THE ROLE OF PHOTODYNAMIC THERAPY FOR THE TREATMENT OF GASTROINTESTINAL CARCINOMAS

Marko Doko1, Elizabet Glavan1, Mario Zovak1, Mario Kopljar1, Hrvoje Hochstätter1 and Neven Ljubičić2

1University Department of Surgery, 2University Department of Medicine, Sestre milosrdnice University Hospital, Zagreb, Croatia

SUMMARY – The discovery that particular substances can cause photosensitivity is attributed to Oscar Rauh, however, the modern era of photodynamic therapy was established by Dr. T.J. Dougherty from Buffalo Memorial Institute. He was the first to report that a systemically injected porphyrin (hematoporphyrin), when activated by red light, caused complete eradication of transplanted experimental tumors. He also was the first to demonstrate the preferential accumulation of the photosensitizer in malignant cells. The first clinical application of photodynamic therapy was in 1980 at the Tokyo Medical College in a patient with a small upper bronchial squamous cell tumor, treated at bronchoscopy with photodynamic therapy using a laser as the light source. The tumor was completely eradicated. Simultaneously, a case of large obstructing esophageal cancer similarly treated with photodynamic therapy with good relief of dysphagia and prolonged survival was reported. The current state-of-the-art and results recorded in the clinical use of photodynamic therapy in the management of gastrointestinal malignancies are presented.

Key words: Photodermatosis, Photosensitizing agents – therapeutic use; Photodermatosis – instrumentation; Gastrointestinal malignancies – therapy

History of Clinical Photodynamic Therapy

The discovery that an administered substance could cause photosensitivity is attributed to Oscar Rauh, however, the modern era of photodynamic therapy (PDT) was established by Dr. T.J. Dougherty from Buffalo Memorial Institute1. He reported that a systemically injected porphyrin (hematoporphyrin), when activated by red light, caused complete eradication of transplanted experimental tumors. He also demonstrated the preferential accumulation of the photosensitizer in malignant tissue1. The first clinical application of PDT was at the Tokyo Medical College in a patient with a small upper bronchial squamous cell tumor, treated in 1980 at bronchoscopy with PDT using a laser as the light source1. The tumor was completely eradicated1. Simultaneously, large obstructing esophageal cancers were similarly treated with PDT with good relief of dysphagia and possible prolongation of survival1.

How Does PDT Work?

PDT is a new approach to cancer treatment in which photosensitizers localized in cancers are activated under visible light to interact with oxygen2. The interaction produces active singlet oxygen, which causes damage to mitochondria, plasma membranes, and lysosomes in tumor cells leading to tumor cell death2,11. At the cellular level, several targets are involved in PDT. It should be noted that all photosensitizers used for PDT are primarily located outside the cell nucleus2,4. Since singlet oxygen has a short lifetime and a radius of action of only about 0.001 micrometer, DNA will not be significantly
damaged. Therefore, most PDT procedures have a very low mutagenic and carcinogenic potential.

PDT in vitro causes cell death by necrosis and/or by apoptosis. Which of these two processes will play the major role is dependent on the cell type, photosensitizer, and conditions during and after PDT[24,25]. In necrosis, cellular defenses are overcome by toxic injury such as oxidative stress, leading to the impairment of cellular homeostasis[25]. Apoptosis is thought to be a ‘programmed cell death’ mechanism for the elimination of unwanted cells, acting as a complement of mitosis[20,21]. It is also recognized as a cell response to mild injury or viral infection, resulting in the elimination of damaged cells[20]. Indeed, it can be induced by various stimuli, including oxidants or stimulants of cellular oxidative metabolism[20] and mitochondrial injury[24,25]. Apoptosis and necrosis also differ in the biochemical and morphological changes that lead to cell fragmentation into vesicles (‘apoptotic bodies’) or cell lysis, respectively.

PDT sometimes affects membrane proteins. This, as well as some intracellular reactions, may explain why PDT has an immune effect[26,27]. Examples have been reported that there are less metastases occurring after PDT of the primary tumor than after its surgical removal. This may be attributed to its immune effect[26,27].

At the tissue level, PDT acts both on the vascular system of the tumor[28,29] and directly on tumor cells[26,27]. Some investigators claim that water-soluble sensitizers act mainly on the vascular system, whereas lipophilic drugs also act directly on the tumor cells. Furthermore, if the time between the application of sensitizers and light exposure is short, vascular damage is thought to be particularly important[26,27]. The significance of vascular damage has been convincingly demonstrated by a combination of in vitro and in vivo experiments[26,27]. If tumors are excised and their cells brought into culture shortly after PDT, many tumor cells may survive. The survival of tumor cells is much lower if the time between PDT and excision and explantation is long.

The frequently used photosensitizers in clinical practice are porphyrins and 5-aminolevulinic acid. Porphyrins have been known to induce photosensitivity for nearly 100 years[28]. In the middle of the 20th century, the photodynamic properties of hematoporphyrin derivatives were more closely studied, later resulting in the appearance of two commercial products for systemic application on the pharmaceutical market: Photofrin, so far the only one registered for clinical use in the United States and Europe, and Photosan. Both represent a mixture of hematoporphyrin esters and others of different lengths. The first approval of Photofrin was obtained in Canada in 1993 for the treatment of bladder cancer, with currently additional indications approved, such as esophageal, pulmonary, gastric and cervical cancer[30]. The intravenous administration of Photofrin at doses of up to 5.0 mg/kg body weight led to maximal tumor-to-normal cell concentration after 24 to 48 hours[31]. The cutaneous accumulation of porphyrin-based photosensitizing drugs and their slow clearance from the skin result in long-lasting cutaneous photosensitivity, requiring photoprotective measures during 4 to 6 weeks after PDT[32]. Attempts have been made to avoid this prolonged general photosensitivity by developing topical porphyrins[33].

In the early 1990s, a promising new molecule was introduced: 5-aminolevulinic acid (5-ALA). 5-ALA itself is not a photosensitizer but is a precursor of the photactive substance protoporphyrin IX in the biological heme biosynthesis pathway[34]. It can be applied systemically as well as topically and is of particular interest in dermatology. By topical application, the generalized cutaneous photosensitivity, which generally results after intravenous administration, can be avoided. To date, 5-ALA is the most extensively investigated substance, and today is widely used in PDT.

All photosensitizers that are used in PDT are excited in the UV and visible part of the spectrum. The illumination used in PDT should have the following general characteristics: light intensity should be constant across the illuminated field; the illuminated field should have sharp boundaries; the spectrum’s intensity should be in the range of 100 to 200 mW/cm². Light sources for PDT can be grossly divided into two main categories: conventional light sources and lasers.

Photodynamic Therapy for Advanced Esophageal Cancer

Esophageal cancer accounts for around 2% of cancer deaths in the western world[35]. The diagnosis is associated with a median survival of 10 months, and fewer than 5% of patients are cured. In the past, squamous cell carcinoma accounted for most esophageal cancers (around 90%), but the incidence of adenocarcinoma of lower esophagus has been on an increase and these tumors now account for 20%–40% of cases[36]. The risk of squamous cell cancer is modestly increased with cigarette smoking or alcohol consumption[37], whereas Barrett’s esophagus is an important risk factor for adenocarcinoma of the esophagus[38].
The dreadful prognosis of esophageal cancer is relat-
ed in part to the fact that it remains undetected until the
disease is far advanced. Fewer than 10% of patients with
esophageal cancer present with the disease confined to the
mucosa or submucosa (stage I)10. In these patients, esoph-
agocancer remains the treatment of choice and can result in
60%-80% five-year survival. In stage II and III
disease, however, only 15% of patients become longterm
survivors.11-14

Patients with esophageal cancer usually present with
dysphagia and often only palliative treatment can be of-
fered. The main aim of this therapy is to open the esoph-
agial lumen, allowing adequate oral nutrition. There are
many methods for the palliation of malignant esophageal
obstruction15-17. Surgical bypass for palliation has been
curtailed almost completely due to the availability of less
invasive endoscopic methods. The two methods most fre-
cently used for the palliation of malignant dysphagia are
Nd:YAG laser treatment and expandable metal stents.

Effective palliation of malignant dysphagia can be reached in
almost 96% of patients treated with Nd:YAG laser. Las-
ser vaporizes or coagulates tumor tissue, and the aim of
therapy is to debulk a tumor causing intraluminal obstruc-
tion and to coagulate bleeding tumors. This procedure can
be done quickly as a day case and produces rapid improve-
ment of symptoms18. The disadvantage is that symptom-
atic relief may be short lived (four to six weeks), requiring
repeated treatments19. Expandable metal stents have also
demonstrated effective palliation for malignant dysph-
agia20,21,22. The reported complications include unrelent-
ing pain, severe gastroesophageal reflux, stent migra-
tion, and tumor ingrowth23,24.

PDT is the most recent Food and Drug Administration
(FDA) approved modality for the palliative treatment of
obstructing esophageal cancer. Prior to FDA approval,
phase II and III trials were reported by several groups for
palliation of dysphagia in patients with obstructing esoph-
agial cancer. McCaughan et al. have reported on the results
of PDT treatment in 77 patients with esophageal carcino-
ma during a 12-year period25. All their patients had failed
on conventional treatment or were ineligible for surgical
therapy. Median survival in their patients was 6.3 months.

Their only major variable affecting survival after PDT
Treatment was the clinical stage. The low incidence of
complications in their series included transient elevation of
temperature, pleural effusion, infiltrates, pulmonary
cedema, aspiration pneumonia, respiratory-esophageal fis-
tula, strictures, and sunburn. Lightsdale et al. have report-
ed on the only prospective, randomized, multicenter study
comparing PDT with Nd:YAG laser therapy for obstruct-
ing esophageal cancer26. In their study, 236 patients at 24
centers were randomized to undergo PDT or Nd:YAG la-
sor therapy. Improvement of dysphagia was equivalent in
the two groups, however, PDT caused fewer acute perfor-
rations (15%) than Nd:YAG laser therapy (7%).

Various methods are used for endoscopic photodynamic
therapy. Most groups used various derivatives of hemato-
toporphyrin and Photofrin at a dose of 2 mg/kg body weight,
given by slow intravenous injection 48 h before irradiation
with laser light in the red at 630 nm27-29. The light can be
delivered circumferentially by using cylindrical diffusing
quartz fibers; the length of the diffuser can vary from 2 to
7 cm to treat various lengths of tumor. A total light dose of
150-300 J/cm² is required to obtain up to 6-mm depth of
necrosis30,31. The depth of necrosis is highly dependent on
the photosensitizer used. The depth of necrosis using
exogenously administered photosensitizers is 6 mm, com-
pared to 2 mm following the administration of 5-ALA to
generate the photosensitizer protoporphyrin IX32. Treat-
ment times of 10-20 min are required to deliver the light
at a non-thermal fluence rate33. It is important to note that
since some patients may have temporary worsening of dysphagia
caused by edema and tumor necrosis prior to necrotic tis-
sue separation. This usually resolves after 5 days and may
be associated with some blood loss34,35. Conclusively, PDT
is today a safe and effective modality for the palliation of
obstructive esophagus cancer and patients can tolerate it
under awake sedation. Disadvantages of PDT include the
requirement of expensive equipment (laser), the long
waiting period between the time of drug injection and
treatment, the high cost of the photodynamic agents,
and skin photosensitivity36,37.

Photodynamic Therapy for Barrett’s
Esophagus

Barrett’s esophagus has been increasingly recognized
as an important premalignant condition38. The past two
decades have witnessed a striking increase in the incidence
of adenocarcinoma of distal esophagus and gastric cardia.
It has been estimated that the incidence of these highly
lethal cancers is accelerating at a faster rate than any oth-
er malignancy in the western world39. The cause of these
dramatic epidemiologic changes in the incidence of upper
gastrointestinal cancer is unclear, however, there is no
doubt as to the association of Barrett’s esophagus and ad-
enocarcinoma. Barrett’s esophagus is characterized by replacement of the normal squamous esophageal mucosa with a metaplastic columnar epithelium defined by the presence of intestinal metaplasia\(^6\). The development of cancer is thought to progress through a series of molecular events in the unstable metaplastic epithelium, leading to mutant clones of cells that progress morphologically to low-grade and then to high-grade dysplasia, to early invasive carcinoma, and finally to advanced carcinoma. The incidence of adenocarcinoma of the esophagus in Barrett’s esophagus has been estimated to 1 per 125 patient years, or 800 cases per 100,000 population per year, an annual incidence of 0.8%\(^6\). Once high-grade dysplasia is identified and confirmed, the standard recommendation is that patients have esophagectomy, based on data suggesting that the frequency of undetected cancer in such cases is as high as 50\%\(^6\). This treatment is a highly curative but draconian approach involving considerable morbidity and some mortality\(^6\).

There are multiple reasons why photodynamic therapy may turn out to be a successful treatment for Barrett’s esophagus with high-grade dysplasia. Barrett’s esophagus can involve long segments of the esophagus, and dysplastic changes are often multifocal in an unpredictable distribution. Dysplasia can occur in flat Barrett’s tissue that cannot be distinguished from the surrounding nondysplastic tissue.

Photodynamic therapy following both endogenous photosensitization with 5ALA and exogenous photosensitization with Photofrin has been reported for the treatment of high-grade dysplasia and metaplasia in Barrett’s esophagus. There have been two major clinical studies of 5-ALA photodynamic therapy for the ablation of high-grade dysplasia. Both demonstrated eradication of the dysplasia and one series demonstrated successful eradication of T1 tumors that were less than 2 mm in depth\(^2\). A prospective randomized trial of the treatment of low-grade dysplasia using ALA and irradiation with green light rather than usual 630-nm red light has confirmed again how effective this treatment is in reversing dysplasia/metaplasia. Healing proceeded with the regeneration of nonneoplastic epithelium\(^4\).

Overholt et al.\(^10\) have updated their longterm observations of the efficacy of PDT using Photofrin as a method of secondary cancer prevention in patients with neoplastic Barrett’s esophagus. Forty-eight hours after the administration of 2 mg/kg of Photofrin, at endoscopy they delivered light from a laser at 630 nm to the esophagus. They used power density of 400 mW/cm\(^2\) to provide an energy density of 100-250 J/cm\(^2\). Out of 80 patients with high-grade dysplasia treated between 1999 and 2001, 65 were still available for follow-up; in 62, complete elimination of dysplasia was reported, two had persistent dysplasia, and one had progressed to cancer. The intention-to-treat analysis showed 78% of the patients with high-grade dysplasia in Barrett’s esophagus to have achieved therapeutic success or the primary endpoint of dysplasia elimination and absence of progression. At first glance, the results of this study suggest that PDT is a highly efficacious therapy in patients with Barrett’s esophagus and high-grade dysplasia.

Photodynamic Therapy for Gastric Cancer

Gastric cancer is the second most common tumor type globally and the fourth most common in Europe\(^1\). Although the overall incidence has been decreasing over the past few decades, the incidence of adenocarcinoma of the proximal stomach and esophagogastric junction is rising. Gastric cancer presenting at an early stage can be treated surgically, however, 80% of cases are too advanced at presentation\(^8\). The use of PDT for the palliation of advanced gastric cancer appears to be of little advantage over the alternative laser or thermal methods\(^8\). Early gastric cancer has a good prognosis but radical surgical excision brings significant mortality. Local therapy of high-grade dysplasia and early cancer is possible because there is a low probability of lymph node metastases. For small cancers (<2 cm) of type I to IIa, the 5-year survival is between 80% and 95%\(^8\). There are few methods to treat early gastric cancers after accurate staging with endoscopy: endoscopic mucosal resection, NdYAG laser therapy, and PDT. A major advantage of endoscopic mucosal resection is the availability of a specimen for precise histopathologic examination. However, thermal and endoscopic mucosal resection is associated with the risk of perforation and seeding tumor cells in the resection or thermal wound. Several photosensitizers including Photofrin and 5-ALA have been evaluated for PDT or early gastric cancer\(^8\). A major disadvantage of 5-ALA is that deep destruction is difficult, yet it is highly specific for the mucosa. Light fluences of 150-300 J/cm\(^2\) are required if Photofrin is used. This is particularly important in the stomach, where the geometry is difficult in comparison with the geometry of the cylindrical esophagus. PDT has proved effective in the treatment of type I, IIa and IIb cancers, if less than 2 cm in diameter\(^8\).
Photodynamic Therapy for Cholangiocarcinoma

Cholangiocarcinoma can be a relatively indolent tumor, but treatment with surgery, radiotherapy and chemotherapy is very difficult. Aggressive surgical therapy is only possible in a minority of patients with early cancers, and median survival is between 13 and 20 months. At present, endoscopic insertion of plastic or metal stents is the method of choice to relieve obstructive jaundice in nonresectable cholangiocarcinoma. However, palliative intervention is limited in proximal bile duct cancers. In Bismuth type I and II stenoses, technically successful stent insertion is accompanied by effective drainage in up to 91% of cases, with a median survival time of 149 days in Bismuth I and 84 days in type II strictures. However, in Bismuth type III and IV stenoses, effective drainage is a rare event, possibly due to intrahepatic tumor spread with development of multiple intrahepatic stenoses. Dureex et al. report on a bilirubin decrease by more than 50% in only 15% of patients with Bismuth type III strictures. Because of the dismal prognosis and frequent treatment failure in nonresectable Bismuth type III and IV cholangiocarcinoma, there is high interest in PDT as a more advanced palliative strategy. The initial reports on the use of PDT in patients with cholangiocarcinoma are promising.

The largest study to date and the only peer-reviewed publication is suggestive of additional quality of life benefits. Ormet et al. prospectively evaluated the effect of PDT on cholestasis, quality of life, and survival in 13 patients. All had elevated serum bilirubin levels, nine of whom did not respond adequately to palliative endoscopic stent placement. These nine patients were loaded with 2 mg/kg dihematoporphyrin ether (DHE) and treated with laser light at 630 nm. The power was 180 J/cm². The light fiber was delivered via endoscopic retrograde cholangiopancreatography (ERCP) with a mother-baby scope to allow for direct cholangioscopic control. Serum bilirubin levels decreased significantly in all nine patients, and the five in whom a gross decrease in the tumor was noted underwent a second light activation. The patient Karnofsky index, World Health Organization (WHO) index, and performance rating scale all significantly improved. No death occurred within 30 days and median survival in this cohort was 439 days.

Bert et al. performed PDT in ten patients with unresectable cholangiocarcinoma with biliary access via ERCP. One laser session was performed in four patients and 2 treatment sessions were done in six patients after loading with 2 mg/kg DHE. The laser energy was 200 to 240 J/cm² at 630 nm. Bilateral bile duct patency was achieved in all patients. Six patients were demonstrated to have no tumor on repeat biopsies performed at 94.324 days after therapy. This report suggests that the potential of tumor bulk reduction distant from the treatment site in small bile ducts deserves additional investigations as to whether this is an immune phenomenon or diffusion of light through the biliary tree.

Conclusion

Photodynamic therapy is a modality with a significant potential as a cancer treatment for both curative and palliative therapy. It has yet to be introduced in the routine clinical practice. The recent development of a new, second generation photosensitizers with a decreased toxicity, different kinetic and degradation profiles, improved selectivity and longer activation wavelengths, will improve the efficacy of PDT and continue to broaden its potential application. Further investigation into light dosimetry, changes in sensitizer concentration, and defining optimal oxygen tension and blood flow during PDT must occur to optimize conditions for maximal tumor cell killing effect and minimization of the potential toxicity. Studies combining PDT with other therapeutic modalities including surgery, radiation therapy and chemotherapy, endoscopic and radiologic interventions are needed to further define the role of these modalities in the treatment of this severe disease.

References

The role of photodynamic therapy for the treatment of gastrointestinal carcinoma

64. SAMPLIENER RE. Updated guidelines for the diagnosis, surveillance and therapy of Barrett’s. Am J Gastroenterol 2002;97:1888-95.

65. RICEWOFLEJ, ACHRAF E, PETRAFRE. Surgical management of high-grade dysplasia in Barrett’s oesophagus. Am J Gastroenterol 1993;88:1832-6.

72. TORII A, SAKAM K, KISTAMA T, KISHIMOTO H, KIN G, INOUTE K, et al. Endoscopic aspiration mucosectomy as curative en...
Doku M. et al. The role of photodynamic therapy for the treatment of gastrointestinal carcinoma

Sahzetak

ULOGA FOTODINAMSKE TERAPIJE U LIJEČENJU KARCINOMA PROBAVNOG SUSTAVA

Marina D., Elibab G., Mario Z., Mario K., Hrvije H. and Nisen Lj.

Ključne riječi: Fototermoterapija; Fotosenzibilizacijska eradicacija – terapijske primjene; Fotodinamska terapija – instrumentar; Gastrointestinale neoplazme – terapija

96

Acta Clin Croat, vol. 43, No. 1, 2004