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Abstract. In this paper we determine the poles (in the right half-
plane) with their order of the degenerate Eisenstein series attached to the
representations induced from a character of the Siegel maximal parabolic
subgroup of a symplectic group. We explicitly determine the image of the
Eisenstein series and thus determine an automorphic realization of certain
irreducible global representations of Sp2n(AQ).

1. Introduction

The Eisenstein series are an important tool in the theory of automor-
phic forms, from the work of Selberg ([29, 30]) till the most recent work of
Arthur ([1]). They were, beside theta-series, one of the few tools to provide
explicit realization of the global representations in the spaces of automorphic
forms. They were used in the construction of L–functions on classical groups
([10,18]), and they play a prominent role in Arthur’s work on the trace formula
in the last thirty years ([1–5]). Also, they were used to construct explicitly,
without using trace formula, some representations with the prescribed Arthur
parameters, or to resolve some local issues about the unitarity of representa-
tions; we mention these instances from the work of Speh and Tadić ([33, 35])
to the work of Badulescu and Renard ([7]) and Muić ([25, 26]), just to name
some. The classical Eisenstein series on the real reductive groups have a great
importance in number theory, so applying the results from the global to the
classical setting really highlights the use of representation-theoretic methods
in number theory.
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The Eisenstein series for the symplectic groups were treated in many pa-
pers from Piatetski-Shapiro and Rallis ([10]), to Kim ([16]) and Kim and
Shahidi ([17]). The explicit results in these papers rely on heavy combinato-
rial computations regarding residues along the singular hyperplanes. In this
paper, we avoid this approach by analyzing in detail all the features appear-
ing in the constant term of Eisenstein series. We analyze the composition
series of the induced representations at local places, and describe the images
of the local intertwining operators. Also, we have done some very non-trivial
combinatorial work to handle certain sums of normalizing factor

In our paper we treat the Siegel case (in the right half plane) of the degen-
erate Eisenstein series for a symplectic group, as this is the basic step toward
the general case of the degenerate Eisenstein series for a symplectic group.
The Siegel case for the symplectic group was treated in several occasions be-
fore; let us mention the classical work of Kudla and Rallis ([20]). The location
of poles we obtained is thus not new, but the technique we employed differs,
as noted above, form the techniques of Kudla and Rallis. The results in [20]
are formulated in a way to fit in with the theta correspondence and depend on
it. Our approach gives us a direct description of the image of the Eisenstein
series, thus the automorphic realization of irreducible global representations.
We believe that our method, both the combinatorial calculations and proofs
of the holomorphy of the local intertwining operators, allows a direct gener-
alization to the non-Siegel case. To treat the non-Siegel case, one needs more
information about the composition series at the archimedean places. That
is still unavailable and we plan to address this problem in future. We plan
to apply the results of this paper in number theory, by attaching classical
Eisenstein series to the automorphic one. This is not a straightforward issue
(cf. the fourth section of [14]).

One of the most interesting results in our approach is a certain circularity
of normalizing factors, which, we hope, can be generalized to the non-Siegel
case. Namely, we look at the points in the right half plane where the normaliz-
ing factors appearing in the expression for the constant term of the Eisenstein
series have a pole of very high order. The contributions of these normalizing
factors, due to certain circularity, cancel each other, giving, at the end, only
a pole of order at most one. Not only that, but we believe that this is a
feature shared with all the classical groups. Also, we prove the holomorphy of
the relevant local intertwining operators in a way that allows generalizations
to the non-Siegel cases, and to the analogous situations with other classical
groups as well.

We give here the main result in the most interesting and difficult case of
χ2 = 1 and n−1

2 − s ∈ Z≥0. The Eisenstein series act on the representation

(1.1) I(s) = Ind
Sp2n(A)
Pn(A)

(χ|det|s1GLn(AQ)),

where Pn is the Siegel parabolic subgroup of Sp2n(AQ).
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Theorem 1.1. Assume χ2 = 1 with χ∞ = 1 and n ≥ 3 with n−1
2 − s ∈

Z≥0. Then the Eisenstein series (2.3) with Λs as in (3.1) has a pole of order
one on I(s).

1. Assume 0 < s < n−1
2 , f = ⊗p≤∞fp ∈ I(s) and let S be a finite

set of finite places, and for p /∈ S, let fp be the normalized spherical
vector. For S1 ⊂ S, we pick fp ∈ σ̂1,p and for p ∈ S2 := S \ S1, we
take fp ∈ σ̂2,p. Then, for such f, (2.3) is holomorphic if |S2| is odd,
and if |S2| is even it has a pole of order one. In the latter case (2.3)
gives an automorphic realization (in the space of automorphic forms
A(Sp2n(Q) \ Sp2n(A)) of a global irreducible representation having a
local representation σ̂2,p on the places from S2 and σ̂1,p as a local com-
ponent elsewhere on finite places (σ̂1,p is spherical for p /∈ S, p <∞).

2. Assume s = n−1
2 . If χ = 1, then for any choice S of a finite set of

finite places such that if f = ⊗p≤∞fp, with fp normalized spherical for
fp /∈ S, the Eisenstein series has a pole of the first order. Thus, (2.3)
gives an automorphic realization of the unique spherical (global) sub-

representation of Ind
Sp2n(A)
B(A) (Λ−s), having local components isomorphic

to L(νn−1
p , . . . , ν1p ; ν

0
p ⋊ 1). If χ 6= 1 we have the following. Assume S

is a finite set of finite places such that fp is normalized spherical for
fp /∈ S. We pick a subset S2 ⊂ S such that for p ∈ S2, χp 6= 1 and fp
belongs to σ̂2,p, and for p ∈ S \ S2 either χp = 1 and fp belongs to the
spherical quotient L(νn−1

p , . . . , ν1p ; ν
0
p ⋊ 1) or χp 6= 1 and fp belongs to

σ̂1,p. Then the Eisenstein series has a pole of order one if |S2| is even,
and is holomorphic if |S2| is odd, so in the former case, (2.3) gives an
automorphic realization of an irreducible global representation we have
just described.

Here, for p <∞, if χp = 1 then

σ̂1,p = L(ν
n−1
2 +s, ν

n−3
2 +s, . . . , ν

n+1
2 −s, ν

n−1
2 −s, ν

n−1
2 −s, . . . , ν1, ν1; ν0 ⋊ 1),

and

σ̂2,p = L(ν
n−1
2 +s, ν

n−3
2 +s, . . . , ν

n+1
2 −s, ν

n−1
2 −s, ν

n−1
2 −s, . . . , ν2, ν2, ν1;T ′′

2 ).

If χp 6= 1 then

σ̂i,p = L(ν
n−1
2 +s, ν

n−3
2 +s, . . . , ν

n+1
2 −s, ν

n−1
2 −s, ν

n−1
2 −s, . . . , ν1, ν1;T 0

i ),

for i = 1, 2. The tempered representations T ′′
2 , T

0
1 , T

0
2 are described in Lemma

4.7 and Corollary 4.8.
Note that an assumption in the theorem above is that f∞ is the normal-

ized spherical. This assumption is unrelated with the facts that only poles
of the at most order one appear and that the relevant intertwining opera-
tors appearing in the constant term of Eisenstein series are holomorphic and
non-zero. We placed this assumption only in order to be able to explicitly
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express the image of the Eisenstein series since there is less information about
the images of intertwining operators on the archimedean places than about
the ones on non-archimedean places. Also, this is partly the reason to use Q
instead of more general number field. The other reason is a simpler use of
global results in the future application in number theory, as explained above.

We now briefly describe the content of the paper. In the second section
we recall the groups we work with, the Weyl group and its description in the
case of a symplectic group. Then, we recall the (degenerate) Eisenstein series
attached to the representation (2.2) and its constant term.

In the third section we specialize to the Siegel case and analyze normal-
ization factors that occur in the expression for the constant term of Eisenstein
series. We note the cases in which these normalization factors have possible
poles of higher order. Then, in the subsection 3.1 we give an expression for
certain sums of these normalizing factors, which turn out to have poles of
much smaller order than each normalizing factor separately. It will become
clear in the fifth section why these sums occur.

In the fourth section we give composition series of the local induced rep-
resentations of type (1.1) in a form which we use later. The lengths of these
composition series were known before ([12, 19]).

In the fifth section we prove that all intertwining operators appearing in
the expression for the constant term of Eisenstein series are holomorphic, and
prove that (normalized) intertwining operator attached to the longest element
of the Weyl group is non-zero and also explicitly describe its image.

In the last section we prove that the intertwining operators belonging to
the so called orbits have very similar actions, justifying grouping the normal-
izing factors in the sums in the third section. We also explicitly describe the
image of the Eisenstein series.

We thank G. Muić for his encouragement to study this problem and to N.
Grbac andM. Tadić for useful conversations. Also, we thank J. Schwermer and
Erwin Schrödinger Institute for their hospitality during conference Advances
in the Theory of Automorphic Forms and their L-Functions, where this work
begun.

2. Preliminaries

For n ∈ Z≥1, we define Jn as a n × n matrix with 1′s on the opposite
diagonal, and zeros everywhere else. We realize the group Sp2n as a matrix
group in the following way:

Sp2n(F ) =

{
g ∈ GL2n(F ) : g

t

[
0 Jn

−Jn 0

]
g =

[
0 Jn

−Jn 0

]}
.

For us F ∈ {Q,Qp,R,A}, where A is the ring of adeles of Q. Let Kp =
Sp2n(Zp) for p <∞ and let K∞ be the fixed point set of a Cartan involution
(e.g. transposed inverse) on Sp2n(R). It is well-known that K∞

∼= U(n). We
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note that Kp, p ≤ ∞ are maximal compact subgroups in the corresponding
groups. Denote K =

∏
p≤∞Kp.

The upper triangular matrices in Sp2n form a Borel subgroup B, which
we fix. The standard parabolic subgroups are those containing this Borel
subgroup. The diagonal matrices in the Borel subgroup form a maximal
torus, which we denote by T. Thus

T (F ) = {diag(t1, t2, . . . , tn, t
−1
n , . . . t−1

2 , t−1
1 ); t1, . . . , tn ∈ F ∗}.

The unipotent matrices in B form the unipotent radical of B. Let W be the
Weyl group of Sp2n with respect to T. It is well-known that W ∼= Sn ⋉ Zn

2 ,
where Sn denotes the symmetric group of n letters. We call Weyl group
elements corresponding to Sn permutations, and to Zn sign changes. The
action of p ∈ Sn is given by

p(diag(t1, t2, . . . , tn, t
−1
n , . . . t−1

2 , t−1
1 )) = (tp−1(1), tp−1(2), . . . , tp−1(n), . . .),

and the action of ε = (ε1, ε2, . . . , εn) ∈ Zn
2 is given by

ε(diag(t1, t2, . . . , tn, t
−1
n , . . . t−1

2 , t−1
1 )) = diag(tε11 , t

ε2
2 , . . . , t

εn
n , . . .).

Note that for p ∈ Sn, we have

p(ε1, ε2, . . . , εn)p
−1 = (εp−1(1), εp−1(2), . . . , εp−1(n)).

Note that the action of the Weyl group on maximal torus T extends to char-
acters on this torus, namely if φ is a character on T , we have, for w ∈ W and
t ∈ T, (wφ)(t) = φ(w−1t). In more words, if w = pε and φ = φ1⊗φ2⊗· · ·⊗φn
we have

(2.1) pε(φ1 ⊗ φ2 ⊗ · · · ⊗ φn) = φ
εp−1(1)

p−1(1) ⊗ · · · ⊗ φ
εp−1(n)

p−1(n) .

For calculation of the normalization factors of the intertwining operators,
we have to introduce certain subsets of the Weyl group. Recall that, to
our choice of maximal torus T and the upper triangular Borel subgroup B
corresponds set ∆ of simple roots, given by

αi(diag(t1, t2, . . . , tn, t
−1
n , . . . t−1

2 , t−1
1 )) = tit

−1
i+1, i = 1, 2, . . . n− 1,

αn(diag(t1, t2, . . . , tn, t
−1
n , . . . t−1

2 , t−1
1 )) = t2n.

We also use ei − ei+1 to denote αi, i = 1, . . . , n− 1 and 2en to denote αn. In
the same way, we can describe the set of all positive roots (with respect to B)
as Σ+ = {ei− ej , 1 ≤ i < j ≤ n}∪{ei+ ej, 1 ≤ i < j ≤ n}∪{2ei : 1 ≤ i ≤ n}.
For αi ∈ ∆ we denote

Wαi = {w = pε ∈ W : wαi > 0}.

Then, for Ω ⊂ ∆ we put [W/WΩ] = ∩α∈ΩW
α (as is well known, this is indeed

a set of representatives of left cosets of W modulo its subgroup WΩ). The
description of [W/W∆\{αi}], where αi is a simple root is given, e.g., in Lemma
4.4 of [36].
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We use Zelevinsky notation for the parabolic induction in the case of
classical groups. For such groups we know that Levi subgroups are isomorphic
to GLk1 ×GLk2 × · · ·GLkl

×G′, where G′ is a group of smaller rank, but the
same type as G. Thus, if π is an irreducible representation of an Levi subgroup
M , then π ∼= π1 ⊗π2 ⊗ · · ·πl ⊗ π′, where πi is an irreducible representation of
GLki , i = 1, . . . l and π′ is an irreducible representation of G′. We extend π
trivially over the unipotent radicalN of the corresponding parabolic subgroup
P = MN and the normalized parabolically induced representation IndG

P (π)
is then denoted by π1 × π2 × · · · × πl ⋊ π′.

For p ≤ ∞, and a, b ∈ R, b−a ∈ Z≥0 we denote by ζ(χν
a, χνb) the unique

irreducible subrepresentation of the representation χνa × χνa+1 × · · · × χνb.
Here ν denotes a character | det(·)|F of GLn(F ), where | · | denotes the usual

norm on F. Note that ζ(χνa, χνb) = ν
b+a
2 1GLb−a+1(Qp) (we again use here

Zelevinsky notation for the general linear groups).
Using the notation from [24], for p <∞, we denote the unique (essentially

square integrable) irreducible subrepresentation of the induced representation
νl2ρ× νl2−1ρ× · · ·× ν−l1ρ of GL(l1+l2+1)k(Qp) by δ([ν

−l1ρ, νl2ρ]). Here ρ is a
unitary supercuspidal representation of GLk(Qp), l1, l2 ∈ R, l2+l1+1 ∈ Z≥1.

2.1. Siegel Eisenstein series and normalizing factors. Let χ be a Grossen-
character of A∗. It induces a character of GLn(A) given by x 7→ χ(det x). Let
Pn be a maximal standard parabolic subgroup of Sp2n such that its stan-
dard Levi subgroup Mn is isomorphic to GLn. Let Pn = MnUn be its Levi
decomposition. We consider the usual induced representation for s ∈ C

(2.2) I(s) = Ind
Sp2n(A)
Pn(A)

(χ|det|s1GLn(AQ)).

It is realized on the space of all C∞ and right K− finite functions on Sp2n(A)
which satisfy

f(xug) = |detx|sχ(det x)δ
1/2
Pn

(x)f(g),

where x ∈ Mn(A), u ∈ Un(A), g ∈ Sp2n(A) and δPn is the modular char-
acter of Pn. We construct holomorphic sections fs ∈ I(s) using compact
picture with our choice of a maximal compact subgroup K. This means
that we consider fs belonging to the space of automorphic forms denoted
by A(Mn(Q)Un(A) \ Sp2n(A), |det(·)|sχ(det(·))) in the notation of [23], II.
1.1. This space of automorphic forms can be canonically identified with
IndKMn(A)∩K(χ(det(·))) (cf. [23]). This construction is also explained in detail

in e.g., [25] (the second section). The degenerate Eisenstein series

E(fs)(g) =
∑

γ∈Pm(Q)\Sp2n(Q)

fs(γg)

converges for Re(s) sufficiently large, and there the convergence is absolute
and uniform in (s, g) on compact sets. In the case at hand, by the result of
Godement (cf. [9, 11.1 Lemma]), this Eisenstein series converges for Re(s) >
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n+1
2 . It continues to a meromorphic function in s. Outside of poles, it is an

automorphic form on Sp2n(A). We usually write E(s, f) instead of E(fs).
We say that this Eisenstein series has a pole of finite order l ≥ 0 for s0 if
s 7→ (s − s0)

lE(s, f) is holomorphic near s0 for each fs ∈ I(s) and non-zero
for some such fs. Then, the mapping

(2.3) I(s0)
fs0 7→(s−s0)

lE(fs)|s=s0−−−−−−−−−−−−−−−→ A(Sp2n(Q) \ Sp2n(A))

is an intertwining operator. The poles of this Eisenstein series are the same
as the poles of it constant term along the Borel subgroup

Econst(s, f)(g) =

∫

U(Q)\U(A)

E(s, f)(ug)du,

where U is the unipotent radical of the Borel subgroup we have fixed above.
We can write down this constant term using standard unfolding. To do that,
we introduce a character of T (Q) \ T (A) (depending on s ∈ C):

Λs = χ| · |s−
n−1
2 ⊗ χ| · |s−

n−1
2 +1 ⊗ · · · ⊗ χ| · |s+

n−1
2 .

We trivially extend this character across U(A) and obtain a character of

B(A). Then we form an induced representation Ind
Sp2n(A)
B(A) (Λs). Note that,

as an abstract representation, a representation (2.2) is a subrepresentation of

Ind
Sp2n(A)
B(A) (Λs) (this is explained in the second section of [25]). Let w ∈ W .

We denote by U the lower triangular unipotent matrices in Sp2n. We formally
define a global intertwining operator

M(Λs, w) : Ind
Sp2n(A)
B(A) (Λs) → Ind

Sp2n(A)
B(A) (w(Λs))

by

M(Λs, w)f(g) =

∫

U(A)∩wU(A)w−1

fs(w̃
−1ng)dn.

Here w̃ denotes a choice of a representative of an element w of the Weyl
group, but the integral does not depend on this choice. Again, this intertwin-
ing operator converges in some right half-plane, and admits a meromorphic
continuation. This global intertwining operator factors as a product of the
local intertwining operators

M(Λs, w)f = ⊗pA(Λs,p, w)fp,

if f = ⊗p≤∞fp, where for almost all p, fp is the normalized spherical vector.
Indeed, we use precise normalizations of Haar measures in the definition of the
intertwining operators (we follow [31]), so that for f which is a pure tensor, by
using Tamagawa measure, integration over U(A)∩wU(A)w−1, comes down as
integration over corresponding local counterparts and, formally, outside the
poles, expressions for the local intertwining operators appear. The resulting
vector is again in the restricted tensor product, since we get an expression
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which is at almost all places again normalized spherical vector multiplied by
an expression containing the partial L–functions (cf. [10], pp. 21-28 or [11],
Chapter I, Section II). Let ψ be a non-trivial additive character of Q \A. The
normalization factor for A(Λs,p, w) is given by

r(Λs,p, w) =
∏

α∈Σ+,w(α)<0

L(1,Λs,p ◦ α̌)ǫ(1,Λs,p ◦ α̌, ψp)

L(0,Λs,p ◦ α̌)
,

where α̌ is the coroot corresponding to a root α. We define the normalized
(local) intertwining operator by

(2.4) N(Λs,p, w) = r(Λs,p, w)A(Λs,p, w).

We know that the set of roots ∆ \ {αn} determines the Siegel standard para-
bolic subgroup Pn. We have the following expression for the constant term
(2.5)

Econst(s, f)(g) =
∑

w∈W,w(∆\{αn})>0

r(Λs, w)
−1(⊗p∈SN(Λs,p, w)fp)⊗(⊗p/∈Sfw,p).

Here, f = ⊗p≤∞fp is a pure tensor, and for all p /∈ S (S is a finite set of places,
including the archimedean place) fp is the normalized spherical vector with
fp(e) = 1. Also, fw,p denotes the normalized spherical vector which belongs

to the representation space of Ind
Sp2n(Qp)

B(Qp)
(w(Λs,p)), where Λs,p denotes the

local component of the character Λs at a place p.We use well-known property
of normalization: for fp normalized spherical, N(Λs,p, w)fp = fw,p. We also
denoted above

(2.6) r(Λs, w)
−1 =

∏

α∈Σ+,w(α)<0

L(0,Λs ◦ α̌)

L(1,Λs ◦ α̌)ǫ(1,Λs ◦ α̌)
.

Note that the sum in (2.5) is over the set which we denoted by [W/W∆\{αn}]
in the previous subsection.

3. The normalizing factors

From this section till the end of this paper, we deal only with the Siegel
case of the induced representation (2.2).

In this section we analyze the global normalizing factors (2.6). After that,
we calculate certain sums of global normalizing factors which appear in (2.5);
namely we group those ones corresponding to those elements of [W/W∆\{β}]
which have the same image w(Λs), so that their contributions belong to the

same space Ind
Sp2n(A)
B(A) (w(Λs)). These sums we can obviously use in the spher-

ical case (i.e., when all the components fp are spherical), but, as will turn out,
also in the general case. Note that in this (the Siegel) case, a global character
Λs is equal to

(3.1) Λs = χ| · |s−
n−1
2 ⊗ χ| · |s−

n−1
2 +1 ⊗ · · · ⊗ χ| · |s+

n−1
2 .
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Then, by Lemma 4.4 of [36], [W/W∆\{αn}] is a union of all Y n
j (where 0 ≤

j ≤ n) such that w = pε ∈ Y n
j if and only if

1. εk = 1 for 1 ≤ k ≤ j;
2. p(k1) < p(k2) for 1 ≤ k1 < k2 ≤ j;
3. εk = −1 for j + 1 ≤ k ≤ n;
4. p(k1) > p(k2) for j + 1 ≤ k1 < k2 ≤ n.

We can thus think of p (such that pε ∈ [W/W∆\{αn}]) as having the following
form:
(3.2)

p =

[
1 . . . j − 1 j j + 1 j + 2 . . . n
p(1) < . . . < p(j − 1) < p(j) p(j + 1) > p(j + 2) > . . . > p(n)

]
.

From now on, we study only the case s ∈ R (since the imaginary part
of s can be absorbed in χ) and s > 0. For s = 0 the well-known result of
Langlands guarantees the holomorphy of the Eisenstein series.

We now calculate (the global) normalizing factor, given in (2.6), for w ∈
[W/W∆\{αn}]. We determine all α ∈ Σ+ such that w(α) < 0. Assume that
w ∈ Y n

j . Then, we easily get

{α ∈ Σ+, w(α) < 0} = {2ek : j + 1 ≤ k ≤ n}∪

{ek + el : k < l, 1 ≤ k ≤ j, j + 1 ≤ l ≤ n, p(k) > p(l)}∪

{ek + el : j + 1 ≤ k < l ≤ n}.

This means that the normalizing factor becomes

r(Λs, w)
−1 =

n∏

k=j+1

L(s− n−1
2 + k − 1, χ)

L(s− n−1
2 + k, χ)ǫ(s− n−1

2 + k, χ)
·(3.3)

j∏

k=1

n∏

l=j+1,
p(k)>p(l)

L(2s+ k + l − n− 1, χ2)

L(2s+ k + l − n, χ2)ǫ(2s+ k + l− n, χ2)
(3.4)

n∏

k,l=j+1,
k<l

L(2s+ k + l − n− 1, χ2)

L(2s+ k + l − n, χ2)ǫ(2s+ k + l − n, χ2)
.(3.5)

Note that if j = n, Y n
j = {id}, so from now on we assume that j < n. If

j = 0 the set Y n
0 is also a singleton, consisting of w = pε, where

(3.6) p =

[
1 2 . . . n− 1 n
n n− 1 . . . 2 1

]
.
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Now we analyze this expression factor by factor. When we apply the functional
equation on the denominator, the factor (3.3) (which exists if j < n) becomes

n−1
2 +s∏

l=−(n−1
2 −s−j)

L(l, χ)

L(−l, χ)
.

To deal with the factor (3.4), we first fix k ≤ j. Then, we look at the set
of all l ≥ j + 1 such that p(k) > p(l). If the set of such l’s is non-empty, it
is of the form lk, lk + 1, . . . , n. Also, if set of these l’s is non-empty for some
k, then it is non-empty for k + 1. So, the set of all such k’s is of the form
kp, kp + 1, . . . , j (a subscript p indicates the dependence on the permutation
p). There is only one w = pε from Y n

j for which this set of l’s is empty for
every k; it has p(i) = i, i = 1, . . . , j. There is no factor (3.4) if j = 0. Now
assume 0 < j < n. Then (3.4) becomes

(3.7)

j∏

k=kp

n∏

l=lk

L(2s+ k + l − n− 1, χ2)

L(2s+ k + l − n, χ2)ǫ(2s+ k + l − n, χ2)
.

There is an easy recursion for lk, but we can use known results to calculate
it. We attach to a permutation p of (3.2), a permutation p′ of the following
form
(3.8)

p′ =

[
1 . . . j − 1 j j + 1 j + 2 . . . n
p(1) < . . . < p(j − 1) < p(j) p(n) < p(n− 1) < . . . < p(j + 1)

]

i.e. p′(i) = p(i) for i = 1, . . . , j and p′(i) = p(n+ j+1− i) for i = j+1, . . . , n.
Then, a condition p(lk − 1) > p(k) > p(lk) transforms into p′(n+ j + 1−

lk) < p′(k) < p′(n+ j + 2− lk). Permutations of the form (3.8) were studied
before Lemma 6.9 in ([14]). In that notation, for similarly introduced jk for
the permutation p′ we obtain jk = n+ j + 1− lk and there an expression for
jk = p′(k)− k + j is obtained, giving lk = k − p′(k) + n+ 1. Also, the index
mw was introduced there, we have denoted it here by kp. After the obvious
cancelations, and using expression for lk, (3.7) becomes

(3.9)

j∏

k=kp

L(2s+ 2k − p(k), χ2)

L(2s+ k, χ2)(∗)
,

where (∗) denotes the product of ǫ factors. The expression (3.5) becomes,
after cancelations, equal to

(3.10)

n−1∏

k=j+1

L(2s+ 2k − n, χ2)

L(2s+ k, χ2)(∗∗)
,
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where again (∗∗) is a product of ǫ-factors (note that this factor is trivial (≡ 1)
if j = n− 1). Now we have

r(Λs, w)
−1 =

n−1
2 +s∏

l=−(n−1
2 −s−j)

L(l, χ)

L(−l, χ)
(3.11)

j∏

k=kp

L(2s+ 2k − p(k), χ2)

L(2s+ k, χ2)(∗)

n−1∏

k=j+1

L(2s+ 2k − n, χ2)

L(2s+ k, χ2)(∗∗)
(3.12)

It it not difficult to see that we can write down (3.3) as
L(s−n−1

2 +j,χ)

L(s+n+1
2 ,χ)(∗∗)

, where

(∗∗) is a product of some ε–factors. Since we assume that s > 0, this factor
can have a pole only if j = n−1

2 − s+ δ, δ ∈ {0, 1} and χ = 1, so in order to

have a pole from the first factor we must have n−1
2 − s ∈ {−1, 0, . . . , [n−1

2 ]}
and χ = 1. For such s, the pole of this factor occurs for at most two j’s,
so that for given w it is at most of the first order (since w belongs to Y n

j

only for one j). Note that the appearance of this pole depends only on Y n
j

and not on a particular w in it. The same conclusion follows for the third
factor, where a pole appears only if χ2 = 1 and it is at most of the first
order. The second factor can have a pole only if s ≤ n−1

2 and χ2 = 1, (and,
as for the other factors, 2s ∈ Z) but the order of the pole might be quite
high. Analogously as in ([14]), Lemma 6-9, we get that the order of a pole is
bounded by min(j, n− j − 2s+ 1)− kp + 1. For Re(s) > n+1

2 the Eisenstein
series converges so we do not have to examine L–functions for the poles.

In the next subsection we show that different contributions from normal-
izing factors can cancel each other to obtain a pole of a much smaller order.
These calculations will become fully motivated by the analysis of the actions
of the intertwining operators in the subsequent sections.

3.1. A circular result. Throughout this section we assume n ≥ 3, since
the case of SL2 is well-known and for the degenerate Eisenstein series for Sp4
we refer to [13].

Corollary 3.1. Assume χ2 = 1 and s ≥ 0. Then w(Λs) = Λs for
w ∈ [W/W∆\{αn}] if and only if w = id or s = 0 and {w} = Y n

0 (cf. (3.6)).

Proof. Straightforward.

We continue to assume s ∈ R, s > 0 (unless otherwise specifically empha-
sized). For given w ∈ [W/W∆\{αn}], we denote [w] = {w′ ∈ [W/W∆\{αn}] :
w(Λs) = w′(Λs)} and call the orbit of w (this notion obviously depends on s).
We want to describe [w] for given w. Next, we calculate

∑
w′∈[w] r(Λs, w

′)−1

for those s for which
∏j

k=kp

L(2s+2k−p(k),χ2)
L(2s+k,χ2)(∗) has a pole for some k and this
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w = pε. Namely, we show how the poles coming from the Weyl group elements
in the same orbit cancel each other, up to a pole of the order one.

Proposition 3.2. Assume that χ2 = 1 and 2s ∈ Z with 0 < 2s ≤ n− 1.
Then, assume that for w1 = p1ε1, w2 = p2ε2 ∈ [W/W∆\{αn}], w1 6= w2 we
have w1(Λs) = w2(Λs). Then, one of the following holds:

• w1, w2 ∈ Y n
j for some 0 < j < n. Then, for every k ∈ {1, 2, . . . , n} we

have p1(k) = p2(k) or p1(k) = p2(n+1−2s−k). In the latter case, for
1 ≤ k ≤ j we must have k ≤ min{n− 2s− j, j} and for j + 1 ≤ k ≤ n
we must have n+ 1− 2s− j ≤ k ≤ n− 2s.

• w1 ∈ Y n
j1 and w2 ∈ Y n

j2 with j1 < j2. Then, j2 = n − 2s − j1 and we
have

p1(k) = p2(k) or p1(k) = p2(n+ 1− 2s− k), 1 ≤ k ≤ j1,

p1(k) = p2(n+ 1− 2s− k), j1 + 1 ≤ k ≤ j2,

p1(k) = p2(k) or p1(k) = p2(n+ 1− 2s− k), j2 + 1 ≤ k ≤ n.

• If w1 = w0 (where w0 is described in (3.6)), then w2 = pε, where
w2 ∈ Y n

n−2s and p(i) = 2s+ i, i = 1, 2, . . . , n− 2s and p(i) = n+ 1 −
i, i = n− 2s+ 1, . . . , n.

Proof. Straightforward calculation.

Remark 3.3. With the assumptions of the previous proposition:

• Note that if w1 ∈ Y n
j , for j ≥ n−2s+1 and w1(Λs) = w2(Λs) for some

w2 ∈ [W/W∆\{αn}], then w2 = w1. Thus, if w ∈ Y n
j , with j ≥ n−2s+1,

then [w] = {w}.
• Note that if j ≥ n−2s+1 and w ∈ Y n

j , then r(Λs, w)
−1 is holomorphic

(this follows form the discussion at the end of the previous section).

Now we want to examine possibilities occurring in the previous propo-
sition more thoroughly, since this is the situation in which the poles (of the
higher order) of the global normalizing factors might occur; so we continue to
assume χ2 = 1, 2s ∈ Z with 0 < s ≤ n−1

2 . Note that, in that case, the ε fac-

tors in (3.12) are trivial when they occur for χ2 since now we assume χ2 = 1
(and we assume throughout that F = Q). We can write [w] = [w]′ ∪ [w]′′ ,
where now, for w ∈ Y n

j , [w]′ denotes part of the orbit of w in Y n
j and [w]′′

part of it in Y n
n−2s−j . Assume now that j < n− 2s− j and denote j1 = j and

j2 = n − 2s − j1. Firstly, there is an easy-describable bijection between [w]′

and [w]′′.

Lemma 3.4. Assume χ2 = 1, 2s ∈ Z with 0 < s ≤ n−1
2 and w = pε ∈ Yj1 .

Assume that j1 ≤ n−1
2 − s (so that j2 ≥ n+1

2 − s ≥ j1 + 1).

1. Assume that p(j1) < p(j2). The bijection mapping elements from Y n
j1
∩

[w] = [w]′ to Y n
j2

∩ [w] = [w]′′ is given as follows: if w1 = p1ε1 ∈ [w]′
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then w1 7→ w2 = p2ε2 ∈ [w]′′ with p2(i) = p1(i), i = 1, 2, . . . , j1 and
i = j2 + 1, . . . , n and p2(i) = p1(n + 1− 2s− i) for i = j1 + 1, . . . , j2.
Any element from [w]′ attains the same values on j1 + 1, . . . , j2 as w1

(i.e., as w) and every element in [w]′′ attains the same values as w2

on these places (namely p1(n + 1 − 2s− i), i = j1 + 1, . . . , j2). These
attained values are n, . . . , 2j1 + 2s+ 1 (in that order)

2. Assume that p(j1) > p(j2). Then, we define it ≤ j1 as the largest index
(≤ j1) such that the following holds:

(3.13)
p1(j1 + j2 + 1− it) > p1(it − 1),

p1(it) > p1(j1 + j2 + 2− it).

Then, w1 7→ w2 = p2ε2 ∈ [w]′′ is given by p2(i) = p1(i), i =
1, 2, . . . , it−1 and i = n+2−2s−it, . . . , n and p2(i) = p1(n+1−2s−i)
for i = it, . . . , n+ 1− 2s− it. Any element from [w]′ attains the same
values as w1 on it, . . . , n+1−2s−it, and every element in [w]′′ attains
the same values as w2 on these places (namely p1(n+ 1− 2s− i), i =
j1 + 1, . . . , j2).

Proof. From the form of w = pε ∈ Y n
j1 (cf. (3.2)), it follows that if

p(j1) < p(j2), then p(j1+1), . . . , p(j2) are the biggest elements in {1, 2, . . . , n},
i.e., p(j1 + 1) = n, . . . , p(j2) = n + j1 + 1 − j2 = 2j1 + 2s + 1. To each p1
such that p1ε1 is from [w]′, we can attach a permutation p′1 like in (3.8)
(analogously for elements from [w]′′). In this way, we can describe elements
of [w]′ in terms of Weyl group elements for the group GLn which turn the
roots W ′(∆′ \ {ej1 − ej1+1}) to positive roots (W ′ stands for the Weyl group
for GLn). We discussed similar issues for GLn groups in [14]. Now, for
this w = pε ∈ Yj1 , we can describe all the elements from [w]′ with using so
called ”intervals of change” (as defined in [14, Section 7.1]). If p(j1) < p(j2),
then intervals of change for w end with j1, so all the elements in [w]′ can
be described by change on the first j1 elements, and consequently, elements
n + 1 − 2s − j1 = j2 + 1, . . . , n + 1 − 2s − 1 = n − 2s (cf. Proposition 3.2).
Thus, the values of permutations in [w]′ on elements j1 + 1, . . . , j2 are all
the same (and equal to n, . . . 2j1 + 2s + 1). Analogously, in the second case
(p(j1) > p(j2)), our description of it says that the possible intervals of change
end with it − 1 and the second claim follows.

Remark 3.5. Note that in the case p(j1) > p(j2) of the above lemma,
the values of p1 attained on it, . . . , n+1−2s− it are the biggest possible (but
not necessarily in the increasing or the decreasing order); this follows from
the conditions (3.13).
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Lemma 3.6. We retain the assumptions of Lemma 3.4. Let w1 ∈ Y n
j1

and
let w2 ∈ Y n

j2 be its bijective image described in Lemma 3.4. We denote

A1 =

n−1
2 +s∏

l=−(n−1
2 −s−j1)

L(l, χ)

L(−l, χ)
·

1∏n−1
k=kp1

L(2s+ k, 1)
·

j1∏

k=kp1

L(2s+ 2k − p1(k), 1)

n−1∏

k=j2+1

L(2s+ 2k − n, 1)

j2−j1∏

k=2

L(k, 1).

Then,

(3.14) r(Λs, w1)
−1 = A1

{
limt→0 L(2t, 1) j2 − j1 is even,

limt→0 L(2t+ 1, 1) j2 − j1 is odd,

(3.15) r(Λs, w2)
−1 = A1 lim

t→0
L(2t+ 1, 1) ·





1 j2 − j1 is even,

1
j2 − j1 ≥ 3 is odd or

j2 − j1 = 1 and χ 6= 1
,

−1 j2 − j1 = 1 and χ = 1.

Proof. We first examine (3.11). We easily obtain the following: if j2−j1
is even, then (3.11) for w2 is equal to (3.11) for w1 and holomorphic. If j2− j1
is odd, then, if χ 6= 1, (3.11) for w1 is equal to (3.11) for w2 (and non-zero
and holomorphic). If j2 − j1 ≥ 3 is odd, and χ = 1, (3.11) for w1 and w2

are non-zero, holomorphic and the same. But if j2 − j1 = 1 and χ = 1, then
(3.11) for w2 and w1 have a pole of the first order and one is negative of the
other. Now we compare (3.12) for w1 = p1ε1 and w2 = p2ε2. First assume
that p1(j1) < p1(j2). Note that if kp1 (introduced after (3.8)) exists, then
kp1 = kp2 . Assume firstly that kp1 exists. Then (3.12) for w1 becomes

(3.16)
1∏n−1

k=kp1
L(2s+ k, 1)

j1∏

k=kp1

L(2s+2k−p1(k), 1)

n−1∏

k=j1+1

L(2s+2k−n, 1).

Now we analyze the second factor as above, but for w2. We have

j2∏

k=kp1

L(2s+ 2k − p2(k), 1)

=

j1∏

k=kp1

L(2s+ 2k − p2(k), 1)

j2∏

k=j1+1

L(2s+ 2k − p2(k), 1)

=

j1∏

k=kp1

L(2s+ 2k − p1(k), 1)

j2∏

k=j1+1

L(2s+ 2k − p1(n+ 1− 2s− k), 1).
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According to Lemma 3.4, case 1., the last product becomes
∏j2

k=j1+1 L(k −

j1, 1), so that (3.12) for w2 becomes

(3.17)

1∏n−1
k=kp1

L(2s+ k, 1)

j1∏

k=kp1

L(2s+ 2k − p1(k), 1)

j2∏

k=j1+1

L(k − j1, 1)

n−1∏

k=j2+1

L(2s+ 2k − n, 1).

To see how (3.16) and (3.17) are related, it is enough to compare

j2∏

k=j1+1

L(2s+ 2k − n, 1) and

j2∏

k=j1+1

L(k − j1, 1).

Note that both sides have a pole of the first order. On the right hand side it is
obtained for k = j1+1, and if we write s = t+s0, where n−2s0 = j1+ j2 and
see what happens for t→ 0, when we recover L(2s+2k−p1(n+1−2s−k), 1)
we see that we actually have limt→0 L(2t+k−j1, 1), so that the right-hand side

becomes limt→0 L(1 + 2t, 1)
∏j2

k=j1+2 L(k− j1, 1). The left-hand side becomes

limt→0

∏j2
k=j1+1 L(2t+2k− j1 − j2, 1). Now we apply functional equation for

the negative arguments in this product. We get

1. limt→0 L(2t, 1)
∏j2−j1

k=2 L(k, 1), if j2 − j1 is even,

2. limt→0 L(2t+ 1, 1)
∏j2−j1

k=2 L(k, 1), if j2 − j1 is odd.

If kp1 does not exist, i.e., p1(i) = i, i = 1, . . . , j1 we have that r(Λs, w1)
−1

consists of (3.11), and it has only the second factor from (3.12). But then it
is easy to see that kp2 = j1+1, and we get the same results as in the previous
case.

Now assume that p1(j1) > p1(j2). We again have that (3.11) is the same
for w1 and w2. Also, we can factor out 1∏n−1

k=kp1
L(2s+k,1)

from r(Λs, wi)
−1, i =

1, 2. We immediately see that the product

(3.18)

it−1∏

k=kp1

L(2s+ 2k − p1(k), 1)

n−1∏

k=j2+1

L(2s+ 2k − n, 1)

is common for r(Λs, w1)
−1 and r(Λs, w2)

−1. Thus, we have to compare the
product (belonging to r(Λs, w1)

−1)

(3.19)

j1∏

k=it

L(2s+ 2k − p1(k), 1)

j2∏

k=j1+1

L(2s+ 2k − n, 1)
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and the product (belonging to r(Λs, w2)
−1)

(3.20)

j2∏

k=it

L(2s+ 2k − p2(k), 1)

We now comment on poles in (3.19) and (3.20). We prove that∏j1
k=it

L(2s + 2k − p1(k), 1) from (3.19) does not have a pole, and that
(3.20) has a pole of the first order. Note that we have already discussed∏j2

k=j1+1 L(2s+ 2k − n, 1) (this expression does not depend on the permuta-

tion p1, but just on j1 and j2).

Now we analyze
∏j1

k=it
L(2s + 2k − p1(k), 1). We prove that it is holo-

morphic analogously to the proof of [14, Lemmas 7-16]. We remind the
reader that ′ means that the corresponding permutation is adjusted to ap-
ply GL-considerations from the seventh section of ([14]). Let us briefly ex-
plain. Assume that the last interval of change for p1 is [β, it − 1]. If we
assume that 2s + 2k − p1(k) = 0 for some k ∈ [it, j1], this would mean
jk = j1 + 2s + k (we remind the reader of the definition of jk for p′1 given
above (3.9)). It follows that p1(k − 1) > p′1(j1 + 2s+ k), otherwise, we could
change p1(k) ↔ p1(n+1− 2s− k) = p′1(j1+2s+ k). We inductively conclude
that p1(k − j) > p′1(j1 + 2s + k − j + 1), when we do not have a beginning
of some interval of change in k − j + 1. We do have the beginning of such an
interval for k− j +1 = β, but this interval of change does not have an end in
k but in it − 1. Similarly, a case 2s + 2k − p1(k) = 1 leads to the condition
p1(k+t+1) < p′1(j1+2s+k+t). If we would take k+t = j1, then obstruction
to the interval change would disappear, but we do know that cannot have the
ending of the last interval of change to be at j1.

We claim that
∏j2

k=it
L(2s + 2k − p2(k), 1) has a pole of the first order,

obtained for k = it. We know that p1(it) = 2s+2it−1 or p1(n+1−2s− it) =
2s + 2it − 1. Indeed, as we saw in Lemma 3.4, case 2. the permutation p1
attains on the set {1, 2, . . . , it−1}∪{n+2−2s− it, . . . , n} the smallest values
in {1, 2, . . . , n}, and there are exactly 2s + 2it − 2 those numbers. So, the
value 2s+2it − 1 is the smallest value that can be attained on the rest of the
indexes and the conclusion follows. But if we would have p1(it) = 2s+2it−1,
the function L(2s+2it−p1(it), 1) would have a pole, and we proved that this
cannot be the case by the preceding paragraph. We just have to show that
there are no poles for k > it. From the fact that we cannot change interval
for p1 in it and then in it + 1 we get

p1(n+ 1− 2s− (it + 1)− 1) < p1(it + 1),

and then, inductively, as long as it makes sense, we get

p1(n+ 1− 2s− (it + k + 1)) < p1(it + k), k ≥ 0.
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It makes sense for it + k ≤ j1, so that the last relation becomes p2(it +
k + 1) < p2(n + 1 − 2s − (it + k)), and then using jit+k for p′2 we get that
p2(it+k+1) ≤ 2s+2(it+k+1)− 2, so that L(2s+2l−p2(l), 1) cannot have
a pole for l = it + k + 1. This proves that L(2s+ 2k − p2(k), 1) cannot have
a pole for k = it + 1, . . . , j1 + 1. As for k ≥ j1 + 2, we simply observe that
jk ≤ n (here jk is attached to p′2). Then, as we know, jk = p′2(k) − k + j2,
which gives 2s+ 2k − p′2(k) = 2s+ 2k − p2(k) ≥ 2.

We conclude that (3.19) becomes

j1∏

k=it

L(2s+ 2k − p1(k), 1)

j2−j1∏

k=2

L(k, 1)A,

where A = limt→0 L(2t, 1) if j2 − j1 is even, and limt→0 L(2t+ 1, 1) if j2 − j1
is odd. We also saw that (3.20) becomes B

∏j2
k=it+1 L(2s+ 2k − p1(n− 2s+

1 − k), 1), where B = limt→0 L(2t+ 1, 1). Note that all of these expressions,
except A and B, are holomorphic. We now prove that these holomorphic
parts are equal. To do that, we shall completely turn this into GL situation
in the following way. As we saw above, p1(it), . . . , p1(n + 1 − 2s− it) attain
values on the set {2s + 2it − 1, . . . , n}. So, we denote m′ = j1 − it + 1 and
n′ = j2 − it + 1 (thus, m′ + 1 ≤ n′) and introduce a new permutation on the
set 1, 2, . . . , n+ 2− 2s− 2it = m′ + n′ as follows:

p′′1 (i) = p1(i+ it − 1)− (2s+ 2it − 2), i = 1, 2, . . . ,m′,(3.21)

p′′1(i) = p1(2m
′ + n′ + it − i)− (2s+ 2it − 2), i = m′ + 1, . . . ,m′ + n′.

(3.22)

We easily see that p′′1 is increasing on the first m′ and on the last n′ places.
In terms of p′′1 , the holomorphic part of (3.19) discussed above becomes

(3.23)

m′∏

i=1

L(2i− p′′1(i), 1)

j2−j1∏

k=2

L(k, 1)

and holomorphic part of (3.20) becomes

(3.24)
m′∏

i=2

L(2i− p′′1(m
′ + i), 1).

Note that p′′1(m
′+1) = 1 and that the changes in p1 p1(i) ↔ p1(n+1−2s− i)

now become p′′1 (i) ↔ p′′1(m
′ + i). Note that our conditions imply that there

are no changes for p′′1 either. This means that for any i ∈ {1, . . . ,m′}, the
interval {1, , . . . , i} cannot be an interval of change. We easily get from this
that p′′(i) > p′′1 (m

′ + i + 1), i = 1, . . . ,m′ which leads (again using ji for
p′′1) to the condition p′′1(i) ≥ 2i + 1, i = 1, . . . ,m′. Thus, the arguments in∏m′

i=1 L(2i− p′′1 (i), 1) from (3.23) are negative, and we use L(2i− p′′1(i), 1) =
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L(p′′1(i)−2i+1, 1).We also immediately have p′′1(m
′+2) = 2. Now, to resolve

(3.24) we write elements {2, . . . ,m′ + n′} in the increasing order:

(3.25)
p′′1(m

′ + 2), . . . , p′′1(j1), p
′′
1(1), p

′′
1(j1 + 1), . . . , p′′1(j2), p

′′
1(2),

. . . , p′′1 (k), p
′′
1(jk + 1), . . . , p′′1(jk+1), p

′′
1(k + 1), . . . .

This sequence ends with . . . p′′1 (m
′), or with . . . p′′1(m

′ + n′). We discuss the
first case; the second is quite analogous. Note that the beginning part p′′1 (m

′+

2), . . . , p′′1(j1) contributes to (3.24) as
∏p′′

1 (1)−1
i=2 L(i, 1). Now we use that jk =

p′′1(k)− k +m′ to obtain that (3.24) becomes

p′′

1 (1)−1∏

i=2

L(i, 1)

m′−1∏

k=1

p′′

1 (k+1)−k−1∏

p′′

1 (k)−k+1

L(i− k, 1),

since p′′1(jk+1) = p′′1(k)+1 = p′′1 (k)−k+1+k = · · · = p′′1 (jk+1) = p′′1(k+1)−
k− 1+ k = i+ k, for all i between jk + 1 and jk+1. Then L(2i− (i+ k), 1) =
L(i − k, 1). Note that the last factor of the product above corresponding
to k, is the first factor in the product corresponding to k + 1. Thus, we
have some repetitions and the product above becomes L(2, 1) . . . L(n′ −m′ +

1, 1)
∏m′−1

k=1 L(p′′1(k)− 2k+1, 1). Now we use that p′′1 (m
′) = m′ +n′ to obtain

the equality with (3.23).

It will turn out that, when analyzing the constant term of Eisenstein se-
ries (2.5), the contributions coming from the global intertwining operators at-
tached to the same orbits of the Weyl group elements, will contribute in a sim-
ilar way, so we shall need

∑
w′∈[w] r(Λs, w

′)−1 and
∑

w′∈[w]∩Y n
j1

r(Λs, w
′)−1 −

∑
w′′∈[w]∩Y n

j2

r(Λs, w
′′)−1. As we have seen in Lemma 3.6, it is enough to cal-

culate
∑

w′∈[w]∩Y n
j1

r(Λs, w
′)−1.

Lemma 3.7. We retain the assumptions from Lemma 3.6. Let j1 ≤ n−1
2 −

s and w ∈ Y n
j1
. Then,

∑
w′∈[w]∩Y n

j1

r(Λs, w
′)−1 has a pole of (at most) the first

order; unless χ = 1 and j2 − j1 = 1; then it has a pole of (at most) the second
order.

Proof. Note that in the expressionA1 of Lemma 3.6, only
∏j1

k=kp1
L(2s+

2k − p1(k), 1) depends on w = p1ε1; all other parts depend only on j1. So,
in the sum

∑
w′∈[w]∩Y n

j1

r(Λs, w
′)−1 we can factor out all other factors, which

are holomorphic (and non-zero), except maybe (3.11), which is holomorphic
unless χ = 1 and j1 = n−1

2 − s. So, we are interested in the sum

(3.26)
∑

w′=p1ε1∈[w]∩Y n
j1

j1∏

k=kp1

L(2s+ 2k − p1(k), 1).
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These kinds of sums are calculated in [14, Section 7.2]. We again make a
transition p1 7→ p′1 (as in (3.8)). In [14, Section 7.2] the sums of products of

the form L(s′+ n′−m′

2 +2k−p(k), 1) are studied, with m′ = j1, n
′ = n−j1, so

that we want 2s = s′+ n′−m′

2 .We get s′ = s− j2−j1
2 . The results in [14, Section

7.2] are given for s′ ≥ 0, so we can directly apply them if j1 ≥ n
2 − 2s. The

value α = m′+n′

2 − s′ becomes α = j2. Then, n
′ = n − j1 > α = j2, and

α + 1 > m′ = j1, so [14, Lemmas 7-15] guarantee that the sum (3.26) is
holomorphic. Assume for a moment that χ 6= 1 or j1 <

n−1
2 − s. Then, we

conclude that
∑

w′∈[w]∩Y n
j1

r(Λs, w
′)−1 has a pole of (at most) the first order.

Now we examine what happens in s < j2−j1
2 , i.e. j1 < n

2 − 2s. We
again use the same results, but we have to look closely what’s happening.
Note that (recall that we are now examining only w′ ∈ [w]′) the changes are
i 7→ n+ 1 − 2s − i, so the values in p1(j1 + 1), . . . , p1(j2) cannot correspond
to any changes. For example, if p1(j1) < p1(j2), then only the values at
the place {1, . . . , j1} ∪ {j2 + 1, . . . , n} might vary; on other places we have
p1(j1 + 1) = n, . . . (cf. Lemma 3.4). We just remove indexes j1 + 1, . . . , j2
from the considerations. So, instead of the permutation p′1, we have the
permutation p′′1(i) = p′1(i) = p1(i), i = 1, . . . , j1 and instead of p′1(i) =
p1(n + 1 + j1 − i), i = j1 + 1, . . . n, we have p′′1(i) = p′1(i + j2 − j1), i =
j1 +1, . . . , n− (j2− j1). Now, m

′ = j1, n
′ = n− j2. We get s′ = s and α = j1,

and we can again use Lemma 7-15 of ([14]) to conclude that the sum (3.26) is

holomorphic (note that we could reason like this even in the case s ≥ j2−j1
2 ).

Now, if p1(j1) > p1(j2) the values on the indexes it, . . . , j1 are fixed for every
w′ ∈ [w] ∩ Y n

j1
(cf. Lemma 3.4) and

∑

w′=p1ε1∈[w]∩Y n
j1

j1∏

k=kp1

L(2s+ 2k − p1(k), 1) =

j1∏

k=it

L(2s+ 2k − p1(k), 1)·

∑

w′=p1ε1∈[w]∩Y n
j1

it−1∏

k=kp1

L(2s+ 2k − p1(k), 1).(3.27)

Note that we have proved that
∏j1

k=it
L(2s + 2k − p1(k), 1) is holomorphic

in the proof of Lemma 3.6. As we saw from that proof, the smallest values
{1, 2, . . . , 2s+ 2it − 1} are attained on the places {1, 2, . . . , it − 1} ∪ {n+ 2−
2s− it, . . . , n}. Thus, we take m

′ = it − 1, n′ = 2s+ it − 1 and s′ = s. We get
α = m′ = it − 1, thus again

∑

w′=p1ε1∈[w]∩Y n
j1

it−1∏

k=kp1

L(2s+ 2k − p1(k), 1)

is holomorphic by [14, Lemmas 7-15].
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4. Composition series of local representations

4.1. Non-archimedean case. In this subsection we assume that F is a
non-archimedean field of characteristic zero.

The lengths of the composition series for the degenerate principal series at
a local non-archimedean place of the form we are studying were studied in the
work of Gustafson ([12]) and Kudla nad Rallis ([19]). Gustafson was concerned
with the unramified case and Kudla and Rallis covered other situations. We
analyze this degenerate series using the Aubert involution, and then it will
turn out that some of the subquotients of the degenerate principal series are
Aubert duals of some discrete series representations. We do that because we
will use some of the basic theory of the discrete series for classical groups in
the last section, in Lemma 6.4.

In [19] these representations are analyzed in a form adjusted to fit in
with the theta correspondence. We end this section by giving the explicit
description (as the Langlands quotients) of the subquotients of this degenerate
principal series which will show up in the description of the images of the
Eisenstein series.

For an irreducible admissible representation σ of a connected algebraic
group over a non-archimedean field F, let σ̂ denote its Aubert dual (a genuine)
representation, as defined in [6]. So, σ̂ for us denotes the Aubert dual (which
is defined on the level of the Grothendieck group), but multiplied with ±1 to
obtain a genuine representation. The following is a well known fact (cf. [6]).

Lemma 4.1. Let σ be an irreducible admissible representation of GLk(F )
and π an irreducible admissible representation of Sp2m(F ). Then, in the
appropriate Grothendieck group (of finite-length, smooth representations of
Sp2(k+m)(F )) the following holds

σ̂ ⋊ π = σ̂ ⋊ π̂.

Note that the Aubert dual of a trivial representation 1GLn(F ) is the
Steinberg representation StGLn(F ); this extends to the twists of these rep-
resentations by characters. We use Lemma 4.1 to be able to determine the
length the representation χνs ⋊ 1 in terms of the length of the representation
χνsStGLn(F ) ⋊ 1 (which are the same). In the previous notation StGLn(F ) =

δ([ν−
n−1
2 , ν

n−1
2 ]). Here ρ is a trivial character of GL1(F ) = F ∗ and we skip

it in the notation. In [24], the composition series of χνsStGLn(F ) ⋊ 1 (and
many other cases) are determined. Now we have the following basic result
(cf. Theorem 9.1 of [37])

Lemma 4.2. Assume F is of characteristic 0. In order for the represen-

tation δ([νs−
n−1
2 χ, νs+

n−1
2 χ])⋊1 to be reducible, it is necessary and sufficient

that there exists an index j ∈ {0, . . . , n− 1} such that νs−
n−1
2 +jχ⋊ 1 reduces

(in SL2(F )).
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Since reducibility for SL2(F ) is well-known, and using Aubert involution,
we have this simple corollary:

Corollary 4.3. If χ2 6= 1 or s−n−1
2 6∈ Z, or |s| > n+1

2 the representation
χνs1GLn ⋊ 1 of Sp2n(F ) is irreducible.

Now we assume that χ2 = 1 and s − n−1
2 ∈ Z, and |s| ≤ n+1

2 . We can
fully describe the composition factors of the representation χνs1GLn ⋊ 1 of
Sp2n(F ). We further assume that s > 0.

Lemma 4.4. Assume that χ is a trivial character of F ∗ and s > 0 such
that s− n−1

2 ∈ Z and s ≤ n+1
2 . Then, in the appropriate Grothendieck group,

we have

1. Assume s = n+1
2 .

ν
n+1
2 1GLn ⋊ 1 = 1Sp2n + ̂L(δ([ν1, νn]); 1),

where 1Sp2n is the unique (spherical) quotient of ν
n+1
2 ⋊ 1.

2. Assume s = n−1
2 .

ν
n−1
2 1GLn ⋊ 1 = L(νn−1, . . . , ν1; ν0 ⋊ 1) + ̂L(δ([ν0, νn−1]); 1),

and L(νn−1, . . . , ν1; ν0⋊1) is the unique (spherical) quotient of ν
n−1
2 ⋊

1.
3. Assume s < n−1

2 . Then, the representation νsδ([ν−
n−1
2 , ν

n−1
2 ])⋊1 is of

length 3, it has two square integrable subrepresentations, say, σ1 and

σ2 , and the Langlands quotient L(νsδ([ν−
n−1
2 , ν

n−1
2 ]); 1). Thus,

νs1GLn ⋊ 1 = σ̂1 + σ̂2 +
̂

L(νsδ([ν−
n−1
2 , ν

n−1
2 ]); 1).

Here,
̂

L(νsδ([ν−
n−1
2 , ν

n−1
2 ]); 1) is the unique subrepresentation of νs⋊1

and σ̂1 and σ̂2 are irreducible quotients. One of σ̂i, i = 1, 2 is the
spherical subquotient.

Proof. We use the Aubert involution, and switch to discrete series sub-
quotients, because it will be handy later. So we use Proposition 3.1 (i),
Theorem 4.1.(ii) and Theorem 2.1 of [24] and Aubert involution to get all the
irreducible subquotients. To get claims on quotients and subrepresentations,
we proceed as follows. Assume s = n+1

2 . We then have an epimorphism

νn × νn−1 × · · · × ν1 ⋊ 1 ։ ν
n+1
2 ⋊ 1,

and we know that νn×νn−1×· · ·×ν1⋊1 has L(νn, νn−1, . . . , ν1; 1) = 1Sp2n(F )

as the unique quotient, so the claim of the first part follows. Analogously, we
have for s = n−1

2 an epimorphism

νn−1 × νn−2 × · · · × ν0 ⋊ 1 ։ ν
n−1
2 ⋊ 1.
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The representation L(νn−1, νn−2, . . . , ν0⋊1) is the unique quotient of νn−1×
νn−2 × · · · × ν0 ⋊ 1, and the second claim follows. As for the claims in the
third part, we use the description of the Jacquet modules of the Aubert dual
of a representation. Indeed, by [6], we have

(4.1) rM,G(π̂) = w ◦Dw−1(M) ◦ rw−1(M),G(π).

Here, for a reductive group G and its Levi subgroup M (where P = MN
is the corresponding parabolic subgroup), rM,G denotes the Jacquet module
with respect to M (more precisely, to P ). Dw−1(M) denotes Aubert invo-

lution on the representations of the group w−1(M); here w denotes a cer-
tain element of the Weyl group of G, but for our choice of maximal Levi
subgroup GLn(F ) of Sp2n(F ), we have w−1(M) = M . The above rela-
tion is meant on the level of the Grothendieck group. Using the Frobenius

reciprocity, to prove that
̂

L(νsδ([ν−
n−1
2 , ν

n−1
2 ]); 1) is the unique irreducible

subrepresentation of νs1GLn ⋊ 1 it is enough to show that νs ⊗ 1 appears
with the multiplicity one in rM,Sp2n(F )(ν

s1GLn ⋊ 1) and that it appears (as

a subquotient) in rM,Sp2n(F )(
̂

L(νsδ([ν−
n−1
2 , ν

n−1
2 ]); 1). But, as a basic prop-

erty of Langlands quotients, we know that ν−sδ([ν−
n−1
2 , ν

n−1
2 ])⊗1 appears in

rM,Sp2n(F )(ν
sδ([ν−

n−1
2 , ν

n−1
2 ])⋊ 1) with multiplicity one, and that it appears

in rM,Sp2n(F )(L(ν
sδ([ν−

n−1
2 , ν

n−1
2 ]); 1). Now the claim follows immediately

from (4.1). To see that both of σ̂1 and σ̂2 are irreducible quotients, we first
note that this is equivalent to showing that σi →֒ ν−s1GLn ⋊ 1 (this easily
follows from a result of Waldspurger, cf. Theorem 2-6 of [15]). Now we use
the proof of Lemma 4.6 of [22], but applied to Aubert duals of the representa-

tions treated in that Lemma. Let 1GLn−2s(F ) ⋊ 1 = T̂1 ⊕ T̂2, where T1 and T2
are irreducible and tempered representations. Then, using the same Jacquet
module calculation from Lemma 4.6 of [22] and using (4.1), we show that σ̂i
is the unique irreducible quotient of νn/21GL2s ⋊ T̂j, for one of the T̂j . We can
take that

(4.2) σ̂i →֒ ν−n/21GL2s ⋊ T̂i, i = 1, 2.

We comment on this choice below. On the other hand

ν−n/21GL2s ⋊ T̂1 ⊕ ν−n/21GL2s ⋊ T̂2 = ν−n/21GL2s × 1GLn−2s ⋊ 1,

and ν−s1GLn⋊1 →֒ ν−n/21GL2s×1GLn−2s⋊1, and since σ̂i, i = 1, 2 occur with

the multiplicity one in ν−n/21GL2s×1GLn−2s⋊1, we are done. We note that in
this case (of unramified principal series), the Iwahori-Matsumoto involution
(which in this case coincides with the Aubert involution) takes generic to
spherical representations, and the last claim follows.
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Lemma 4.5. Assume that χ is a quadratic character of F ∗, χ 6= 1, and s >
0 such that s− n−1

2 ∈ Z and s ≤ n+1
2 . Then, in the appropriate Grothendieck

group, we have

1. Assume s = n+1
2 . Then the representation νsχ1GLn ⋊ 1 is irreducible.

2. Assume s ≤ n−1
2 . Then, analogously as in the case of trivial character,

we have:

νsχ1GLn ⋊ 1 = σ̂1 + σ̂2 +
̂

L(νsδ([ν−
n−1
2 , ν

n−1
2 ]); 1).

Here,
̂

L(νsδ([χν−
n−1
2 , χν

n−1
2 ]); 1) is the unique subrepresentation of

νsχ1GLn ⋊ 1 and σ̂1 and σ̂2 are irreducible quotients.

Proof. Straightforward from Theorem 2.1 and Proposition 3.1(ii) of [24].

Now, we use some results of [22] to describe more thoroughly the dis-
crete series whose Aubert duals appear as subquotients in our degenerate
principal series. The results in [22], at the time of publishing, were depen-
dent on so-called basic assumption, which describes the cuspidal reducibility
in the generalized rank-one case. But, the results we use are independent
of these assumptions, because we are, essentially, in the principal series case,
where the cuspidal reducibilities boil down to the SL2–case, which is very well
known, without any assumptions. Meanwhile, the work of Arthur confirmed
the basic assumption from [22]. The discrete series of classical groups are,
by [22], described by their partial cuspidal support (in our case, the trivial
representation of the trivial group)-this is the cuspidal representation of the
smaller classical group from which the discrete series (along some represen-
tation on the GL-part of a Levi subgroup) is induced; then with so called
Jordan block (this, roughly, describes the GL-part of this induced represen-
tation), and some function on this Jordan block. For our σi, i = 1, 2 the
Jordan block is {(1GL1, 1), (χ, n − 2s), (χ, n + 2s)}. The information in the
parametrization of the discrete series which distinguishes σ1 from σ2 is a ±1–
valued function, so called ε-function, on the Jordan block. Then, for one
of these discrete series ε(χ, n − 2s) = ε(χ, n + 2s) = 1, and for the other
ε(χ, n− 2s) = ε(χ, n+ 2s) = −1 (actually for χ = 1 the function ε is defined
only on pair {(χ, n−2s), (χ, n+2s)} but again the same notation is used as if it
were defined on the particular element). We know that the longest normalized

intertwining operator N(w′
0,Λ

′
s,p) : χ1GLn−2s ⋊ 1 = T̂1 ⊕ T̂2 → χ1GLn−2s ⋊ 1

acts as identity on one the summands, and as minus identity on the other (cf.
Lemma 4.6). We take, from now on, that the one on which this intertwining

operator acts as the identity, is T̂1; the other one is T̂2. With that convention,

note that if χ is unramified, T̂1 is spherical (because N(w′
0,Λ

′
s,p) must act as

the identity on the spherical vector).
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Lemma 4.6. Assume F is a non-archimedean local field of characteristic
zero and let χ2 = 1 be a character of F ∗. For an odd positive integer m, greater

or equal to 3, we define π = ζ(χν−
m−1

2 , χν
m−1

2 ) ⋊ 1. Let T be normalized
intertwining operator (normalized as in (2.4)) of Sp2m(F ) attached to the
longest element of the Weyl group, modulo the longest element in the Weyl
group of the Siegel Levi subgroup. Then, the representation π is a sum of two
irreducible representations, and T is holomorphic, acting as the identity on
one subrepresentation, and minus identity on the other.

Proof. The operator T is holomorphic and unitary because of the prop-
erties of the normalization which is used. This is discussed in detail, for exam-
ple, in [26], before Theorem 6-21. Also, the basic properties of this normaliza-
tion guarantee that T 2 = 1. These observations are valid also for archimedean
case. Now, the representation π is a sum of mutually non-isomorphic irre-
ducible representations in both archimedean case ([21], Theorems 5.5. and
5.6) and non-archimedean case ([12], Theorem 10.16, [19]); in the latter case
the length of the representation is two. This means that T can act as plus or
minus identity on each subrepresentation.

In the non-archimedean case, for the Aubert dual π̂ we have

π̂ = δ([χν−
m−1

2 , χν
m−1

2 ])⋊ 1,

and Harish-Chandra commuting algebra theorem says that the analogous op-

erator T̂ has to act as identity on one subrepresentation, and as minus identity
on the other. But this claim transfers to our case in question (cf. [8], Theorem
5.1).

Later on, we will see that the representations σ̂i appear as images on the
local places of the global representations which are the automorphic images of
Eisenstein series. It is important to be able to describe these representations
explicitly; i.e., as Langlands quotients. As we saw from (4.2), we have

χζ(ν
n+1
2 −s, ν

n−1
2 +s)⋊ T̂i ։ σ̂i,

and σ̂i is the unique quotient in this representation. Since T̂i has strictly

smaller exponents from those appearing in χζ(ν
n+1
2 −s, ν

n−1
2 +s) in its cuspidal

support, the main problem is to determine T̂i. We do it by induction.

Lemma 4.7. Let StSL2(F ) denote the Steinberg representation of SL2(F ).

Then ν0 ⋊ StSL2(F ) is reducible, ν0 ⋊ StSL2(F ) = T ′′
1 ⊕ T ′′

2 , where T
′′
2 is the

unique common tempered subquotient of ν0 ⋊ StSL2(F ) and ζ(ν0, ν1)⋊ 1. Let
m ∈ Z≥1. Then

ζ(ν−m, νm)⋊ 1 = T̂1 ⊕ T̂2,



DEGENERATE EISENSTEIN SERIES 313

where T̂1 is a spherical subquotient. Then,

T̂1 = L(νm, νm, νm−1, νm−1, . . . , ν2, ν2, ν1, ν1; ν0 ⋊ 1),

T̂2 = L(νm, νm, νm−1, νm−1, . . . , ν2, ν2, ν1;T ′′
2 ).

Assume now that χ2 = 1 but χ 6= 1. Then χ⋊ 1 = T 0
1 ⊕ T 0

2 is a reducible

representation of SL2(F ). Then, if m ∈ Z≥1 and χζ(ν−m, νm)⋊ 1 = T̂1 ⊕ T̂2,
we have

T̂i = L(χνm, χνm, χνm−1, χνm−1, . . . , χν2, χν2, χν1, χν1;T 0
i ), i = 1, 2.

Proof. In the first part of the proof the main step is the case m = 1.
Indeed, we have

T̂1 →֒ ν−1 × ν0 × ν1 ⋊ 1
A
−→ ν−1 × ν0 × ν−1 ⋊ 1

B
−→ ν−1 × ν−1 × ν0 ⋊ 1.

Here A and B are normalized intertwining operators. The kernel of the oper-

ator A is ν−1 × ν0 ⋊ StSL2(F ), so that T̂1, as a spherical subquotient, cannot
be a subquotient of that kernel, so we have

T̂1 →֒ ν−1 × ν0 × ν−1 ⋊ 1.

Analogously, the kernel of the operator B is ν−1 × ν−
1
2StGL2(F ) ⋊ 1, so that

we have

T̂1 →֒ ν−1 × ν−1 × ν0 ⋊ 1,

but the representation on the right-hand side has a unique subrepresentation,
namely L(ν1, ν1; ν0 ⋊ 1).

On the other hand

T̂2 →֒ ζ(ν−1, ν0)× ν1 ⋊ 1.

So we have that, in the appropriate Grothendieck group

T̂2 ≤ ζ(ν−1, ν0)⋊ 1SL2(F ) or T̂2 ≤ ζ(ν−1, ν0)⋊ StSL2(F ).

On the other hand, we know that T̂1 ≤ ζ(ν−1, ν0)⋊ 1SL2(F ) since T̂1 is spher-

ical. When we calculate the multiplicity of ζ(ν−1, ν1) ⊗ 1 in the appropriate

Jacquet module of ζ(ν−1, ν0)⋊ 1SL2(F ), it is one (and each of T̂i, i = 1, 2 has
that part in its Jacquet module). We conclude that we must have

T̂2 ≤ ζ(ν−1, ν0)⋊ StSL2(F ).

Also, we have ν0 ⋊ StSL(2) = T ′′
1 ⊕ T ′′

2 , for some tempered representations

T ′′
1 and T ′′

2 . Let T
′′
2 be the unique common subquotient of ν0 ⋊ StSL(2) and

ζ(ν0, ν1)⋊ 1. We then have

0 → T ′′
2 →֒ ζ(ν0, ν1)⋊ 1 ։ L(ν1; ν0 ⋊ 1) → 0.
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Thus, if T̂2 is not in the kernel of the intertwining operator C below

T̂2 →֒ ν−1 × ζ(ν0, ν1)⋊ 1
C
−→ ν−1 ⋊ L(ν1; ν0 ⋊ 1),

we would have T̂2 →֒ ν−1 ⋊L(ν1; ν0 ⋊ 1), but then ν−1 ⊗L(ν1; ν0 ⋊ 1) would

have to appear in the appropriate Jacquet module of T̂2, which is impossible
(we actually check the appropriate Jacquet module of ζ(ν−1, ν0) ⋊ StSL2(F )

but it does not appear there either). The kernel of C is ν−1⋊T ′′
2 , so we must

have T̂2 →֒ ν−1 ⋊ T ′′
2 and the claim follows.

Now, for general m ≥ 2, we have

ζ(ν−m, νm)⋊ 1 →֒ ζ(ν−m, νm−1)× νm ⋊ 1 ∼= ζ(ν−m, νm−1)× ν−m ⋊ 1

∼= ν−m × ζ(ν−m, νm−1)⋊ 1 →֒ ν−m × ν−m × ζ(ν−(m−1), νm−1)⋊ 1

and we just apply the induction on the representation ζ(ν−(m−1), νm−1)⋊ 1.
The case of χ 6= 1 is similar but easier.

Corollary 4.8. Assuming the notation from the previous lemmas form
this section, we let n−1

2 − s ∈ Z>0. If χ = 1 then

σ̂1 = L(ν
n−1
2 +s, ν

n−3
2 +s, . . . , ν

n+1
2 −s, ν

n−1
2 −s, ν

n−1
2 −s, . . . , ν1, ν1; ν0 ⋊ 1),

and

σ̂2 = L(ν
n−1
2 +s, ν

n−3
2 +s, . . . , ν

n+1
2 −s, ν

n−1
2 −s, ν

n−1
2 −s, . . . , ν2, ν2, ν1;T ′′

2 ).

If χ 6= 1 we get analogously

σ̂i = L(ν
n−1
2 +s, ν

n−3
2 +s, . . . , ν

n+1
2 −s, ν

n−1
2 −s, ν

n−1
2 −s, . . . , ν1, ν1;T 0

i ), i = 1, 2.

4.2. The archimedean (real) case. Throughout this subsection, we use the
results of [21], where the author studies the Siegel case of the degenerate series
for Sp2n(R). Here ε ∈ {0, 1}.

Thus, we have

Corollary 4.9. Assume n ≥ 3. The representation χ∞ν
s1GLn ⋊ 1 is

reducible if and only if χ∞ = sgnε and s+ n+1
2 ∈ Z.

Later, we need the following

Lemma 4.10. Assume χ∞ = 1 and n−1
2 − s ∈ Z≥0. Then, the spherical

vector in the representation ν−s
∞ 1GLn ⋊ 1 of Sp(2n,R) spans an irreducible

subrepresentation.

Proof. This easily follows from Theorems 5.2, 5.4, and 5.6 of [21]. There
the socle series of the degenerate representation ν−s

∞ 1GLn ⋊ 1 are studied,
and the subquotients are described by their K-types (and not as Langlands
quotients). It is a matter of a straightforward check to see that the socle of
representation ν−s

∞ 1GLn ⋊ 1 contains a subrepresentation which contains the
trivial K-type.
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Remark 4.11. Note that from the proof of Lemma 4.6, it follows that,

in the archimedean case, we can take sgnε1GLm ⋊ 1 = T̂1,∞ ⊕ T̂2,∞ (for m

odd greater than 3), where we define T̂1,∞ = {f ∈ sgnε1GLm ⋊ 1 : Tf = f}

and T̂2,∞ = {f ∈ sgnε1GLm ⋊ 1 : Tf = −f}, where T is the normalized in-
tertwining operator, defined analogously as in Lemma 4.6. The more difficult

situation in the archimedean case comes from the possibility that T̂i,∞, i = 1, 2
are reducible (or zero).

5. The local intertwining operators

In this section we analyze the action of normalized intertwining operators
occurring in (2.5), where w ∈ [W/W∆\{αn}]. We recall (3.1) for the form of
the inducing character of the maximal global torus. When we untangle action
of the Weyl group on Λs (cf.(2.1)), we get that w = pε consists of shuffles (cf.
[19] for the definition) of (Λs)1, . . . , (Λs)j among (Λs)

−1
n , . . . , (Λs)

−1
j+1 (in that

order), so that w(Λs) looks something like this

(5.1) (Λs)
−1
n ⊗ (Λs)1 ⊗ (Λs)2 ⊗ · · · ⊗ (Λs)j ⊗ (Λs)

−1
j+1,

where (Λs)i = χνs−
n−1
2 +i−1. So, each of the (normalized) local intertwining

operators is composed from the rank-one intertwining operators, starting from
the one (in SL(2)) from (Λs,p)n ⋊ 1 to (Λs,p)

−1
n ⋊ 1, then GL(2)-operators

which jump over (Λs,p)j , (Λs,p)j−1 . . . until (Λs,p)
−1
n is positioned on its final

place, e.g. like in (5.1). Then we repeat the same procedure with (Λs,p)n−1

and so on until (Λs,p)j+1. Thus, our normalized intertwining operators are
composed from the rank-one operators (p ≤ ∞)

• χpν
s−n−1

2 +i1−1 ⋊ 1 → χ−1
p ν−(s−n−1

2 +i1−1) ⋊ 1, where i1 = j + 1, . . . , n
•

χpν
s− n−1

2 +i2−1×χ−1
p ν−(s−n−1

2 +i1−1) → χ−1
p ν−(s−n−1

2 +i1−1)×χpν
s− n−1

2 +i2−1,

where i1 = j + 1, . . . , n and i2 ∈ {1, . . . , j}.

The normalized intertwining operators are holomorphic in ”standard” cases
(i.e. s − n−1

2 + i2 ≥ −(s − n−1
2 + i1) for GL(2)-cases and s − n−1

2 + i1 ≥ 0
for the SL(2)-cases) and in non-standard cases if the inducing representations
are irreducible. Reducibilities for SL(2,Qp) and GL(2,Qp) are well–known;
we first have (cf. [27], Theorem 2.4 and Theorem 2.5)

Lemma 5.1. The representation χpν
s− n−1

2 +i1−1 ⋊ 1 of SL(2,Qp) is re-
ducible if and only if

1. p < ∞ : χp = 1 and s − n−1
2 + i1 − 1 = ±1 or χ2

p = 1, χp 6= 1 and

s− n−1
2 + i1 − 1 = 0;

2. p = ∞ : s− n−1
2 + i1 − 1 ∈ Z and χ∞ = sgnε, where ε ≡ (s− n−1

2 +
i1)(mod2).
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Lemma 5.2. The representation χpν
s−n−1

2 +i2−1 × χ−1
p ν−(s−n−1

2 +i1−1) of
GL(2,Qp) is reducible if and only if

1. p <∞ : χ2
p = 1 and s−n−1

2 +i2−1+s−n−1
2 +i1−1 = 2s−n−1+i1+i2 =

±1;
2. p = ∞ : χ2

∞ = sgnk+1 and 2s−n−1+i1+i2 = k, for some k ∈ Z\{0};
i.e., 2s− n+ 1 + i1 + i2 is an odd integer, and χ2

∞ = 1.

We immediately conclude

Corollary 5.3. Assume s ≥ n−1
2 or χ2

p 6= 1, p ≤ ∞. Then all the local
intertwining operators in (2.5) are holomorphic.

Proof. If s ≥ n−1
2 we are in, aforementioned, standard cases. If χ2

p 6= 1
all the local representations mentioned in Lemmas 5.2 and 5.1 are irreducible.

Now we assume χ2
p = 1. We can be more precise with the occurrence of

the poles of the intertwining operators that come from the GL-poles. Since
we are interested in the action of normalized intertwining operators not on
the whole induced principal series of Sp(2n,Qp), but on χpν

s1GLn ⋊ 1, from
the discussion about the action of the intertwining operators described at the
beginning of this section, it follows that we are really interested in the poles
of the intertwining operator

(5.2)
ζ(χpν

s− n−1
2 +ti1−1, χpν

s−n−1
2 +i1−2)× χpν

−(s−n−1
2 +i1−1)

→ χpν
−(s− n−1

2 +i1−1) × ζ(χpν
s−n−1

2 +ti1 , χpν
s− n−1

2 +i1−2).

Here ti1 denotes the index of the last one among (Λs,p)1, · · · (Λs,p)j where, at

the end, (Λs,p)
−1
i1

will be situated. We have three cases. If −(s− n−1
2 +i1−1) ≤

s− n−1
2 + ti1 −1 then we are in the standard case (i.e., this operator factorizes

in rank-one operators action on standard representations), thus the opera-
tor is holomorphic. If, on the other hand, −(s − n−1

2 + i1 − 1) ∈ [s− n−1
2 +

ti1 −1, s− n−1
2 + i1−2], the representation ζ(χpν

s− n−1
2 +ti1 , χpν

s− n−1
2 +i1−2)×

χpν
−(s− n−1

2 +i1−1) is irreducible, (for all p ≤ ∞) so the holomorphy follows.
Assume that −(s− n−1

2 + i1 − 1) > s− n−1
2 + i1 − 2 and that the representa-

tion ζ(χpν
s−n−1

2 +ti1−1, χpν
s− n−1

2 +i1−2)×χpν
−(s−n−1

2 +i1−1) is reducible. This
means that n+2−2s

2 > i1 ≥ j + 1, so j < n−2s
2 .

Now we analyze more thoroughly the case when a possible pole comes
from the SL(2) situations (cf. Lemma 5.1). For p ≤ ∞, to have a possible
pole, we need to have s − n−1

2 + i1 ∈ Z and χ2
p = 1. If p < ∞, the only

possibility of a pole occurs if we have χp = 1 and the intertwining operator

νs−
n−1
2 +i1−1 ⋊ 1 → ν−(s−n−1

2 +i1−1) ⋊ 1 with s− n−1
2 + i1 − 1 = −1 occurring

in the factorizations of the intertwining operator N(w,Λs,p). Note that this
implies w ∈ Y n

j , with i1 ≥ j + 1, i.e. i1 = n−1
2 − s ≥ j + 1. Analogously, for
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p = ∞, to have a pole we must have s− n−1
2 + i1 − 1 ≤ −1 with i1 ≥ j + 1,

so again j + 1 ≤ n−1
2 − s.

We thus have, form the discussion above on GL– and SL–situations, the
following

Lemma 5.4. Assume j > n−1
2 − s. Then, all the normalized intertwining

operators N(w,Λs,p) for w ∈ Y n
j , are holomorphic.

To deal with j ≤ n−1
2 − s, we first resolve the case of N(w0,Λs,p) (we

assume that n−1
2 − s > 0). Recall that an element w0 is described by (3.6)

(cf. Proposition 3.2).

Lemma 5.5. Assume p < ∞. Then, if n−1
2 − s ∈ Z≥0, r(Λs,p, w0) is

holomorphic and non-zero for s < n−1
2 and has a zero of the first order if

s = n−1
2 . If n−1

2 − s ∈ 1
2 + Z≥0 then, r(Λs,p, w0) has a zero of the first order.

Proof. When we cancel out the factors in the numerator and the de-
nominator in the local versions of the expressions (3.3) and (3.5) with χp = 1,
j = 0, we get

r(Λs,p, w0)
−1 =

Lp(s−
n−1
2 , 1)

Lp(s+
n+1
2 , 1)(∗)

n−1∏

k=1

Lp(2s+ 2k − n, 1)

Lp(2s+ k, 1)(∗∗)
,

where (∗) and (∗∗) are products of ǫ factors. Now the conclusion follows.

Lemma 5.6. Assume p < ∞, χp = 1. Then, if n−1
2 − s ∈ Z>0, the

intertwining operator A(w0,Λs,p) is holomorphic (and non-zero). It has a
pole of the first order for s = n−1

2 and if n−1
2 − s ∈ 1

2 + Z≥0.

Proof. We denote byN the opposite unipotent radical toN, which is the
unipotent radical of the standard Siegel parabolic subgroup. To investigate
the poles, it is enough, by a result of Rallis (cf. [32]), to investigate the poles
of the expression A(w0,Λs,p)f(e), where f ∈ χpν

s1GLn ⋊ 1 is such that it has

a compact support modulo P inside PN. So, for s big enough, we have

A(w0,Λs,p)f(e) =

∫

N

f(w−1
0 u)du =

∫

C

f

((
0 −In
In X

))
du.

Since the support of f lies in PN, we get that X must be regular, so the
last integral is over the set C = {X ∈ GL(Qp) : X

t = JnXJn}. In that case(
0 −In
In X

)
=

(
X−1 −In
0 X

)(
In 0
X−1 In

)
, so that

A(w0,Λs,p)f(e) =

∫

C

|detX |−s−n+1
2 f

((
In 0
X−1 In

))
dX.
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Since f restricted on

{(
In 0
X−1 In

)
: X ∈Mn(Qp), X

t = JnXJn

}
is a Schwa-

rtz function on that space, we can apply the results of Igusa, and Piatetski-
Shapiro and Rallis ([28], Theorem in Appendix 1), because this integral is
zeta-integral related to a prehomogeneous vector space formed by symmet-
ric matrices. On the regular part of this space, GLn(Qp) acts X 7→ gXgt

with a finite number of orbits. Note that GLn(Qp)–invariant measure on C

is given by d∗X = dX

|det|
n+1
2

(cf. [34]). We use that for the change of variables

X 7→ X−1 in the previous relation, so that we obtain exactly Z(f, s) as in
([28], Appendix 1). We get that the possible poles of this integral are the
poles of the expression

(5.3)

(
n∏

l=l1

Lp(2s+ n− 2l+ 2, 1)

)
Lp(s−

n− 1

2
, 1),

where l1 = [n2 ] + εn, where εn is 1 if n is even, and equal to 2 if n is odd.
Now, the claim of lemma follows.

Corollary 5.7. Assume 2s ∈ Z and 0 < 2s < n− 1. Then, for p < ∞,
N(w0,Λs,p) is holomorphic and non-zero.

Note that the result of ([28], Theorem in Appendix 1) holds also in the
archimedean case. Also, to check the normalization factors, we need to
check both the case χ∞ = 1 and the case χ∞ = sgn, but the same
kind of cancelations between the zeros of the normalization factors and the
poles of the intertwining operators occur. Here L∞(s, 1) = π− s

2Γ( s2 ) and

L∞(s, sgn) = π− s+1
2 Γ( s+1

2 ). We conclude

Corollary 5.8. Assume p = ∞ and 2s ∈ Z and 0 < 2s ≤ n − 1.
Then, the normalized intertwining operator N(w0,Λs,p) is holomorphic and
non-zero.

Lemma 5.9. Assume j ≤ n−1
2 − s. Then, the normalized intertwining

operator N(w,Λs,p) with w ∈ Y n
j is holomorphic for p ≤ ∞.

Proof. We construct one special element in Y n
j . Let wj ∈ Y n

j with

wj = pε be defined in the following fashion: p(i) = n− j + i, i = 1, . . . , j and
p(i) = n + 1 − i; i = j + 1, . . . , n. Then we can describe the action of wj in
the following way.

χpν
s ⋊ 1 →֒ χpν

sζ(−
n− 1

2
,−

n− 1

2
+ j − 1)× χpν

sζ(−
n− 1

2
+ j,

n− 1

2
)⋊ 1

(5.4)

N(w′

0)−−−−→ χpν
sζ(−

n− 1

2
,−

n− 1

2
+ j − 1)× χpν

−sζ(−
n− 1

2
,
n− 1

2
− j)⋊ 1

C
−→ χpν

−sζ(−
n− 1

2
,
n− 1

2
− j)× χpν

sζ(−
n− 1

2
,−

n− 1

2
+ j − 1)⋊ 1.



DEGENERATE EISENSTEIN SERIES 319

Note that the operator N(wj ,Λs,p) is holomorphic: the operator N(w′
0) is

induced from Sp2(n−j)–operator and is attached to the longest element in the
appropriate Weyl group there, so we can apply Corollaries 5.7 and 5.8 for
Sp2(n−j)(Qp) and s+

j
2 instead of s. The operator C is holomorphic, induced

from the GL–case. Its holomorphy follows from the fact that in the case
j ≤ n−1

2 −s, the representation χpν
−sζ(−n−1

2 , n−1
2 −j)×χpν

sζ(−n−1
2 ,−n−1

2 +
j − 1) is irreducible (for p ≤ ∞). Then the normalized intertwining operator
maps (a χp twist of–) the normalized spherical vector to (a χp twist of–) the
normalized spherical vectors, but these vectors span these representations.
Now we can write N(w,Λs,p) = N(wwj

−1, wj(Λs,p))N(wj ,Λs,p). Note that
N(wwj

−1, wj(Λs,p)) is induced from the GL(n)–intertwining operator, i.e.,
we can write it as p1ε1, where ε1 = (1, 1, . . . , 1) and p1(i) = p(n+ 1− i), i =
1, . . . , n−j and p1(i) = p(i−(n−j)), i = n−j+1, . . . , n, thus it is an increasing
permutation on the first n − j and on the last j elements. So, essentially,
N(wwj

−1, wj(Λs,p)) acts on χpν
−sζ(−n−1

2 , n−1
2 − j)× χpν

sζ(−n−1
2 ,−n−1

2 +

j − 1), which is irreducible, so again N(wwj
−1, wj(Λs,p)) is holomorphic.

We conclude:

Corollary 5.10. Assume 2s ∈ Z such that 0 < 2s ≤ n− 1 and χ2
p = 1.

Then, all the intertwining operators N(w,Λs,p) for w ∈ [W \W∆\{αn}] and
p ≤ ∞, are holomorphic.

6. The image of Eisenstein series

In our situation, the image of (the normalized) Eisenstein series (2.3) is
isomorphic to its (normalized) constant term (e.g. Lemma 2-8 of [14]). Thus,
we have to determine the image of the local intertwining operators appearing
in the expansion of the constant term of the Eisenstein series. We have seen
that it is important to determine the image of the local intertwining operator
N(w0,Λs,p). Namely, the sums of normalizing factors coming from w0 have
the greatest order of a pole, cf. Lemma 3.7, and, as we will see shortly, the
other intertwining operators have kernels at least as big as N(w0,Λs,p).

Lemma 6.1. Assume that p <∞. Assume χ2
p = 1, n−1

2 − s ∈ Z>0. Then,
following the notation of Lemma 4.4 and Lemma 4.5, we have

N(w0,Λs,p)(χpν
s1GLn ⋊ 1) = σ̂1 ⊕ σ̂2.

The representation
̂

L(νsδ([χpν−
n−1
2 , χpν

n−1
2 ]); 1) is in the kernel of all inter-

twining operators N(w,Λs,p), where w ∈ Y n
j with j ≤ n−1

2 −s−1. If s = n−1
2 ,

then, if χp 6= 1, the discussion is the same as in the case when s < n−1
2 . If s =

n−1
2 and χp = 1, then N(w0,Λs,p)(χpν

s1GLn ⋊ 1) = L(νn−1, . . . , ν1; ν0 ⋊ 1).

Proof. As we saw in the proofs of Lemma 4.4 and 4.5,

νn/2χp1GL2s × χp1GLn−2s ⋊ 1 = νn/2χp ⋊ T̂1 ⊕ νn/2χp ⋊ T̂2.
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We take j = 2s and define an element wj = pε ∈ Y n
j as in the proof of

Lemma 5.9 for this specific j. The corresponding intertwining operator acting
on νn/2χp1GL2s × χp1GLn−2s ⋊ 1 acts like this

νn/2χp1GL2s × χp1GLn−2s ⋊ 1
N(w′

0)−−−−→ νn/2χp1GL2s × χp1GLn−2s ⋊ 1
C
−→

(6.1)

χp1GLn−2s × νn/2χp1GL2s ⋊ 1.

The operator N(w′
0) is induced from the Sp2(n−j)- operator, acting as

the identity on T̂1 and as minus identity on T̂2; the image of the operator
C is precisely χpν

s1GLn ⋊ 1 which is a subrepresentation of χp1GLn−2s ×

νn/2χp1GL2s ⋊ 1. Note that N(wj ,Λ
′
s,p) is holomorphic on νn/2χp1GL2s ×

χp1GLn−2s ⋊ 1 (as N(w′
0) and C are holomorphic and non-zero). We then

apply N(w0,Λs,p) on χpν
s1GLn ⋊ 1. Let us denote by Λ′

s,p a character of the

maximal torus from which a principal series representation IndSp2n

Bn
(Λ′

s,p) is

induced such that the representation νn/2χp1GL2s×χp1GLn−2s⋊1 is naturally

embedded in IndSp2n

Bn
(Λ′

s,p). Thus, we have

N(w0,Λs,p)N(wj ,Λ
′
s,p)(ν

n/2χp1GL2s × χp1GLn−2s ⋊ 1)

= N(w0,Λs,p)(χpν
s1GLn ⋊ 1).

When we calculate w0wj directly we get w0wj = p1ε1, where p1(i) = j + 1−
i, i = 1, . . . , j and p1(i) = i, i = j +1, . . . , n. The corresponding intertwining
operator N(w0wj ,Λ

′
s,p) acts as

νn/2χp1GL2s × χp1GLn−2s ⋊ 1 = νn/2χp ⋊ T̂1 ⊕ νn/2χp ⋊ T̂2

→ ν−n/2χp ⋊ T̂1 ⊕ ν−n/2χp ⋊ T̂2.

On the other hand,

N(w0wj ,Λ
′
s,p)|νn/2χp1GL2s⋊T̂i

(νn/2χp1GL2s ⋊ T̂i) = σ̂i, i = 1, 2.

Indeed, if this operator is non-zero and holomorphic, than the image has to
be σ̂i, i = 1, 2 since σ̂i, i = 1, 2 is the unique irreducible subrepresentation of

ν−n/2χp1GL2s⋊T̂i and the unique irreducible quotient of νn/2χp1GL2s⋊T̂i, i =

1, 2 and appears with the multiplicity one in νn/2χp1GL2s ⋊ T̂i, i = 1, 2 (cf.
Lemma 4.6 of [22]). The holomorphy and non-vanishing of this operator on

νn/2χp1GL2s ⋊ T̂i is the content of Lemma 3.5 of [25].
The claim in the case s = n−1

2 follows from the fact that representation

L(νn−1, . . . , ν1; ν0⋊1) is the unique irreducible quotient of ν
n−1
2 1GLn ⋊1 and

the unique irreducible subrepresentation of ν−
n−1
2 1GLn ⋊ 1 and the normal-

ized intertwining operator N(w0,Λs,p) is holomorphic (and non-zero) on the

spherical vector which generates the whole representation ν
n−1
2 1GLn ⋊ 1.
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Now we describe more thoroughly the superposition of the images of
N(w,Λs,p) over all w belonging to the same orbit, as described in Proposition
3.2. First, we deal with the case of the longest element of [W \W∆\{αn}].
Let w0 ∈ Y n

0 and w′ ∈ Yn−2s such that w0(Λs) = w′(Λs) (w′ is explicitly
described in Proposition 3.2). Denote, for a moment, j = n − 2s (j is odd).
Note that the representation χp1GLj ⋊ 1 is an reducible (unitary) represen-
tation of Sp2j(Qp), p ≤ ∞. Let w2 be the longest element of the Weyl group
Sp2j(Qp), modulo the longest one in the Weyl group of its Siegel subgroup.
Note that we can view w2 as an element of [W \W∆\{αn}], by prescribing
w2(i) = i, i = 1, . . . , n− j and w2(i) = 2n− j+1− i, i = n− j+1, . . . , n. As

before, we denote χp1GLj ⋊1 = T̂1⊕ T̂2 where N(w2, j, χp) acts as the identity

on T̂1, and as minus identity on T̂2 (similarly for the archimedean case; cf.
remark after Lemma 4.10). In the next lemma we can be more specific in the
case p < ∞ than in the case of p = ∞. The problem with the latter is that
we do not know which irreducible subquotients of χ∞ν

s ⋊ 1 belong to each of

χ∞ν
−sζ(−n−1

2 , n−1
2 − j)⋊ T̂i,∞, i = 1, 2. The problem of classifying the sub-

quotients (in terms of Langlands quotients) of the degenerate principal series
for Sp(2n,R) like these is still unsolved (cf. [21]) and we plan to address it in
some other occasion.

Lemma 6.2. Assume χ2 = 1 and n−1
2 − s ∈ Z≥0 with s > 0. Let

fs = ⊗p≤∞fp,s ∈ I(s). We denote by fp,−s the normalized spherical vector in
χpν

−s1GLn ⋊ 1. Then,

1. Assume p <∞. If s < n−1
2 , if fp,s belongs to the subquotient σ̂1 we have

N(w0,Λs,p)fp,s = N(w′,Λs,p)fp,s and if fp,s belongs to the subquotient
σ̂2 we have N(w0,Λs,p)fp,s = −N(w′,Λs,p)fp,s; the same is true if
s = n−1

2 and χp 6= 1. If s = n−1
2 and χp = 1 then N(w0,Λs,p)fp,s =

N(w′,Λs,p)fp,s, for every fp,s ∈ χpν
s1GLn ⋊ 1.

2. Assume p = ∞. If s < n−1
2 or s = n−1

2 and χp = sgn, so that we have

χ∞ζ(−(n−1
2 −s), n−1

2 −s)⋊1 = T̂1,∞⊕ T̂2,∞, then N(w0,Λs,∞)f∞,s =

N(w′,Λs,∞)f∞,s if f∞,s belongs to χ∞ν
−sζ(−n−1

2 , n−1
2 −j)⋊T̂1,∞ and

N(w0,Λs,∞)f∞,s = −N(w′,Λs,∞)f∞,s if f∞,s belongs to

χ∞ν
−sζ(−

n− 1

2
,
n− 1

2
− j)⋊ T̂2,∞.

Now assume additionally that χ∞ = 1 and f∞,s is normalized spherical. As-
sume that S is a finite set of finite places and for p /∈ S, let fp,s be the
normalized spherical vector.
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1. Assume s < n−1
2 . For S1 ⊂ S we pick fp,s ∈ σ̂1 and for p ∈ S2 :=

S \ S1, we take fp,s ∈ σ̂2. Then, the expression

(6.2)

r(Λs, w0)
−1(⊗p∈S1N(w0,Λs,p)fp,s)

⊗ (⊗p∈S2N(w0,Λs,p)fp,s)⊗ (⊗p/∈Sfp,−s)

+ r(Λs, w
′)−1(⊗p∈S1N(w′,Λs,p)fp,s)

⊗ (⊗p∈S2N(w′,Λs,p)fp,s)⊗ (⊗p/∈Sfp,−s)

is holomorphic if |S2| is odd, and has a pole of the first order if |S2| is
even.

2. Assume s = n−1
2 . Then, if χ = 1, the expression

r(Λs, w0)
−1 (⊗p∈SN(w0,Λs,p)fp,s)⊗ (⊗p/∈Sfp,−s)

+ r(Λs, w
′)−1 (⊗p∈SN(w′,Λs,p)fp,s)⊗ (⊗p/∈Sfp,−s)

has a pole of the first order.
If χ 6= 1, let S1 ⊂ S be a finite set of places such that χp = 1 for p ∈ S1

and S2 = S \ S1 such that χp 6= 1 for p ∈ S2. We take S2 = S′
2 ∪ S

′′
2

such that for p ∈ S′
2, fp,s ∈ σ̂1, and for p ∈ S′′

2 fp,s ∈ σ̂2. Then

(6.3)

r(Λs, w0)
−1 (⊗p∈S1N(w0,Λs,p)fp,s)⊗

(
⊗p∈S′

2
N(w0,Λs,p)fp,s

)

⊗
(
⊗p∈S′′

2
N(w0,Λs,p)fp,s

)
⊗ (⊗p/∈Sfp,−s)

+ r(Λs, w
′)−1 (⊗p∈S1N(w′,Λs,p)fp,s)⊗

(
⊗p∈S′

2
N(w′,Λs,p)fp,s

)

⊗
(
⊗p∈S′′

2
N(w′,Λs,p)fp,s

)
⊗ (⊗p/∈Sfp,−s)

is holomorphic if |S′′
2 | is odd, and has a pole of the first order if |S′′

2 |
is even.

Proof. In the proof we omit a subscript s in fp,s if it is understood
that fp = fp,s belongs to I(s.) We examine the actions of the intertwining
operators N(w0,Λs,p) and N(w′,Λs,p). We have w0 = w2w

′, where w2 is a
Weyl group element introduced in the discussion before this Lemma. We note
that

w′(Λs) = Λ−1
n ⊗ Λ−1

n−1 ⊗ · · · ⊗ Λ−1
j+1 ⊗ Λ1 ⊗ Λ2 ⊗ · · · ⊗ Λj ,

where j = n−2s.We can now describe the action of N(w′,Λs,p) on χpν
s⋊1 :

χpν
s ⋊ 1 →֒ χpν

sζ(−
n− 1

2
,−

n− 1

2
+ j − 1)× χpν

sζ(−
n− 1

2
+ j,

n− 1

2
)⋊ 1

→ χpν
sζ(−

n− 1

2
,−

n− 1

2
+ j − 1)× χpν

−sζ(−
n− 1

2
,
n− 1

2
− j)⋊ 1

→ χpν
−sζ(−

n− 1

2
,
n− 1

2
− j)× χpν

sζ(−
n− 1

2
,−

n− 1

2
+ j − 1)⋊ 1.

Since χpν
sζ(−n−1

2 ,−n−1
2 + j − 1)⋊ 1 = T̂1 ⊕ T̂2 (always reducible if s < n−1

2

or s = n−1
2 and χp 6= 1, analogously if p = ∞), the representation in the last
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line of the expression above decomposes as

(6.4) χpν
−sζ(−

n− 1

2
,
n− 1

2
− j)⋊ T̂1 ⊕ χpν

−sζ(−
n− 1

2
,
n− 1

2
− j)⋊ T̂2.

Since (the intertwining operator related to) w2 acts as plus/minus identity

on T̂1 and T̂2 this action induces in the same way to the action on the two
summands in the relation (6.4) and the first part of the lemma follows. This
means that (6.2) becomes

(r(Λs, w0)
−1 + (−1)|S2|r(Λs, w

′)−1) (⊗p∈S1N(w0,Λs,p)fp)

⊗ (⊗p∈S2N(w0,Λs,p)fp)⊗ (⊗p/∈Sfp,−s).

We now calculate (r(Λs, w0)
−1+(−1)|S2|r(Λs, w

′)−1). This is essentially done
in Lemma 3.6, but note that j2 − j1 = n − 2s is odd, by our assumption
(n−1

2 − s ∈ Z≥0). Also, we do not even need Lemma 3.7, since [w0] ∩ Y
n
0 is a

singleton. Thus, analyzing the quantity A1 from Lemma 3.6, we see that, if
j2 − j1 ≥ 3, r(Λs, w0)

−1 = r(Λs, w
′)−1 and this expression has precisely the

pole of the first order, which is the same we obtain if n− 2s = 1, but χ 6= 1.
If n− 2s = 1 and χ = 1 we get that r(Λs, w0)

−1 = −r(Λs, w0)
−1, and it has

a pole of the second order. On the other hand, if s = n−1
2 , the representation

χpν
sζ(−n−1

2 ,−n−1
2 + j − 1) ⋊ 1 becomes χp ⋊ 1 (representation of SL(2)),

and this is reducible if χp 6= 1 and irreducible if χp = 1. Thus, if χp = 1 and
s = n−1

2 , N(w0,Λs,p)fp = N(w′,Λs,p)fp for every fp ∈ χpν
s1GLn ⋊ 1.

Now we examine what happens in the situation of orbits attached to
elements w ∈ Y n

j , where now j is any integer form the set {1, 2, . . . , n−2s−1}.
Note that, by a remark after Proposition 3.2, the orbits for w ∈ Y n

j , where
j ≥ n− 2s+ 1, are singletons.

Lemma 6.3. We keep the assumptions of Lemma 6.2. Assume w′ ∈ [w],
where w,w′ ∈ Y n

j , for some j ∈ {1, 2, . . . , n− 2s− 1}. Then,

N(w,Λs,p)fp,s = N(w′,Λs,p)fp,s,

for all fp,s ∈ χpν
s1GLn ⋊ 1 for p ≤ ∞. Further, the representation

̂
L(νsδ([χpν−

n−1
2 , χpν

n−1
2 ]); 1) is in the kernel of all intertwining operators

N(w,Λs,p), p <∞, where w ∈ Y n
j with j ≤ n− 2s.

Proof. We recall of the element wj ∈ Y n
j introduced in the proof of

Lemma 5.9. For w ∈ Y n
j we have

N(w,Λs,p) = N(wwj
−1, wj(Λs,p)N(wj ,Λs,p).

If w′ ∈ Y n
j is in the orbit of w, i.e. w(Λs) = w′(Λs), we can look at action of

N(w′wj
−1, wj(Λs,p)) on χpν

−sζ(−n−1
2 , n−1

2 −j)×χpν
sζ(−n−1

2 ,−n−1
2 +j−1).

If we prove that the actions of N(w′wj
−1, wj(Λs,p)) and N(wwj

−1, wj(Λs,p))
coincide on π := χpν

−sζ(−n−1
2 , n−1

2 − j) × χpν
sζ(−n−1

2 ,−n−1
2 + j − 1), the
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actions of N(w,Λs,p) and N(w′,Λs,p) will coincide on χpν
s ⋊ 1, but for j ≤

n−1
2 , π is irreducible, and, for such j, the claim follows.

Now we examine what happens if n+1
2 − s ≤ j ≤ n − 2s (actually, it is

enough to see what happens for n+1
2 −s ≤ j ≤ n−2s−1, since orbit for Y n

n−2s

and Y n
0 were discussed previously). Note that in that situation, n− 2s− j ≤

n−1
2 −s, and we are going to exploit that, using the cases we have just studied.

We again assume 1 ≤ j ≤ n−1
2 − s, so that n− 2s− j ≥ n+1

2 − s, and denote
j1 = j and j2 = n − 2s − j as we recall our considerations about orbits in
Y n
j1

and Y n
j2

from the second section. Let w = p1ε1 ∈ Yj1 . Assume firstly that

p1(j1) < p1(j2). Then, we have p′(j1) < p′(j2), for every w
′ = p′ε′ ∈ Y n

j1 from
[w]. We recall the bijection between Y n

j1
∩ [w] and Y n

j2
∩ [w] from Lemma 3.4.

Now we can explain the action of N(w2,Λs,p) as follows (of course now Λi

actually denotes Λi,p).

(6.5)

χpν
s ⋊ 1 →֒ ζ(Λ1,Λj2)× ζ(Λj2+1,Λn)⋊ 1

→ ζ(Λ1,Λj2)× ζ(Λ−1
n ,Λ−1

j2+1)⋊ 1 → ζ(Λ−1
n ,Λ−1

j2+1)× ζ(Λ1,Λj2)⋊ 1

→֒ ζ(Λ−1
n ,Λ−1

j2+1)× ζ(Λ1,Λj1)× ζ(Λj1+1,Λj2)⋊ 1

→ ζ(Λ−1
n ,Λ−1

j2+1)× ζ(Λ1,Λj1)︸ ︷︷ ︸
×ζ(Λj1+1,Λj2)⋊ 1

where ∗︸︷︷︸ part denotes a representation on which GL–intertwining operators

act, as in the beginning of the proof of this lemma. Analogously, we see that
the action of w1 ∈ Y n

j1∩[w], the bijective image of w2 above, will acts similarly,
but, composed with the intertwining operator induced from ζ(Λj1+1,Λj2) ⋊
1 → ζ(Λ−1

j2
,Λ−1

j1+1)⋊ 1 to obtain

ζ(Λ−1
n ,Λ−1

j2+1)× ζ(Λ1,Λj1)︸ ︷︷ ︸
×ζ(Λ−1

j2
,Λ−1

j1+1)⋊ 1.

Note that the representation ζ(Λj1+1,Λj2) (so ζ(Λj1+1,Λj2)⋊1 also) is unitary.
Moreover, ζ(Λj1+1,Λj2) ⋊ 1 = χpζ(−(n−1

2 − s− j1),
n−1
2 − s− j1)⋊ 1 is, for

p ≤ ∞, reducible, unless χp = 1 and j1 = n−1
2 − s. So, let χpζ(−(n−1

2 − s −

j1),
n−1
2 − s− j1)⋊ 1 = π1 ⊕ π2 be such that the intertwining operator above

acts on π1 as the identity, and on π2 as the minus identity (for p = ∞, π1 and
π2 can be reducible or zero). Then, if we denote by π3 the image of the (GL–
induced) intertwining operators acting on ζ(Λ−1

n ,Λ−1
j2+1)× ζ(Λ1,Λj1)︸ ︷︷ ︸

, we see

that if N(w2,Λs,p)fp = v ∈ π3 ⋊ π1, then N(w1,Λs,p)fp = N(w2,Λs,p)fp and
if N(w2,Λs,p)fp = v ∈ π3 ⋊ π2, then N(w1,Λs,p)fp = −N(w2,Λs,p)fp.

From this reasoning, we also conclude the following: since we know that
for w1, w

′
1 ∈ Y n

j1 ∩ [w] we have N(w1,Λs,p)fp = N(w′
1,Λs,p)fp (since j1 ≤

n−1
2 −s), from the bijection of Y n

j1
– and Y n

j2
–parts of the orbit [w], we get that

for any w2, w
′
2 ∈ Y n

j2 ∩ [w] we have N(w2,Λs,p)fp = N(w′
2,Λs,p)fp for every

fp ∈ χpν
s⋊1. If χp = 1 and j1 = n−1

2 −s then χpζ(−(n−1
2 −s− j1),

n−1
2 −s−
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j1)⋊ 1 = 1p ⋊ 1 is a spherical irreducible representation of SL(2,Qp) and the
corresponding intertwining operator is just the identity, so that we trivially
have N(w2,Λs,p)fp = N(w′

2,Λs,p)fp = N(w1,Λs,p)fp for every fp ∈ χpν
s ⋊ 1.

We have to examine the second possibility, namely when for w = p1ε1 ∈
Y n
j1 p1(j1) > p1(j2) holds. According to our discussion in the second section,

there exists it ≤ j1 such that the intervals of change for w end with it − 1.
Again, we use the bijection from Lemma 3.4 case 2: let w′ = p′ε′ ∈ Yj1 ∩ [w]
and let w′′ = p′′ε′′ ∈ Y n

j2
∩ [w] be its bijective image. We have the following

description of the action of N(w′′,Λs,p) for w
′′ ∈ Y n

j2
∩ [w] on χpν

s1GLn ⋊ 1 :

χpν
s1GLn ⋊ 1

→֒ζ(Λ1,Λit−1)× ζ(Λit ,Λj1)× ζ(Λj1+1,Λj2)

× ζ(Λj2+1,Λn+1−2s−it)× ζ(Λn+2−2s−it ,Λn)⋊ 1

→ζ(Λ1,Λit−1)× ζ(Λit ,Λj1)× ζ(Λj1+1,Λj2)

× ζ(Λj2+1,Λn+1−2s−it)× ζ(Λ−1
n ,Λ−1

n+2−2s−it
)⋊ 1

→ ζ(Λ−1
n ,Λ−1

n+2−2s−it
)× ζ(Λ1,Λit−1)︸ ︷︷ ︸

×ζ(Λit ,Λj1)

× ζ(Λj1+1,Λj2)× ζ(Λj2+1,Λn+1−2s−it)⋊ 1

→ ∗︸︷︷︸×ζ(Λ
−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λit ,Λj1)× ζ(Λj1+1,Λj2)⋊ 1,

where ∗︸︷︷︸ denotes ζ(Λ
−1
n ,Λ−1

n+2−2s−it
)× ζ(Λ1,Λit−1)︸ ︷︷ ︸

and is precisely the part

of the representation on which both w′′ and its bijective image w′ ∈ Y n
j1
∩ [w]

have the same action. On that part, the same GL-intertwining operators
act. For w′-action, on the obtained representation, we have further action as
follows:

∗︸︷︷︸×ζ(Λ
−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λit ,Λj1)× ζ(Λj1+1,Λj2)⋊ 1

T1−→ ∗︸︷︷︸×ζ(Λit ,Λj1)× ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λj1+1,Λj2)⋊ 1

T2−→ ∗︸︷︷︸×ζ(Λit ,Λj1)× ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λ−1

j2
,Λ−1

j1+1)⋊ 1.

The operator T1 is induced by GL-action

ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λit ,Λj1) → ζ(Λit ,Λj1)× ζ(Λ−1

n+1−2s−it
,Λ−1

j2+1),

and, when we resolve the indexes, we see that both of these factors are the
same, thus T1 is the identity. The operator T2 acts on the unitary representa-
tion ζ(Λj1+1,Λj2)⋊ 1 as a sum of identity and -identity action, as explained
in the previous case. We can, thus, describe the action of N(w′′,Λs,p) by
N(w′′,Λs,p) = BA, where A denotes the action in the first two arrows of (6.6),
and further action GL–action on ∗︸︷︷︸, and B denotes the GL-action that will
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occur on places occupied by ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)×ζ(Λit ,Λj1)×ζ(Λj1+1,Λj2)

in the case of N(w′′,Λs,p) and on

ζ(Λit ,Λj1)× ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λ−1

j2
,Λ−1

j1+1)

in the case of N(w′,Λs,p). Thus, N(w′,Λs,p) = BT2T1A = BT2A. Thus again,
if Afp ∈ π3 ⋊ π1, then N(w′,Λs,p)fp = N(w′′,Λs,p)fp, and if Afp ∈ π3 ⋊
π2, then N(w′,Λs,p)fp = −N(w′′,Λs,p)fp, where πi, i = 1, 2 has the same
meaning as in the previous case. In this way, we proved the first part of the
lemma. Note that B (if non-zero) acts as an isomorphism on the image of
an operator A described for the action of the operator N(w′′,Λs,p) = BA :
indeed, in (6.6), we used the embedding

χpν
s1GLn ⋊ 1 →֒ζ(Λ1,Λit−1)× ζ(Λit ,Λj1)× ζ(Λj1+1,Λj2)

× ζ(Λj2+1,Λn+1−2s−it)× ζ(Λn+2−2s−it ,Λn)⋊ 1,

but we only needed ζ(Λit ,Λj2) instead of ζ(Λit ,Λj1) × ζ(Λj1+1,Λj2). This
means that B is induced from the GL-operator acting on

ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λit ,Λj2),

but this representation is irreducible (and B is non-zero on it). We conclude
that the kernel of the operator N(w′′,Λs,p) is contained in the kernel of the
operator N(w′,Λs,p) (of course, both of these operators we view as operators
on χpν

s ⋊ 1). In general, from the fact that B acts as an isomorphism on
the image of A we cannot conclude that it acts as an isomorphism on the
image of T2A, but in this case we reason as follows. We saw that B is induced
from the GL–operator, say B′, acting on the principal series in which the
representation ζ(Λ−1

n+1−2s−it
,Λ−1

j2+1)× ζ(Λit ,Λj2) is naturally embedded. The

image of the operator T2 (an isomorphism) is

∗︸︷︷︸×ζ(Λit ,Λj1)× ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λ−1

j2
, . . . ,Λ−1

j1+1)⋊ 1,

so that again

. . .× ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λit ,Λj2)⋊ 1

→֒ T2( ∗︸︷︷︸×ζ(Λit ,Λj1)× ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λ−1

j2
,Λ−1

j1+1)⋊ 1)

= ∗︸︷︷︸×ζ(Λit ,Λj1)× ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λ−1

j2
,Λ−1

j1+1)⋊ 1,

so that GL-part on which B′ acts is actually the same (irreducible)

ζ(Λ−1
n+1−2s−it

,Λ−1
j2+1)× ζ(Λit ,Λj2).

We conclude that B is also an isomorphism on the image of T2A.We conclude
that the kernels of N(w′′,Λs,p) and N(w′,Λs,p) coincide.

In the course of the proof of Lemma 6.3 we obtained that we can write
N(w′′,Λs,p) = BA and N(w′,Λs,p) = BT2A (where B = id if p1(j1) < p1(j2);
here we assume j1 <

n−1
2 −s). It is important to examine when Afp ∈ π3⋊π1.
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This we can resolve for p <∞. As expected, it turns out that for fp from the
subquotient σ̂1 we have Afp ∈ π3 ⋊ π1; analogously for σ̂2 and π3 ⋊ π2.

Lemma 6.4. Retaining the notation from above, for p < ∞ we have: if
Afp 6= 0, then Afp ∈ π3 ⋊ πi, i = 1, 2 for fp ∈ σ̂i, i = 1, 2.

Proof. Assume that j ≤ n−1
2 − s − 1, and let w′ ∈ Y n

j . We recall the

element wj , introduced in the proof of Lemma 5.9. In (5.4), the first operator
N(w′

0) is induced from the longest operator, say, N(w′
0)

′, acting as

χpν
sζ(−

n− 1

2
+ j,

n− 1

2
)⋊ 1

N(w′

0)
′

−−−−→ χpν
−sζ(−

n− 1

2
,
n− 1

2
− j)⋊ 1.

Because of our assumption on j, this is, essentially, a situation from Lemma
6.1, so the operator N(w′

0)
′ is holomorphic and the image of N(w′

0) is isomor-
phic to

χpν
sζ(−

n− 1

2
,−

n− 1

2
+ j − 1)⋊ σ̂′

1 ⊕ χpν
sζ(−

n− 1

2
,−

n− 1

2
+ j − 1)⋊ σ̂′

2,

where σ′
i are discrete series representations, analogous to one described in

Lemma 4.4 and Lemma 4.5. The Jordan block of σ′
i; i = 1, 2 is equal to

{(1, 1), (χp, n− 2s− 2j), (χp, n + 2s)}. Note that the operator C from (5.4),
with our assumption on j, is an isomorphism. Note that then the operator
N(wwj

−1, wj(Λs,p)) is also an isomorphism, as discussed after (5.4). Since

we know that
̂

L(νsδ([χpν−
n−1
2 , χpν

n−1
2 ]); 1) is in the kernel of N(w,Λs,p)

(Lemma 6.1), we get that σ̂i, i = 1, 2 are indeed subrepresentations in

χpν
sζ(−n−1

2 ,−n−1
2 + j − 1) ⋊ (σ̂′

1 ⊕ σ̂′
2) if they are not in the kernel of

the intertwining operator N(w′
0). Now, by looking at the cuspidal support

of χpν
−sδ(n−1

2 − j + 1, n−1
2 )⋊ σ′

1 we see that this representation can have at
most one square–integrable subrepresentation, with the Jordan block equal
to {(1, 1), (χp, n − 2s), (χp, n + 2s)}), and the value of the ε–function on a
element (χp, n+2s) of the Jordan block of both of these representations must
coincide (cf. [22], Proposition 2.1). This means, if σ̂i appears in

χpν
sζ(−

n− 1

2
,−

n− 1

2
+ j − 1)⋊ σ̂′

1 ⊕ χpν
sζ(−

n− 1

2
,−

n− 1

2
+ j − 1)⋊ σ̂′

2,

then we must have σ̂i →֒ χpν
sζ(−n−1

2 ,−n−1
2 + j− 1)⋊ σ̂′

i, i = 1, 2. If χp = 1,
we can get this more directly-namely, then σ̂1 is spherical so it has to be

a subquotient of χpν
sζ(−n−1

2 ,−n−1
2 + j − 1) ⋊ σ̂′

i, for i = 1, because σ̂′
1 is

spherical. Recall that χpζ(−(n−1
2 − s − j1),

n−1
2 − s− j1)⋊ 1 = π1 ⊕ π2, for

our j = j1. Then, by the same considerations as in Lemma 4.5 and 4.4, we
have

σ̂′
i →֒ χpν

−
n−j1

2 1GL2s+j1
⋊ πi,

and the Lemma is proved.

We retain the notation from previous two lemmas.
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Corollary 6.5. Assume χ2 = 1, n−1
2 − s ∈ Z>0. Let w

′ ∈ [w], where
w ∈ Y n

j1 , and let w′′ the bijective image of w′, with w′′ ∈ Y n
j2 .

1. Assume p < ∞. Let j1 <
n−1
2 − s or j1 = n−1

2 − s and χp 6= 1. Then,
for fp ∈ σ̂1, we have N(w′,Λs,p)fp = N(w′′,Λs,p)fp and if fp ∈ σ̂2, we
have N(w′,Λs,p)fp = −N(w′′,Λs,p)fp.

2. Assume j1 = n−1
2 − s and χp = 1. Then, for p ≤ ∞ and for every

fp ∈ χpν
s1GLn ⋊ 1, we have N(w′,Λs,p)fp = N(w′′,Λs,p)fp.

Proof. Immediately from Lemma 6.3 and Lemma 6.4.

Now we can group different contributions in (2.5) according to orbits,
since the images of the intertwining operators in the same orbit are in the

same principal series (Ind
Sp2n(A)
B(A) (w(Λs))). Assume our constant term acts on

a pure tensor ⊗p≤∞fp and assume that n−1
2 − s ∈ Z≥0, which is the most

interesting and involved case. By fw′,p, fw′′,p etc. we denote the normalized

spherical vector in Ind
Sp2n(Qp)

B(Qp)
(w′(Λp,s)) (we suppress from the notation the

dependence on s). Thus, we can divide the expression in (2.5) in several sums:

1. identity (i.e. ⊗p≤∞fp),
2. r(Λs, w)

−1(⊗p∈SN(Λs,p, w)fp) ⊗ (⊗p/∈Sfw,p), for w ∈ Y n
j , with j ≥

n− 2s+1. Note that the orbits here are singletons, and normalization
factors and operators are holomorphic (cf. remark after Proposition
3.2).

3. Assume 0 < j1 <
n−1
2 − s and w ∈ Y n

j1
. Then,

∑

w′∈[w]

r(Λs, w
′)−1(⊗p∈SN(Λs,p, w

′)fp)⊗ (⊗p/∈Sfw′,p)

=
∑

w′∈[w]∩Yj1

r(Λs, w
′)−1(⊗p∈SN(Λs,p, w

′)fp)⊗ (⊗p/∈Sfw′,p)

+
∑

w′′∈[w]∩Yj2

r(Λs, w
′′)−1(⊗p∈SN(Λs,p, w

′′)fp)⊗ (⊗p/∈Sfw′′,p).

4.

r(Λs, w0)
−1(⊗p∈SN(Λs,p, w0)fp)⊗ (⊗p/∈Sfw,p)

+ r(Λs, w
′)−1(⊗p∈SN(Λs,p, w0)fp)⊗ (⊗p/∈Sfw,p),

where this expression was analyzed in detail in Lemma 6.2.

Note that Corollary 6.5 together with Lemma 3.7 and Lemma 3.6 enables us
to do the same reasoning in the above third case, as in the fourth case (i.e.
case of Lemma 6.2). But in Lemma 3.7 the poles of the sums of normal-
ization factors were at most of the order which appears in the fourth case;
also the intertwining operators from the third case might have bigger kernels
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than N(Λs,p, w0) (cf. Lemma 6.3 and Lemma 6.1). Thus, the meromorphic
properties of (2.5) are governed by the contribution of w0 (and w′).

Remark 6.6. Note that the meromorphic properties of Eisenstein se-
ries (poles of order at most one) and holomorphy of the local intertwining
operators appearing in (2.5) for all p ≤ ∞ are studied without any assump-
tions about the archimedean place. We only introduced this extra condition
(χ∞ = 1 and f∞ is the normalized spherical vector) in Lemma 6.2 to be able to
describe explicitly the image of the intertwining operators at the archimedean
place and, thus, find some irreducible global representations which are auto-
morphic (i.e. appear in the space of automorphic forms on Sp(2n,AQ)). Note
that, by Lemma 4.10, the image of this spherical vector under N(w0,Λs,∞)
spans an irreducible (g,K∞)-module.

Remark 6.7. As we saw above, if we pick local representations such that
the contributions in (2.5) corresponding to non-identity elements of Weyl
group are holomorphic, they cannot cancel the identity contribution (with
n−1
2 − s ∈ Z≥0), meaning we get an automorphic realization of a reducible

global representation. In order to realize global irreducible representation as
an automorphic representation, we look for the data which produce a pole of
order one appearing in the contribution corresponding to w0, since we have
shown that with the appropriate choice of data, the image of N(w0,Λs,p) is
irreducible.

We have proved the following

Theorem 6.8. Assume χ2 = 1 with χ∞ = 1, and n ≥ 3 with n−1
2 − s ∈

Z≥0. Let σ̂i,p, i = 1, 2 be the representations described in Lemmas 4.4 ,4.5 and
Corollary 4.8 at the place p < ∞. Then, the Eisenstein series (2.3) with Λs

as in (3.1) has a pole of order one on I(s).

1. Assume 0 < s < n−1
2 , f = ⊗p≤∞fp ∈ I(s) and let S be a finite

set of finite places, and for p /∈ S, let fp be the normalized spherical
vector. For S1 ⊂ S, we pick fp ∈ σ̂1,p and for p ∈ S2 := S \ S1, we
take fp ∈ σ̂2,p. Then, for such f, (2.3) is holomorphic if |S2| is odd,
and if |S2| is even it has a pole of order one. In the latter case (2.3)
gives an automorphic realization (in the space of automorphic forms
A(Sp2n(Q) \ Sp2n(A)) of a global irreducible representation having a
local representation σ̂2,p on the places from S2 and σ̂1,p as a local com-
ponent elsewhere on finite places (σ̂1,p is spherical for p /∈ S, p <∞).

2. Assume s = n−1
2 . If χ = 1, then for any choice S of a finite set of

finite places such that if f = ⊗p≤∞fp, with fp normalized spherical for
fp /∈ S, the Eisenstein series has a pole of the first order. Thus, (2.3)
gives an automorphic realization of the unique spherical (global) sub-

representation of Ind
Sp2n(A)
B(A) (Λ−s), having local components isomorphic

to L(νn−1
p , . . . , ν1p ; ν

0
p ⋊ 1). If χ 6= 1 we have the following. Assume S
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is a finite set of finite places such that fp is normalized spherical for
fp /∈ S. We pick a subset S2 ⊂ S such that for p ∈ S2, χp 6= 1 and fp
belongs to σ̂2,p, and for p ∈ S \ S2 either χp = 1 and fp belongs to the
spherical quotient L(νn−1

p , . . . , ν1p ; ν
0
p ⋊ 1) or χp 6= 1 and fp belongs to

σ̂1,p. Then the Eisenstein series has a pole of order one if |S2| is even,
and is holomorphic if |S2| is odd, so in the former case, (2.3) gives
an automorphic realization of an irreducible global representations we
have just described.

Now we cover the remaining straightforward cases.

Theorem 6.9. Assume s > 0.

1. If χ2 6= 1 or 2s /∈ Z or s > n+1
2 the attached Eisenstein series is

holomorphic and (2.3) gives an automorphic realization of the whole
induced representation (2.2).

2. Assume s = n+1
2 and χ = 1. Then, the attached Eisenstein series have

a pole of order one, and the image is an automorphic realization of the
global trivial representation of Sp2n(A).

Proof. We note that the inverses of global normalization factors are
holomorphic in the cases of the first part of the theorem by the discussion in
the third section. Also, the local intertwining operators appearing in (2.5) are
all holomorphic by the fifth section. By Corollary 3.1 contributions form the
non-trivial elements of the Weyl group cannot cancel the identity contribution,
and the result follows. The second claim follows from the discussion in the
third section, from which is obvious that r(Λs, w0)

−1 has a pole of order one
and all the other inverses of the normalization factors are holomorphic. Here
w0 is given by (3.6). All the relevant local intertwining operators in (2.5) are
holomorphic and, by Langlands classification, it is straightforward that the

image of N(w0,Λn+1
2 ,p) acting on ν

n+1
2

p 1GLn ⋊ 1 for all p ≤ ∞ is the trivial

representation.
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[37] M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91.

M. Hanzer
Department of Mathematics
University of Zagreb
10 000 Zagreb
Croatia
E-mail : hanmar@math.hr

Received : 5.10.2014.


