1 (which are the same). In the previous notation Stgr,,(r) =
§([v="= ,v"7"]). Here p is a trivial character of GL;(F) = F* and we skip
it in the notation. In [24], the composition series of xv*Stgr, (7) % 1 (and

many other cases) are determined. Now we have the following basic result
(cf. Theorem 9.1 of [37])

LEMMA 4.2. Assume F' is of characteristic 0. In order for the represen-
tation 5([1/5’%90 I/SJF%X]) X 1 to be reducible, it is necessary and sufficient

that there exists an index j € {0,...,n— 1} such that 1/5’%”)( x 1 reduces
(in SLo(F)).
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Since reducibility for SLs(F) is well-known, and using Aubert involution,
we have this simple corollary:

COROLLARY 4.3. Ifx? # 1 or s—25 € Z, or|s| > 241 the representation
xvlagr, X 1 of Span(F) is irreducible.

Now we assume that x> = 1 and s — 5% € Z, and |s| < %, We can
fully describe the composition factors of the representation xv°lgyr, x 1 of

Span(F). We further assume that s > 0.

LEMMA 4.4. Assume that x is a trivial character of F* and s > 0 such
that s — "T_l €Z and s < ”T'H Then, in the appropriate Grothendieck group,
we have

1. Assume s = ”T“

v 161, %1 = Lsp,, + LOW,)i1),

n+1

where 1gp,, is the unique (spherical) quotient of v™2 x 1.

2. Assume s = an

V5 g, 0 1= LY. o0 % 1) + LG([W0, vn1]): 1),

and L(v"=1, ... Y00 %1) is the unique (spherical) quotient of v"=" x
1.

3. Assume s < “51. Then, the representation vi§([v="= v T |)x 1 is of
length 3, it has two square integrable subrepresentations, say, o1 and

n—1 n—1

o2 , and the Langlands quotient L(v*6([v~"2z ,v = |);1). Thus,

Vlgr, @ 1=a1 + 05 + L(ss([v="7 "7 ]); 1).

—
n—1 n—1

Here, L(vé([v= "2 ,v 2 ]);1) is the unique subrepresentation of v°x1
and o1 and o3 are irreducible quotients. One of &;, © = 1,2 is the
spherical subquotient.

PROOF. We use the Aubert involution, and switch to discrete series sub-
quotients, because it will be handy later. So we use Proposition 3.1 (i),
Theorem 4.1.(ii) and Theorem 2.1 of [24] and Aubert involution to get all the
irreducible subquotients. To get claims on quotients and subrepresentations,
we proceed as follows. Assume s = ”TH We then have an epimorphism

_ n+1
VEx i xcoxut il s v 0,
n n—1 1 n ,n—1 1. —
and we know that v x " 7! x---xvtx 1 has L(v™,v" 7, ... ,v 1) = 1gp, (m)

as the unique quotient, so the claim of the first part follows. Analogously, we
have for s = "T_l an epimorphism

n—1
Pl 2o x 1 s v w1
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The representation L(v"~1 v"=2 .. 1Y % 1) is the unique quotient of v~ x

v"2 x -+ x 9 x 1, and the second claim follows. As for the claims in the
third part, we use the description of the Jacquet modules of the Aubert dual

of a representation. Indeed, by [6], we have

(4.1) ra,c () = w o Dy—1(ary © To—1(ar),c (7).

Here, for a reductive group G and its Levi subgroup M (where P = M N
is the corresponding parabolic subgroup), ras,¢ denotes the Jacquet module
with respect to M (more precisely, to P). D1y denotes Aubert invo-
lution on the representations of the group w~!(M); here w denotes a cer-
tain element of the Weyl group of GG, but for our choice of maximal Levi
subgroup GL,(F) of Spa,(F), we have w™!(M) = M. The above rela-
tion is meant on the level of the Grothendieck group. Using the Frobenius

reciprocity, to prove that L(v56([v~—"= ,v*=]);1) is the unique irreducible
subrepresentation of v*1gr, » 1 it is enough to show that v* ® 1 appears
with the multiplicity one in rjs gp,.(F)(¥*1gr, % 1) and that it appears (as
a subquotient) in TM75P27L(F)(L(VS(5([V_WT71,V%]); 1). But, as a basic prop-

 —1

erty of Langlands quotients we know that v=*6([v= "= ,v"7])®1 appears in
A, Span () (V2O (V5 v T “]) % 1) with multiplicity one, and that it appears

n—1

0 707, 5, (7) (LS (™7 "7 ]);1). Now the claim follows immediately
from (4.1). To see that both of o7 and o3 are irreducible quotients, we first
note that this is equivalent to showing that o; < v~%1gy, x 1 (this easily
follows from a result of Waldspurger, cf. Theorem 2-6 of [15]). Now we use
the proof of Lemma 4.6 of [22], but applied to Aubert duals of the representa-
tions treated in that Lemma. Let 1gr, , (r) ¥ 1= ﬁ EB@, where T7 and Th
are irreducible and tempered representations. Then, using the same Jacquet
module calculation from Lemma 4.6 of [22] and using (4.1), we show that &;
is the unique irreducible quotient of v™/?1¢y,. TJ, for one of the T We can
take that

(4.2) G s v g, 0Ty, i=1,2.

We comment on this choice below. On the other hand

I/fn/Q —n/2 —n/2

1GL25 xT) dv 1GL25 X Ty =v 1GL25 X 1GL7L725 X 1,

and v=°1gr, X1 — y /2

the multiplicity one in v="/21gr,. x 1gr, _,. X 1, we are done. We note that in
this case (of unramified principal series), the Iwahori-Matsumoto involution
(which in this case coincides with the Aubert involution) takes generic to
spherical representations, and the last claim follows. O

ler..x1gL, ,.x1, and since 6;, ¢ = 1,2 occur with
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LEMMA 4.5. Assume that x is a quadratic character of F*, x # 1, and s >
0 such that s — an € Z and s < "TH Then, in the appropriate Grothendieck
group, we have
nTJrl
2. Assume s < ”T_l Then, analogously as in the case of trivial character,
we have:

1. Assume s = . Then the representation v°x1lar, » 1 is irreducible.

—

vxlgr, X1 =01 +03 + L(VS(S([V*”TA,V”;]); 1).

Here, L(Vsé([xy_%,xy%]);l) is the unique subrepresentation of
vxlgr, ¥ 1 and o1 and o3 are irreducible quotients.

PRrROOF. Straightforward from Theorem 2.1 and Proposition 3.1(ii) of [24].
O

Now, we use some results of [22] to describe more thoroughly the dis-
crete series whose Aubert duals appear as subquotients in our degenerate
principal series. The results in [22], at the time of publishing, were depen-
dent on so-called basic assumption, which describes the cuspidal reducibility
in the generalized rank-one case. But, the results we use are independent
of these assumptions, because we are, essentially, in the principal series case,
where the cuspidal reducibilities boil down to the SLo—case, which is very well
known, without any assumptions. Meanwhile, the work of Arthur confirmed
the basic assumption from [22]. The discrete series of classical groups are,
by [22], described by their partial cuspidal support (in our case, the trivial
representation of the trivial group)-this is the cuspidal representation of the
smaller classical group from which the discrete series (along some represen-
tation on the GL-part of a Levi subgroup) is induced; then with so called
Jordan block (this, roughly, describes the G L-part of this induced represen-
tation), and some function on this Jordan block. For our o;, i = 1,2 the
Jordan block is {(1gr,,1), (x,n — 28),(x,n + 2s)}. The information in the
parametrization of the discrete series which distinguishes o from o5 is a £1-
valued function, so called e-function, on the Jordan block. Then, for one
of these discrete series e(x,n — 2s) = e(x,n + 2s) = 1, and for the other
e(x,n —2s) =e(x,n+ 2s) = —1 (actually for x = 1 the function ¢ is defined
only on pair {(x,n—2s), (x, n+2s)} but again the same notation is used as if it
were defined on the particular element). We know that the longest normalized
intertwining operator N (wg, A ) : X1gL, ., X 1= TeT — Xlar, .. x1
acts as identity on one the summands, and as minus identity on the other (cf.
Lemma 4.6). We take, from now on, that the one on which this intertwining
operator acts as the identity, is ﬁ; the other one is T; With that convention,
note that if y is unramified, 7} is spherical (because N (wp, A§ ) must act as
the identity on the spherical vector).
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LEMMA 4.6. Assume F is a non-archimedean local field of characteristic
zero and let x% = 1 be a character of F*. For an odd positive integer m, greater
or equal to 3, we define m = C(Xzf%,xymTfl) x 1. Let T be normalized
intertwining operator (normalized as in (2.4)) of Spam(F') attached to the
longest element of the Weyl group, modulo the longest element in the Weyl
group of the Siegel Levi subgroup. Then, the representation m is a sum of two
irreducible representations, and T is holomorphic, acting as the identity on

one subrepresentation, and minus identity on the other.

PROOF. The operator T is holomorphic and unitary because of the prop-
erties of the normalization which is used. This is discussed in detail, for exam-
ple, in [26], before Theorem 6-21. Also, the basic properties of this normaliza-
tion guarantee that 72 = 1. These observations are valid also for archimedean
case. Now, the representation 7 is a sum of mutually non-isomorphic irre-
ducible representations in both archimedean case ([21], Theorems 5.5. and
5.6) and non-archimedean case ([12], Theorem 10.16, [19]); in the latter case
the length of the representation is two. This means that T can act as plus or
minus identity on each subrepresentation.

In the non-archimedean case, for the Aubert dual 7T we have

m—1 m—1
2

=0T v T ) xd,

and Harish-Chandra commuting algebra theorem says that the analogous op-
erator T has to act as identity on one subrepresentation, and as minus identity
on the other. But this claim transfers to our case in question (cf. [8], Theorem
5.1). O

Later on, we will see that the representations ; appear as images on the
local places of the global representations which are the automorphic images of
Eisenstein series. It is important to be able to describe these representations
explicitly; i.e., as Langlands quotients. As we saw from (4.2), we have

n+1 n—1

XKW T v T )T, - 6,

and ¢; is the unique quotient in this representation. Since ﬁ has strictly

smaller exponents from those appearing in x¢ (V%*S 8

,v"2 +%) in its cuspidal
support, the main problem is to determine 7;. We do it by induction.

LEMMA 4.7. Let Stgp,(r) denote the Steinberg representation of SLy(F).
Then 10 x Stsr,(r) is reducible, 0 % Stgr,ry = T © Ty, where Ty is the
unique common tempered subquotient of V¥ x Stsr,(r) and C(O, vt x 1. Let
m € Z>1. Then

C(me’l/m) Nl:i@ﬁa



DEGENERATE EISENSTEIN SERIES 313

where Ty is a spherical subquotient. Then,
T m om  m—1  m-—1 2 02 1 1.0
Tn=L" v v U N el i Za S Vb I B
o m .m .m—1  m—1 2 .2 1.
To =L v v U RN i i e L D

Assume now that x> =1 but x # 1. Then x x 1 =T & TY is a reducible
representation of SLa(F). Then, if m € Z>1 and xC(v™™,v™)x1 =T, & Ty,
we have

Ty = LOw™ ™ xv™ o™t o o et o TD), i =1, 2.

PROOF. In the first part of the proof the main step is the case m = 1.
Indeed, we have

1 0 1

_ - 4
T s x1Oxvixl St x0

1

Xv - xl1

¥ %1,

B 1 _

=V XUV
Here A and B are normalized intertwining operators. The kernel of the oper-
ator Ais v=! x 19 % Stsr,(r), so that T7, as a spherical subquotient, cannot
be a subquotient of that kernel, so we have

0 1

T v ix¥xvtxl.

Analogously, the kernel of the operator B is v~ x V_%StGIQ(F) x 1, so that
we have

1

Ty —svixvtx¥xl,

but the representation on the right-hand side has a unique subrepresentation,
namely L(vt, vt 00 x 1).
On the other hand

Ty < Cv %) x vt X 1.
So we have that, in the appropriate Grothendieck group
To < (™1 0°) % Lspyemy or To < (™1 1°%) % Sty -
On the other hand, we know that ﬁ < (v, 1Y) % 1sr,(F) since ﬁ is spher-
ical. When we calculate the multiplicity of ((v~1, ') ® 1 in t}/l\e appropriate

Jacquet module of ((v~1, %) x 1sL,(F), it is one (and each of T3, i = 1,2 has
that part in its Jacquet module). We conclude that we must have

T, < Cw,v°%) % Stsr,p)-

Also, we have 10 x Stgry = T ® Ty, for some tempered representations
T/" and T4 . Let T4 be the unique common subquotient of v° x Stg L(2) and
¢(¥°,v') x 1. We then have

0= Ty < (W0 x1— L x1) = 0.
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Thus, if @ is not in the kernel of the intertwining operator C' below
T v tx R ER! N L' 0% x 1),

we would have T5 < v~ x L(v';1° x 1), but then v~ @ L(v';1° x 1) would
have to appear in the appropriate Jacquet module of T5, which is impossible
(we actually check the appropriate Jacquet module of (vt 1) x Stg La(F)
but it does not appear there either). The kernel of C' is v~ x T4/, so we must
have T» < v~ x T4 and the claim follows.

Now, for general m > 2, we have

C ™ ™) x 1= v ™™ H xv™ 312 ™ v Hxr ™xl
= N 2 7 I I VL VR C(V*(mfl),l/mfl) X 1

and we just apply the induction on the representation C(V*(m’l), L
The case of x # 1 is similar but easier. O

COROLLARY 4.8. Assuming the notation from the previous lemmas form
this section, we let an — S E€Zsqg- If x =1 then

a:L(l/%-i_s,l/%—i_s,...,V%_S,V%_S,V%_s,...,1/1,1/1;1/0 x 1),
and

EE:L(VWTA"'S,VWT%"'S,...,V%H_S,V%_S,V%_S,...,VQ,VQ,Vl;TQ").
If x # 1 we get analogously
05 = L(Vanl"'s,an"‘s, .. .,VnTH_s,VnTil_s,ynTil_s, vt i =1,2.

4.2. The archimedean (real) case. Throughout this subsection, we use the
results of [21], where the author studies the Siegel case of the degenerate series
for Spa,(R). Here € € {0,1}.

Thus, we have

COROLLARY 4.9. Assume n > 3. The representation XooV’lgr, X 1 is
reducible if and only if xXoo = sgn® and s + ”T“ SYA

Later, we need the following

LEMMA 4.10. Assume Xoo = 1 and an — 8 € Z>o. Then, the spherical
vector in the representation v *lcr, X 1 of Sp(2n,R) spans an irreducible
subrepresentation.

ProoF. This easily follows from Theorems 5.2, 5.4, and 5.6 of [21]. There
the socle series of the degenerate representation v *1qr, » 1 are studied,
and the subquotients are described by their K-types (and not as Langlands
quotients). It is a matter of a straightforward check to see that the socle of
representation v 1gyr,, x 1 contains a subrepresentation which contains the
trivial K-type. O
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REMARK 4.11. Note that from the proof of Lemma 4.6, it follows that,
in the archimedean case, we can take sgnlgr,, X1 =T} oo @ T2 (for m
odd greater than 3), where we define T o, = {f € sgnlgr,, X 1: Tf = f}

and T/2; ={f e sgn®lgr,, x1:Tf = —f}, where T is the normalized in-
tertwining operator, defined analogously as in Lemma 4.6. The more difficult
situation in the archimedean case comes from the possibility that ﬁ-,;, i=1,2
are reducible (or zero).

5. THE LOCAL INTERTWINING OPERATORS

In this section we analyze the action of normalized intertwining operators
occurring in (2.5), where w € [W/Wa\{a,}]- We recall (3.1) for the form of
the inducing character of the maximal global torus. When we untangle action
of the Weyl group on Ay (cf.(2.1)), we get that w = pe consists of shuffles (cf.
[19] for the definition) of (As)1,. .., (As); among (A), !, ..., (As);ﬁ1 (in that
order), so that w(As) looks something like this

(5.1) Ay ® (A1 @ (Ag)2 ® -+ @ (Ay); @ (Ag) 7,

where (A,); = xv*~ "= T1=1. So, each of the (normalized) local intertwining
operators is composed from the rank-one intertwining operators, starting from
the one (in SL(2)) from (Asp)n X 1 to (Asp),* % 1, then GL(2)-operators
which jump over (Asp)j, (Asp)j—1-.. until (Ag,), " is positioned on its final
place, e.g. like in (5.1). Then we repeat the same procedure with (Asp)n—1
and so on until (As,);+1. Thus, our normalized intertwining operators are

composed from the rank-one operators (p < o)

n

n—1, . 1, . .
o xpriT T Tl X;1V7(57 = T~ %1, where iy = j+1,...,n

o 'n.;l Fig—1

—(s— 251 44y

nlgi—1) 57"2;1“‘271,

XpV xx;lz/ - ijll/*(sf X XpV

where iy =54+ 1,...,nand i2 € {1,...,j}.
The normalized intertwining operators are holomorphic in ”standard” cases
(ie. s — 2L iy > —(s — 251 +iy) for GL(2)-cases and s — %51 + i3 > 0
for the SL(2)-cases) and in non-standard cases if the inducing representations
are irreducible. Reducibilities for SL(2,Q,) and GL(2,Q,) are well-known;
we first have (cf. [27], Theorem 2.4 and Theorem 2.5)

LEMMA 5.1. The representation XPVS*anlJF“*l X1 of SL(2,Qp) is re-
ducible if and only if
Lp<oo:xp=1lands—252+i,—1=xlorxi =1, x, # 1 and
s — an1 +11—-1=0;
2. p:oo:sf"T_lJrz‘lflEZandXoo:sgnE, wheresz(sf”T_lJr
i1)(mod2).
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n

LEMMA 5.2. The representation Xpys_%“'?_l X X, 1y=(s=
GL(2,Qp) is reducible if and only if
L p<oo:xi=1ands—"5 +ip—1+s—25 iy —1 = 2s—n—1+4i1+iy =
+1;
2. p=o00:x% =sgnftt and 2s —n—1+i+iy = k, for some k € Z\{0};
i.e., 2s —n+ 1 +iy + iz is an odd integer, and x2, = 1.

=1 of

We immediately conclude

COROLLARY 5.3. Assume s > "T’l or X?; %1, p < oco. Then all the local
intertwining operators in (2.5) are holomorphic.

Proor. If s > an we are in, aforementioned, standard cases. If X;Q; #1
all the local representations mentioned in Lemmas 5.2 and 5.1 are irreducible.
O

Now we assume X;% = 1. We can be more precise with the occurrence of
the poles of the intertwining operators that come from the G L-poles. Since
we are interested in the action of normalized intertwining operators not on
the whole induced principal series of Sp(2n,Qp), but on xpv°1ler, » 1, from
the discussion about the action of the intertwining operators described at the
beginning of this section, it follows that we are really interested in the poles
of the intertwining operator

(5.2) O e P 0 i R
. - XpV*(S*”T_l“Fl) % C(Xpysf’%wtil,Xpysf”T*lJrirQ).
Here t;, denotes the index of the last one among (As )1, - (Asp); Where, at

the end, (A, p);," will be situated. We have three cases. If —(s— 251 +i;—1) <
s— an +t;, —1 then we are in the standard case (i.e., this operator factorizes
in rank-one operators action on standard representations), thus the opera-
tor is holomorphic. If, on the other hand, —(s — an +i1—1)€[s— an +
ti, —1,s— 251 +i; — 2], the representation Clgpr™ T Tt xput " Fi1=2) x
Xpy_(s_nT_lHl_l) is irreducible, (for all p < o0) so the holomorphy follows.
Assume that —(s — "T_l +i1—1)>s— ”T_l + %1 — 2 and that the representa-

n—

> +i1=1) ig reducible. This

tion C(Xpysf%thil 71’ Xpysfnz;lJrilfQ) XXp]/f(sf
means that %>i1 >j+1,s05< ”‘TQ‘S
Now we analyze more thoroughly the case when a possible pole comes
from the SL(2) situations (cf. Lemma 5.1). For p < oo, to have a possible
pole, we need to have s — an 4+ 1, € Z and X,Q; = 1. If p < oo, the only

possibility of a pole occurs if we have x, = 1 and the intertwining operator

pe Tl g ] (= D) ] with s — 2l 443 —1 = —1 occurring

in the factorizations of the intertwining operator N(w, As ). Note that this
n—1

implies w € Y}", with i1 > j + 1, i.e. i1 = "5= — s > j + 1. Analogously, for
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p = 00, to have a pole we must have s — %+i1 —1< -1 with#; > j5+1,
soagaianrlgnT_lfs.

We thus have, form the discussion above on GL— and SL-situations, the
following

LEMMA 5.4. Assume j > "T_l — s. Then, all the normalized intertwining
operators N(w, As ) for w € Y}*, are holomorphic.

n—1

To deal with j < “5= — s, we first resolve the case of N(wg,Asp) (we
assume that an — s > 0). Recall that an element wy is described by (3.6)
(cf. Proposition 3.2).

LEMMA 5.5. Assume p < oo. Then, if "T_l — 5 € Z>o, r(Asp,wo) is

holomorphic and non-zero for s < an and has a zero of the first order if

=nl Jfol — s €1+ Zso then, r(Asp, wo) has a zero of the first order.

PROOF. When we cancel out the factors in the numerator and the de-
nominator in the local versions of the expressions (3.3) and (3.5) with x, = 1,
7 =0, we get

L,(s— 25 »(25 4+ 2k —n, 1)

A =
7’( ’p,w()) I (S+ n+1 1 * L 25—}—]?,1)( ) ’

where (%) and (xx) are products of € factors. Now the conclusion follows. 0O

LEMMA 5.6. Assume p < oo, xp = 1. Then, if an — s € Zsg, the
intertwining operator A(wo, Asp) is holomorphic (and non-zero). It has a
pole of the first order for s = 2=L and if "T’l —s5€ % + Z>o.

PROOF. We denote by N the opposite unipotent radical to N, which is the
unipotent radical of the standard Siegel parabolic subgroup. To investigate
the poles, it is enough, by a result of Rallis (cf. [32]), to investigate the poles
of the expression A(wo, A p)f(e), where f € xpv*1ar,, » 1 is such that it has
a compact support modulo P inside PN. So, for s big enough, we have

st [ stom= [1((3 )

Since the support of f lies in PN, we get that X must be regular, so the
last integral is over the set C = {X € GL(Q,) : X" = J,XJ,}. In that case

— -1 —
(}1 )g) _ (XO )gn) (;’11 Ii) o that
A(wo, Asp) f(e) = /c ((XIZ I(it)) o
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I, 0
X' I,
rtz function on that space, we can apply the results of Igusa, and Piatetski-
Shapiro and Rallis ([28], Theorem in Appendix 1), because this integral is
zeta-integral related to a prehomogeneous vector space formed by symmet-
ric matrices. On the regular part of this space, GL,(Q,) acts X — ¢gXg'
with a finite number of orbits. Note that GL,(Q,)-invariant measure on C

is given by d*X = ‘dlan_ﬂ (cf. [34]). We use that for the change of variables
det| 2

X + X! in the previous relation, so that we obtain exactly Z(f,s) as in
([28], Appendix 1). We get that the possible poles of this integral are the
poles of the expression

(5.3) (ﬁ Lp(25+n21+2,1)> Ly(s — ”;1,1),

=l

Since f restricted on { < ) : X € M, (Qp), X' = J,XJ, ¢ isaSchwa-

where I} = [§] + €, where €, is 1 if n is even, and equal to 2 if n is odd.
Now, the claim of lemma follows. 0

COROLLARY 5.7. Assume 2s € Z and 0 < 2s < n — 1. Then, for p < oo,
N(wo, As p) is holomorphic and non-zero.

Note that the result of ([28], Theorem in Appendix 1) holds also in the
archimedean case. Also, to check the normalization factors, we need to
check both the case xo = 1 and the case Yo = sgn, but the same
kind of cancelations between the zeros of the normalization factors and the
poles of the intertwining operators occur. Here Loo(s,1) = 7 2I'($) and
Loo(s, sgn) = ﬂ'_%lf(%). We conclude

COROLLARY 5.8. Assume p = o0 and 2s € Z and 0 < 2s < n — 1.
Then, the normalized intertwining operator N(wo, As p) is holomorphic and
non-zero.

LEMMA 5.9. Assume j < "T_l — 5. Then, the normalized intertwining
operator N(w, As ) with w € Y[" is holomorphic for p < oco.

PROOF. We construct one special element in Y;". Let w; € Y;* with
w; = pe be defined in the following fashion: p(i) =n—j+4, i =1,...,5 and
p(i) =n+1—14 ¢=j+1,...,n. Then we can describe the action of @j; in
the following way.

(5.4)

X X n—1 n-1 . ) n—1 n-1
Xpr® X1 (== ===+ = 1) X o (== + s =) 1 1
N (w}) s n—1 n-1 s n—1n-1

= X (=g Ty = D) o (g

n—1n-1 s n—1 n-1
) ) ) 7.7)XXPV<(7 9 ) 2

c —s
— XpV C(f
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Note that the operator N(wj, As,) is holomorphic: the operator N(wy) is
induced from Spy(,,_ jy—operator and is attached to the longest element in the
appropriate Weyl group there, so we can apply Corollaries 5.7 and 5.8 for
Spa(n—35)(Qp) and s+ % instead of s. The operator C' is holomorphic, induced
from the GL-case. Its holomorphy follows from the fact that in the case
j < 251 —s, the representation x,v~*¢(— 251, 2L —j) x xpr ¢ (- 25, — 251 +
j — 1) is irreducible (for p < oo). Then the normalized intertwining operator
maps (a xp twist of-) the normalized spherical vector to (a x, twist of-) the
normalized spherical vectors, but these vectors span these representations.
Now we can write N(w,As,) = N(ww; ', w;(As,p))N (W, As ). Note that
N(ww; ', wj(As ) is induced from the GL(n)-intertwining operator, i.e.,
we can write it as piey, where g1 = (1,1,...,1) and p1(i) = p(n+1—1), i =
1,...,n—jand p1(i) = p(i—(n—j)), i = n—j+1,...,n, thus it is an increasing
permutation on the first n — 7 and on the last j elements. So, essentially,
N(ww; @i (As p)) acts on xpv~*C(= 154, 25+ — ) X xpv°C(— 25+, =5+ +
j — 1), which is irreducible, so again N (ww; *,w;(As,p)) is holomorphic. 0O

We conclude:

COROLLARY 5.10. Assume 2s € Z such that 0 < 2s <n —1 and XZ =1.
Then, all the intertwining operators N(w,Asp) for w € W\ Wa\{a,3] and
p < o0, are holomorphic.

6. THE IMAGE OF EISENSTEIN SERIES

In our situation, the image of (the normalized) Eisenstein series (2.3) is
isomorphic to its (normalized) constant term (e.g. Lemma 2-8 of [14]). Thus,
we have to determine the image of the local intertwining operators appearing
in the expansion of the constant term of the Eisenstein series. We have seen
that it is important to determine the image of the local intertwining operator
N(wo, As p). Namely, the sums of normalizing factors coming from wg have
the greatest order of a pole, cf. Lemma 3.7, and, as we will see shortly, the
other intertwining operators have kernels at least as big as N(wo, As ).

LEMMA 6.1. Assume that p < co. Assume X;2> =1, an — 8 € Z~g. Then,
following the notation of Lemma 4.4 and Lemma 4.5, we have

N(wo, As p)(Xpv° LG, % 1) =01 & 03
The representation L(Vsé([xpu’%,xpu%]); 1) is in the kernel of all inter-
n—1

twining operators N(w, As p), where w € Y* with j < an —s—1.If s = %,

then, if xp # 1, the discussion is the same as in the case when s < "T’l If s =

2L and xp = 1, then N(wo, Asp)(Xpr®lar, x 1) = L™, w100 x 1),

PROOF. As we saw in the proofs of Lemma 4.4 and 4.5,

n/2

V"/prlgbs X XplGL, .. @1 = V"/pr x Ty @ v =xp x Ts.
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We take j = 2s and define an element w; = pe € Y* as in the proof of
Lemma 5.9 for this specific j. The corresponding intertwining operator acting

on Vn/2Xp]-GL25 X Xplar,_., ¥ 1 acts like this
(6.1)
n/2 N(w[')) n/2 ¢
V' XplG Ly X XplGLy oo X 1 ——= V" XplGL,, X XplaL, o X1 —

/

2
Xplar, .. X V" xplar,, ¥ 1.

The operator N(wg) is induced from the Spy(,,—j)- operator, acting as
the identity on 77 and as minus identity on T5; the image of the operator
C is precisely xpv°lgr, x 1 which is a subrepresentation of xplgr, .. X
v"2xp1GL,, % 1. Note that N (7, A% ) is holomorphic on V" 2xplGL,, X
Xplar, ,, @1 (as N(wg) and C are holomorphic and non-zero). We then
apply N(wo, Asp) on xpr®lgr, x 1. Let us denote by A , a character of the

. . . . . Spon .
maximal torus from which a principal series representation Ind BZ:L " (AS ) is
induced such that the representation l/n/2Xp].GL25 X XplaL, _., X1 is naturally

embedded in Ind%ﬁQ" (A} ,). Thus, we have

N(wo, AS,P)N(w_]'a Als,p)(yn/2XP1GL25 X X;D]'GLn72s el 1)
= N(wo, Asp)(Xp*1lGL, ¥ 1).

When we calculate wow; directly we get wow; = pi€1, where p(i)=j+1-—
i, i=1,...,j5and p1(i) =4, i = j+1,...,n. The corresponding intertwining
operator N (wowy, A ,) acts as

VX160 X XplaL, _p. X 1= "2y, x Ty @ v\, x Ty

— V_”/pr xT) & V_"/pr x Ts.

On the other hand,

N(wow_j7 A;,p) T, (Vn/QXP]-GL2s A ﬁ) = O/—\ia 1=1,2.

l/"L/2Xp1GL25 XT;

Indeed, if this operator is non-zero and holomorphic, than the image has to
be 7;, i = 1,2 since &;, ¢ = 1,2 is the unique irreducible subrepresentation of
V‘"/prlghs xﬁ- and the unique irreducible quotient of V"/prlc,;% xﬁ-, =
1,2 and appears with the multiplicity one in l/n/2Xp].GL25 X ﬁ-, i=1,2 (cf.
Lemma 4.6 of [22]). The holomorphy and non-vanishing of this operator on
v 2xp1GL,, X T, is the content of Lemma 3.5 of [25].

The claim in the case s = "T_l follows from the fact that representation
L(™1,...,v4; 109 % 1) is the unique irreducible quotient of v 1z, 1 and
the unique irreducible subrepresentation of v lgr, x 1 and the normal-
ized intertwining operator N (wo, As p) is holomorphic (and non-zero) on the
spherical vector which generates the whole representation v lgr, x 1. O
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Now we describe more thoroughly the superposition of the images of
N(w, As,p) over all w belonging to the same orbit, as described in Proposition
3.2. First, we deal with the case of the longest element of [W \ Wa\{a,1]-
Let wy € Y and w' € Y;,_9s such that wo(As) = w'(As) (w' is explicitly
described in Proposition 3.2). Denote, for a moment, j = n — 2s (j is odd).
Note that the representation x,lgr, x 1 is an reducible (unitary) represen-
tation of Spa;(Qp), p < co. Let wy be the longest element of the Weyl group
Sp2;(Qp), modulo the longest one in the Weyl group of its Siegel subgroup.
Note that we can view wy as an element of [W \ Wa\{a,}], by prescribing
wa(i)=t¢,i=1,....n—jand we(i) =2n—j+1—4,i=n—j+1,...,n. As
before, we denote x,lgr, X1 = ﬁ@@ where N (w2, 7, xp) acts as the identity
on ﬁ, and as minus identity on @ (similarly for the archimedean case; cf.
remark after Lemma 4.10). In the next lemma we can be more specific in the
case p < oo than in the case of p = co. The problem with the latter is that
we do not know which irreducible subquotients of x.,2® % 1 belong to each of
XOOI/*SC(f”T_l, "T_l —J) ™ fi:o, i = 1,2. The problem of classifying the sub-
quotients (in terms of Langlands quotients) of the degenerate principal series
for Sp(2n,R) like these is still unsolved (cf. [21]) and we plan to address it in
some other occasion.

LEMMA 6.2. Assume x?> = 1 and 251 — s € Zso with s > 0. Let
fs = ®@p<cofp.s € I(s). We denote by fp _s the normalized spherical vector in
Xpl/_schn x 1. Then,

1. Assumep < 0. If s < "T_l, if fp,s belongs to the subquotient o1 we have
N(wo, Ao p)fp,s = N(W', Asp) fp.s and if fp s belongs to the subquotient
o2 we have N(wo,Asp)fps = —N(W',Asp)fps; the same is true if
s = ”T_l and xp # 1. If s = "T_l and xp = 1 then N(wo,Asp)fps =
Nw',Asp) fp.s, for every fps € xpv®lar, » 1.

2. Assumep =o0. If s < "T_l ors = ”T_l and xp = sgn, so that we have

Xool(=(25% = 8), 25t —5) X 1= T oo © Ty 00, then N(wo, As o0) foo,s =

N (W', Ny 00) fooys if foo,s belongs to xoor~*¢(— 252, 251 = ) x Ty o and
N(wO;As,oo)foo,s = 7N(w/7As,oo)foo,s Zf foo,s belongs to

n—1n—-1 —
— 1) XN T5 .
5 g J) )Ty,

XooViSC(*

Now assume additionally that Xoo =1 and foo,s is normalized spherical. As-
sume that S is a finite set of finite places and for p ¢ S, let fps be the
normalized spherical vector.
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1. Assume s < ”Tfl For Sy C S we pick fps € o1 and for p € Sy :=
S\ Si, we take f, s € 52. Then, the expression

r(As, wo) ™ (®pesi N(wo, As,p) fp,s)
® (®p€S2N(wO7 As,p)fpys) & (®p¢5’fp,*5)
+r(As, wl)_1(®p651N(wla Asp)fo,s)
® (®p652N(wlv As,p)fp,S) ® (®p¢3fp7—8)

is holomorphic if |S2| is odd, and has a pole of the first order if |Sa| is
even.
2. Assume s = an Then, if x = 1, the expression

r(As,w0) ™t (@pesN (wo, As p) fp,s) @ (Dpgs fp,—s)
+ T(As,wl)71 (®p€SN(wlaA5,p)fP75) & (®p¢8fp775)
has a pole of the first order.
If x #1, let S1 C S be a finite set of places such that x, =1 forp € Sy
and So = S\ S1 such that xp # 1 for p € So. We take Sy = S5U Sy
such that for p € Sy, fp.s € 01, and for p € SY f, s € 02. Then
r(As, wO)_l (®p651N(w0, As,p)fp,s) ® (®pES§N(w0a As,p)fp,é’)
® (®pesyN(wo, Asp) fps) @ (Dpgsfp,—s)
+ T(Asa w/)il (®P631N(wlv Asﬁp)fpys) Y (®p€SéN(wlv A'Sip)fp7s)
® (®p€S§/N(w/aAs,p)fpys) ® (®p¢8fp775)

is holomorphic if |SY| is odd, and has a pole of the first order if |SY |
15 even.

(6.2)

(6.3)

Proor. In the proof we omit a subscript s in f, s if it is understood
that f, = fp s belongs to I(s.) We examine the actions of the intertwining
operators N(wo,As p) and N(w', As p). We have wy = wow’, where wy is a
Weyl group element introduced in the discussion before this Lemma. We note
that

w(A) =AM OAN @ @AM QA ®- @A,

where j = n—2s. We can now describe the action of N(w', As ) on xpv° x1:

s s n—1 n-1 s n—1 —n-1
XpV® X 1 = xpv°C(— 5 T +J_1)XXpVC(_T+J7 5 ) %1
s n—1 n-1 s n—1n-1
=XV (=g s I D) X (g 5 ) x
s n—1n-1 s n—1 n-1
%Xpl/ C(f 9 9 2 7])XXPV C(f 9 )y ) +]71)><|1

Since y,pv*¢(— 25t — 25+ —1)x 1 = T oT, (always reducible if s < 21
n—1

or s = 2

and x, # 1, analogously if p = 00), the representation in the last
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line of the expression above decomposes as
n—1n-1 n—1n-—1

(64) XpV C(f 9 ) 9 2 ) 2

Since (the intertwining operator related to) wy acts as plus/minus identity

—j)><|1/“\2.

- .7) xT) @ XpV_SC(f

on 77 and 75 this action induces in the same way to the action on the two
summands in the relation (6.4) and the first part of the lemma follows. This
means that (6.2) becomes

(r(As, wO)il + (_1)|S2|7“(A8a w/)il) (®pes; N(wo, As p) f)
& (®p€~92N(w07 As,p)fp) ® (®p$5fp,*5)'

We now calculate (r(Ag, wo) ™+ (—1)1%2lr(A,,w")~1). This is essentially done
in Lemma 3.6, but note that jo — j; = n — 2s is odd, by our assumption
(251 — s € Z>p). Also, we do not even need Lemma 3.7, since [wo] N Y is a
singleton. Thus, analyzing the quantity A; from Lemma 3.6, we see that, if
Jo —J1 >3, r(As,wo) ! = r(Ag,w’)"! and this expression has precisely the
pole of the first order, which is the same we obtain if n — 2s = 1, but x # 1.
If n—2s=1and y = 1 we get that r(As,wg) ™t = —r(As,wo) !, and it has
a pole of the second order. On the other hand, if s = "T’l, the representation
xpv C(—25E, =251 + j — 1) % 1 becomes x, x 1 (representation of SL(2)),
and this is reducible if x,, # 1 and irreducible if x, = 1. Thus, if x,, = 1 and
1

5= "=, N(wo,Asp)fp = N(w',Agp) fp for every f, € xpv°lar, » 1. O

Now we examine what happens in the situation of orbits attached to
elements w € Y}", where now j is any integer form the set {1,2,...,n—2s—1}.
Note that, by a remark after Proposition 3.2, the orbits for w € Y}, where
j > n—2s+ 1, are singletons.

LEMMA 6.3. We keep the assumptions of Lemma 6.2. Assume w' € [w],

where w,w" € Y, for some j € {1,2,...,n— 25— 1}. Then,
N(w, As,p)fp,s = N(w/a A&P)fp,sa

for all fps € xpv°lgr, ® 1 for p < oo. Further, the representation
L(Vsé([xpzﬁ%,xpy%]);l) is in the kernel of all intertwining operators
N(w,Asp), p < oo, where w € Y]* with j <n — 2s.

PROOF. We recall of the element w; € Y, introduced in the proof of
Lemma 5.9. For w € Y;* we have

N(w,Asp) = N(ww_jilaw_j(As,p)N(w_ja Asp).

If w' € Y* is in the orbit of w, i.e. w(As) = w'(As), we can look at action of
N(w'w; =, w5 (As p)) on xpr ¢~ ”51, nT_l —7) XXPVSC(*nT_la *nT_lJF]‘*l)-
If we prove that the actions of N(w'w; 1, w;j(As,)) and N (ww; w5 (Asp))
coincide on 7 := X ¥¢(— 251, 251 — 5) x xprfC(— 25, — 251 4+ 5 — 1), the
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actions of N(w, As,) and N(w’, As,) will coincide on x,v® % 1, but for j <
"T_l, 7 is irreducible, and, for such j, the claim follows.

Now we examine what happens if "TH — s < j < n—2s (actually, it is
enough to see what happens for 2 —s < j < n—2s—1, since orbit for Y,?_,,
and Y were discussed prev1ously) Note that in that situation, n —2s — j <
an — s, and we are going to exploit that, using the cases we have just studied.
We again assume 1 < j < "T_l —s,sothat n —2s —j > ”T'H — s, and denote
71 = 7 and jo = n — 2s — j as we recall our considerations about orbits in
YJ? and YJZ from the second section. Let w = p1e1 € Y}, . Assume firstly that
p1(j1) < p1(j2). Then, we have p’(j1) < p'(j2), for every w' = p'e’ € Y7 from
[w]. We recall the bijection between Y} N [w] and Y2 N [w] from Lemma 3.4.
Now we can explain the action of N(ws,Asp) as follows (of course now A;

actually denotes A; ).

Xpv® X 1= (A1, Ajy) X C(Ajyq1,An) X 1

— C(Ala j ) X C(A Aj_2+1) X1— C(A A]_2+1) X C(AlvA]é) X1

(6:5) (AL AL X C(AL Ay ) X C(Agyt1, Agy) % 1

— C(A AJ;H) X C(Ala jl) XC( j1+1aAj2) x1

where * part denotes a representation on which G L—intertwining operators

act, as in the beginning of the proof of this lemma. Analogously, we see that
the action of wy € Y] N[w], the bijective image of w above, will acts similarly,
but, composed with the intertwining operator induced from ¢((Aj, +1,4A;,)

1— C(AJ2 ,A_1+1) x 1 to obtain

CIATY ALY L) X C(AL Ay ) xC(AL A ) > L

Note that the representation ((Aj, 11, A,) (so (( j1+1,A4,) %1 also) is unitary.
Moreover, ¢(Aj,4+1,A),) X 1 = xp¢(—(2 51 —j1), 251 — s —j1) x 1 is, for

p < oo, reducible, unless x, = 1 and j; = T —s. So let xp¢(— ("—1 —s—
jl), ;1 —s8—j1) X1 =m1 & my be such that the intertwining operator above
acts on 71 as the identity, and on 75 as the minus identity (for p = oo, w1 and
7o can be reducible or zero). Then, if we denote by 73 the image of the (GL—

induced) intertwining operators acting on ¢(A,! A]21+1) x C(A1,Aj,), we see

that if N(we, Asp)fp =v € mg X w1, then N(wi, Asp) fp = N(we, As p) fp and
if N(wa,Asp)fp =v € m3 x ma, then N(wi,Asp)fp = —N(wa, Asp) fp-

From this reasoning, we also conclude the following: since we know that
for wy,wi € Y] N [w] we have N(wi,Asp)fp = N(wi,Asp)fp (since ji <
21 _5), from the bijection of Y}!— and Y} —parts of the orbit [w], we get that
for any wq,wy € Y} N [w] we have N(wg,As ) fp = N(wh, As ) fp for every

fp € xpv® > 1. Ifxpflandjlf—fsthenxp(( (—757]1) —1fo
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j1) X1 =1, x1 is a spherical irreducible representation of SL(2,Q,) and the
corresponding intertwining operator is just the identity, so that we trivially
have N(wa, Asp) fp = N(wy, As p) fp = N(wi, As p) fp for every f, € xpv° x 1.

We have to examine the second possibility, namely when for w = p1e1 €
Y[ p1(j1) > p1(j2) holds. According to our discussion in the second section,
there exists i; < j; such that the intervals of change for w end with i; — 1.
Again, we use the bijection from Lemma 3.4 case 2: let w’ = p'e’ € Yj, N [w]
and let w” = p"e” € Y N [w] be its bijective image. We have the following
description of the actlon of N(w", As p) for w” € Y7 N [w] on xpriler, ¥ 1:

xpV°lar, x1
(A1, Ady—1) X (A4, Ajy) X C(Ayy 41, Ay,)
X C(Ajyg1, Angr—2s—i,) X C(Ang2—2s—i,, An) X 1
(A1, Agy—1) X C(Ai, Ay ) < C(AGy 41, Ay)
X C(Ajya1s Ang1—2s—i,) X (A, An-il-Q 95—i,) X 1
= A AL s 0y i) X C(AL, Ag—1) XC (Mg, Ay)

XC( J1+1, ]2)X<( j2+17An+1 25— ’it) x1

- * ,XC( n+17257it ]2+1) X C( Hv ) X C( ]1+1a ) x 1,

where * denotes (A, A iQ 9s—i,) X (A1, A, 1) and is precisely the part

of the representation on which both w” and its bijective image w’ € YN [w]
have the same action. On that part, the same GL-intertwining operators
act. For w’-action, on the obtained representation, we have further action as
follows:

* XC( n+1 25—14) ]2+1) X C( 1t7 ) X C( ]1+1a ) X1
T1
‘>\ * ,XC(AuvAm) X C( n+1 28— ]2-',-1) C( ]1+17 ) x1

T _
2 * C( 1t7 ) C( n+1 28—1i4) j2+1) C(AJQ ’Alerl) x 1.
The operator T3 is induced by G L-action

C(A;Jrl 25—14 ]2+1) C( it Jl)_>C(AiH ) C( n+1 28—1i¢) Aj_2+1)

and, when we resolve the indexes, we see that both of these factors are the
same, thus 71 is the identity. The operator T5 acts on the unitary representa-
tion ((Aj,4+1,4Aj,) x 1 as a sum of identity and -identity action, as explained
in the previous case. We can, thus, describe the action of N(w”,A;,) by
N(w"”,Asp) = BA, where A denotes the action in the first two arrows of (6.6),
and further action GL—-action on o and B denotes the G L-action that will
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occur on places occupied by (A, 11 o, ;. Aj;lﬂ) X C(Agy s Ajy) X C(Aj 41, A5,)
in the case of N(w"”, A ;) and on
C(Aiu/\jl) X g(Ar_ler172sfit’Aj_21+1) X C(Aj_;’ Aj_11+1)

in the case of N(w’, Asp). Thus, N(w',As ) = BToT1 A = BT>A. Thus again,
it Af, € mg x w1, then N(w',Asp)fp = N(Ww”, Asp)fp, and if Af, € 73 %
mg, then N(w',Asp)fp = —N(w”,Asp) fp, where m;, @ = 1,2 has the same
meaning as in the previous case. In this way, we proved the first part of the
lemma. Note that B (if non-zero) acts as an isomorphism on the image of

an operator A described for the action of the operator N(w”,As,) = BA :
indeed, in (6.6), we used the embedding

X;DVSlGLn x 1 <_>C(A17A’it—1) X C(AitaAjl) X C(Ajl"l‘l’ Aj2)
X C(Aja41, Ant1—2s—i,) X ((Ant2-2s—i,, An) 1,
but we only needed ((A;,,A;,) instead of ((A;,,Aj,) X ((Aj,+1,A;,). This
means that B is induced from the G L-operator acting on
C(A;Hl-l—2s—it ’ A;zl—i-l) X C(Au ) Aj2)a

but this representation is irreducible (and B is non-zero on it). We conclude
that the kernel of the operator N(w”, A, p) is contained in the kernel of the
operator N(w’, Asp) (of course, both of these operators we view as operators
on xpv° x 1). In general, from the fact that B acts as an isomorphism on
the image of A we cannot conclude that it acts as an isomorphism on the
image of To A, but in this case we reason as follows. We saw that B is induced

from the GL-operator, say B’, acting on the principal series in which the

representation C(A;j_l_%_it , Aj;lﬂ) x ¢(Ai,,Aj,) is naturally embedded. The

image of the operator T (an isomorphism) is
X A X AR o, AR) X CARH AL X T
so that again
< X C(A;z}rlf%fit’A;zlJrl) x C(Ai,, Agy) x 1
= To( e % ) X QA A ) X CAAGT A y) > 1)
=G xC(Ai,, Ay ) x C(A;L-il-l—2s—i,,’Aj;1+1) X <(Aj;1a Aj711+1) X1,
so that GL-part on which B’ acts is actually the same (irreducible)
C(A;i1—2s—it7A;21—kl) X C(Aiy, Ay ).

We conclude that B is also an isomorphism on the image of T5 A. We conclude
that the kernels of N(w”,A;,) and N(w', A, ) coincide. O

In the course of the proof of Lemma 6.3 we obtained that we can write
N(w",Asp) = BA and N(w', As p) = BI» A (where B = id if p1(j1) < p1(j2);
here we assume j; < ”T_l —s). It is important to examine when Af, € m3 X .
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This we can resolve for p < co. As expected, it turns out that for f, from the
subquotient o1 we have Af, € w3 X m1; analogously for o3 and 73 X 2.

LEMMA 6.4. Retaining the notation from above, for p < oo we have: if
Afp, #0, then Af, € mg xm;, i=1,2 for f, € 0, i =1,2.

PROOF. Assume that j < an —s—1,and let w' € Y/". We recall the
element wj;, introduced in the proof of Lemma 5.9. In (5.4), the first operator
N (wy() is induced from the longest operator, say, N(w()’, acting as

L A B (e
Because of our assumption on j, this is, essentially, a 51tuation from Lemma
6.1, so the operator N(w()’ is holomorphic and the image of N (wy}) is isomor-

phic to

X (=2 2 -t 2 S +j-1) o] @ X C(— 2 -t 2 1
where o) are discrete series representations, analogous to one described in
Lemma 4.4 and Lemma 4.5. The Jordan block of ¢; ¢ = 1,2 is equal to
{(1,1), (xp,n — 25 — 27), (xp,n + 25)}. Note that the operator C from (5.4),
with our assumption on j, is an isomorphism. Note that then the operator
N(ww;~*,wj(As,p)) is also an isomorphism, as discussed after (5.4). Since

we know that L(Vsé([xpy_%,xpy%]);l) is in the kernel of N(w,Asp)
(Lemma 6.1), we get that 4;, ¢ = 1,2 are indeed subrepresentations in
(=25, -2 5 — 1) (;71 D ;’g) if they are not in the kernel of
the intertwining operator N(wg). Now, by looking at the cuspidal support
of Xpu_sé("T*l —-7+1, "771) x o we see that this representation can have at
most one square—integrable subrepresentation, with the Jordan block equal
o {(1,1), (xp,n — 25), (xp,n + 25)}), and the value of the e—function on a
element (xp,n+2s) of the Jordan block of both of these representations must
coincide (cf. [22], Proposition 2.1). This means, if &; appears in

—j)x L

—|—j—1)><]5'g,

n—1 n-—-1 | — n—1 n-—-1 | —

XPVSC(f—af +‘771)>40-/1@XP1/5<(7 s T +‘771)><]Oéa
2 2 2 2

then we must have &; — x,v S((f—l f—+]71)><|01, =121t xp =1,

we can get this more directly- namely, then o7 1s spherical so it has to_ be
a subquotient of x,v SC(f— —nsl 1) 0' for ¢ = 1, because o} is
spherical. Recall that x,((—(%5 1), ”—1 —s5—7J1) X 1=m ®me, for
our j = j1. Then, by the same c0n51derat10ns as in Lemma 4.5 and 4.4, we
have

-~ —J1

y _n—igy
o = XpV 2 lGLa.,, X T,

and the Lemma is proved. O

We retain the notation from previous two lemmas.
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COROLLARY 6.5. Assume x? = 1, 251 — s € Zsq. Let w' € [w], where
w € Y], and let w" the bijective image of w', with w" € Y.

1. Assume p < co. Let j; < "771—3 07”]'1:”7*1—3 and xp # 1. Then,
for fp € o1, we have N(w',Ag ) fp = N(w", As ) fp and if fp € 02, we
have N(w',Asp) fp = —N@W", As p) fp.

2. Assume j1 = an —s and xp = 1. Then, for p < oo and for every
fp € xp¥°lar, % 1, we have N(w', Asp) fp = N(w", As p) fp.

PrROOF. Immediately from Lemma 6.3 and Lemma 6.4. o

Now we can group different contributions in (2.5) according to orbits,
since the images of the intertwining operators in the same orbit are in the

same principal series (Indzzzz’;m) (w(As))). Assume our constant term acts on

a pure tensor ®p<oo fp and assume that "T_l — 8 € Z>p, which is the most

interesting and involved case. By fu p, fu,p etc. we denote the normalized

spherical vector in Ind?g@”;g@p)(w’ (Ap,s)) (we suppress from the notation the

dependence on s). Thus, we can divide the expression in (2.5) in several sums:
1. identity (i.e. ®p<oofp),
2. T(Asaw)_1(®p€SN(As,paw)fp) ® (®p¢5’fw,p)a for w € }/}na with Jj =z
n — 2s+ 1. Note that the orbits here are singletons, and normalization
factors and operators are holomorphic (cf. remark after Proposition
3.2).
3. Assume 0 < j; < ”T_l —sand w € Y}. Then,

Z T(As; w/)71(®pESN(As,p7w/)fp) ® (®p¢wa’,p)

w’ €[w]
= Z r(As, wl)_1(®pesN(AS,pa wl)fp) ® (®p¢wa’,p)
w’ €[w]NYj,
+ Z r(As, w") TN (@pesN (As s ") fp) @ (@pgs furrp)-
w' €[w]NYj,
4.

T(As; wO)_1(®p€SN(As,p; wO)fp) & (®p¢5’fm,p)
+ T(Asa w/)71(®p€SN(As,p; wo)fp) Y (®p§ésfw,p)a
where this expression was analyzed in detail in Lemma 6.2.

Note that Corollary 6.5 together with Lemma 3.7 and Lemma 3.6 enables us
to do the same reasoning in the above third case, as in the fourth case (i.e.
case of Lemma 6.2). But in Lemma 3.7 the poles of the sums of normal-
ization factors were at most of the order which appears in the fourth case;
also the intertwining operators from the third case might have bigger kernels
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than N(Asp, wo) (cf. Lemma 6.3 and Lemma 6.1). Thus, the meromorphic
properties of (2.5) are governed by the contribution of wg (and w’).

REMARK 6.6. Note that the meromorphic properties of Eisenstein se-
ries (poles of order at most one) and holomorphy of the local intertwining
operators appearing in (2.5) for all p < co are studied without any assump-
tions about the archimedean place. We only introduced this extra condition
(Xoo = 1 and fo is the normalized spherical vector) in Lemma 6.2 to be able to
describe explicitly the image of the intertwining operators at the archimedean
place and, thus, find some irreducible global representations which are auto-
morphic (i.e. appear in the space of automorphic forms on Sp(2n, Ag)). Note
that, by Lemma 4.10, the image of this spherical vector under N(wo, As o)
spans an irreducible (g, K )-module.

REMARK 6.7. As we saw above, if we pick local representations such that
the contributions in (2.5) corresponding to non-identity elements of Weyl
group are holomorphic, they cannot cancel the identity contribution (with
"T_l — s € Z>gp), meaning we get an automorphic realization of a reducible
global representation. In order to realize global irreducible representation as
an automorphic representation, we look for the data which produce a pole of
order one appearing in the contribution corresponding to wy, since we have
shown that with the appropriate choice of data, the image of N(wo, Asp) is
irreducible.

We have proved the following

THEOREM 6.8. Assume x2 =1 with xoo =1, and n > 3 with "T_l —-se€
Z>o. Let 0, 5,1 = 1,2 be the representations described in Lemmas 4.4 4.5 and
Corollary 4.8 at the place p < co. Then, the Eisenstein series (2.3) with A
as in (3.1) has a pole of order one on I(s).

1. Assume 0 < s < 221 f = @p<oofp € I(s) and let S be a finite
set of finite places, and for p ¢ S, let f, be the normalized spherical
vector. For Si C S, we pick f, € a1, and for p € S := S\ S1, we
take f, € 02,p. Then, for such f, (2.3) is holomorphic if |Ss| is odd,
and if |Sz2| is even it has a pole of order one. In the latter case (2.3)
gives an automorphic realization (in the space of automorphic forms
A(Sp2n(Q) \ Span(A)) of a global irreducible representation having a
local representation o2, on the places from Sz and o1, as a local com-
ponent elsewhere on finite places (o1, is spherical for p ¢ S, p < o).

2. Assume s = an If x = 1, then for any choice S of a finite set of
finite places such that if f = Qp<cofp, with fp normalized spherical for
fp € S, the Eisenstein series has a pole of the first order. Thus, (2.3)
gives an automorphic realization of the unique spherical (global) sub-

representation of Ind%’ZXS(A) (A_s), having local components isomorphic

to L(vp~t, ... ,vhvp @ 1). If x # 1 we have the following. Assume S
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is a finite set of finite places such that f, is normalized spherical for
fp & S. We pick a subset So C S such that for p € Sa, xp # 1 and f,
belongs to 02, and for p € S\ Sy either x, =1 and f, belongs to the
spherical quotient L(vy~', ... vk;v) 1) or x, # 1 and f, belongs to
01,p. Then the FEisenstein series has a pole of order one if |Sa| is even,
and is holomorphic if |Sa| is odd, so in the former case, (2.3) gives
an automorphic realization of an irreducible global representations we

have just described.
Now we cover the remaining straightforward cases.

THEOREM 6.9. Assume s > 0.

1L.Ifx># 1or2s ¢ 7Z ors > "TH the attached Eisenstein series is
holomorphic and (2.3) gives an automorphic realization of the whole
induced representation (2.2).

2. Assume s = "TH and x = 1. Then, the attached Eisenstein series have
a pole of order one, and the image is an automorphic realization of the

global trivial representation of Span(A).

PrROOF. We note that the inverses of global normalization factors are
holomorphic in the cases of the first part of the theorem by the discussion in
the third section. Also, the local intertwining operators appearing in (2.5) are
all holomorphic by the fifth section. By Corollary 3.1 contributions form the
non-trivial elements of the Weyl group cannot cancel the identity contribution,
and the result follows. The second claim follows from the discussion in the
third section, from which is obvious that 7(Ag,wo) ™! has a pole of order one
and all the other inverses of the normalization factors are holomorphic. Here
wp is given by (3.6). All the relevant local intertwining operators in (2.5) are
holomorphic and, by Langlands classification, it is straightforward that the

nt1
image of N(wO7AL;»1’p) acting on vp 2 1gr, x 1 for all p < oo is the trivial
representation. O
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