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ABSTRACT. Let g = ¢ @ p be the Cartan decomposition of the
complexified Lie algebra g = sl(3,C) of the group G = SU(2,1). Let
K =5(U(2) xU(1)), so K is a maximal compact subgroup of G. Let U(g)
be the universal enveloping algebra of g, and let C(p) be the Clifford alge-
bra with respect to the trace form B(X,Y) = tr(XY) on p. We are going
to prove that the algebra of K—invariants in U(g) ® C(p) is generated by
five explicitly given elements. This is useful for studying algebraic Dirac
induction for (g, K)-modules. Along the way we will also recover the (well
known) structure of the algebra U(g)*.

1. INTRODUCTION

Let G be a connected real reductive Lie group with the Cartan involution
O, such that K = G© is a maximal compact subgroup of G. Let g = ¢ ® p
be the corresponding Cartan decomposition of the complexified Lie algebra
of G.

A well known theorem due to Harish-Chandra ([6]) asserts that an irre-
ducibile (g, K)-module is characterized by the action of U(g)¥ on any non-
trivial K—isotypic component. Here U(g) denotes the universal enveloping
algebra of g. A simplified algebraic proof of this result was given by Lepowsky-
McCollum ([21]).

The following version of that theorem was proved in [22]. Let X be a
(g, K)—module. Let S be the spin module for the Clifford algebra C(p) of p
with respect to the trace form B(X,Y) = tr(XY). Let K be the spin double
cover of K. Then the action of K—invariants in U(g) ® C(p) on any nontrivial
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K-isotypic component of X ® S determines an irreducible (U(g) ® C(p), K)-
module X ® S up to isomorphism.

The modules of the form X ® S are important in the setting of Dirac
operator actions and Dirac cohomology. Let D € U(g) ® C(p) be the Dirac
operator, defined as follows ([23,26]). Let b; be any basis of p and let d; be
the dual basis with respect to B. Then

D:Zbi®di.

It is easy to see that D is independent of the choice of b;, and K-invariant for
the action Ad® Ad of K on U(g) ® C(p). One of its main properties is the
following formula for D? due to Parthasarathy ([23]):

D? = —(Casg @1 + [l pgl1*) + (Cases +[lpel®).

Here Casg is the Casimir element of U(g) and Case, is the Casimir element
of U(ka), where €4 is the diagonal copy of £ in U(g) ® C(p), defined using the
obvious embedding ¢ < U(g) and the usual map ¢ — so(p) — C(p). See [9]
for details.

If X is a (g, K)-module, and if S is a spin module for C(p), then D acts
on X ® S. The Dirac cohomology of X is the K-module

Hp(X)=XKerD/Im D NXKerD.

If X is admissible, then Hp(X) is finite-dimensional. This follows from
the above formula for D?, which implies that Ker D? is finite-dimensional,
and from the obvious fact that Hp(X) is the cohomology of the differential

D ‘Ker D2’
If X is unitary, then

(1.1) Hp(X) = Ker D = Ker D?.

This follows from the existence of a natural inner product on X ® S, such
that D is self-adjoint with respect to this inner product. This also implies
Parthasarathy’s Dirac inequality, D? > 0 ([24]). Written more explicitly using
the formula for D?, this becomes a powerful necessary condition for unitarity.
The situation is similar for a finite-dimensional module X; (1.1) still holds,
and D? < 0.

The main result about Dirac cohomology is the following theorem. It was
conjectured by Vogan ([26]), and proved by Huang and Pandzi¢ ([8]).

Let h = t® a be a fundamental Cartan subalgebra of g. We view t* C h*
by extending functionals on t by 0 over a. Denote by Ry (resp. Re) the set of
(g, h)-roots (resp. (& t)-roots). We fix compatible positive root systems R;‘
and R: for Ry and R respectively. In particular, this determines the half-
sums of positive roots py and pe. Write Wy (resp. We) for the Weyl group
associated with (g, h)-roots (resp. (¥, t)-roots).
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THEOREM 1.1. Let X be a (g, K)-module with infinitesimal character
corresponding to A € h* via the Harish-Chandra isomorphism. Assume that
Hp(X) contains the irreducible K-module E. with highest weight v € t*.
Then A is equal to v+ pe up to conjugation by the Weyl group Wy. In other
words, the E-infinitesimal character of any K -type contributing to Hp(X) is
Wy -conjugate to the g-infinitesimal character of X.

By now, Dirac cohomology has been calculated for many (unitary) mod-
ules, see [3,4,7,11]. It has been related to other kinds of cohomology of
(g, K)-modules, like n-cohomology ([12]) and (g, K)-cohomology ([7,8]). It
has also been related to some classical topics in representation theory, like
(generalized) Weyl character formula and Bott-Borel-Weil Theorem, the con-
struction of discrete series, and multiplicities of automorphic forms ([9]). It
can also be successfully applied to some classical branching problems ([13]).
The definition and some of the results, notably Theorem 1.1, have been ex-
tended to several other settings ([1,2,10,15,18,20]).

Understanding the (U(g) ® C(p))¥-action on the Dirac cohomology is
important for studying the algebraic Dirac induction developed in [22]. The
goal of algebraic Dirac induction is to construct (g, K)-modules X whose
Dirac cohomology is (or contains) a given irreducible K-module W. Pandzi¢
and Renard give two main constructions, which satisfy certain adjunction
properties with respect to (mild modifications of) Dirac cohomology. Each of
the constructions has several versions, depending on how much extra structure
(coming from the (U(g) ® C(p))¥-action) one wants to put on the Dirac
cohomology. On the one hand, it would be good to have all of (U(g) ® C(p))¥
acting, but the problem is that it is expected to be hard to study the structure
and module theory of (U(g) ® C(p))¥X. (Recall that in general it is very hard
to study the structure and module theory of the algebra U(g)X, which is
contained in (U(g) ® C(p))X.)

However, for the case G = SU(2,1) the situation is much simpler than
in general, and we prove that the algebra (U(g) ® C(p))¥ is generated by
five elements. Two of them are in the center Z () of U(#) — the Casimir el-
ement and the element spanning the center of £. One of the generators is
in another abelian algebra, C(p)¥ (which is three-dimensional in this case).
The fourth generator is the Dirac operator, and the fifth generator is an-
other distinguished element that can be thought of as a ¢-version of the Dirac
operator.

All the above generators are sufficiently explicit so that their action on
Dirac cohomology of many modules can be calculated explicitly. This result
is important for understanding the algebraic Dirac induction for the nonholo-
morphic discrete series of the group SU(2,1) ([25]).

The strategy we use to study the algebra (U(g) ® C(p))¥ is to first study
the K—invariants in the tensor product of the symmetric algebra S(g) of g and
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the exterior algebra A(p) of p. Namely, the algebras U(g) ® C(p) and S(g) ®
A(p) are isomorphic as K—modules, and the algebra structure of S(g) ® A(p)
is much simpler.

The paper is organized as follows. In Section 2 we describe the K-module
structure of S(¢) and S(p). These are special cases of results of Kostant ([17])
and Kostant-Rallis ([19]), but our description is elementary and completely
explicit. Then we calculate the dimension of the space of invariants in S(g) ®
A(p) for each degree. In Section 3 we give a basis for the vector space (S(g) ®
A(p))¥. Finally, in Section 4 we prove the main result, that the algebra
(U(g) ® C(p))¥ is generated by the five elements mentioned above.

Among the side results we obtain, let us mention the well known fact
U(g)X = Z(g)Z(t) = Z(g) ® Z(¢) ([14]). In particular, U(g)¥ is abelian and
this explains why all irreducible (g, K)-modules have only multiplicity one K-
types. (Namely, it is part of the above mentioned results of [6,21] that U(g)*
acts irreducibly on the multiplicity space of each K-type of an irreducible
(g, K)-module). For a general pair (g, K') with g simple noncompact and K
connected, U(g)% = U(g)* is not abelian, but its center is always Z(g)Z(£) =
Z(g) ® Z(¢), as was shown by Knop in [16].

We also prove that (U(g) ® C(p))¥ is a free module over U(g)*X, of rank
16 = dim C'(p). We hope to be able to generalize this result in future.

2. DEGREES OF INVARIANTS IN S(g) ® A(p)

We will denote by G the Lie group

0
0

1
SU(2,1) ={g € SL(3,C)|g"vg =}, where =10
0 —1

o = O

The (real) Lie algebra of G is
go =su(2,1) = {x €5l(3,C) | 2" = —yav}.
The complexification of go is g = s[(3,C). One basis for g is given by:
1 1
Hy = 5(2611 —ex —e33), Hy= g(*eu + 2e92 — €33),
EZ@IQ; F:€217 E1:€137 E2:6237 Fl = €31, F2:632;

where e;; denotes the usual matrix unit: it has the ¢j entry equal to 1 and all
other entries equal to 0. The elements H; and Hs do not look the simplest
possible, but they fit well with the subsequent computations. The commuta-
tion relations are given by

[Hy, F1] = Ei, [Ha, 1] =0, [Hy,E3) =0, [H2, B3] = Es,
(2.1) [Hy, F1] = —F1, [Ho, F1] =0, [Hy, Fb] =0, [Hy, F>] = —F>,
[Hi,E] = E, [Ho, E| = —FE, [H1,F]=-F, [Ho, F] = F,



K-INVARIANTS IN THE ALGEBRA U(g) ® C(p) FOR THE GROUP SU(2,1) 401

Let g = €@ p be the Cartan decomposition of g corresponding to the usual
Cartan involution §(X) = —X*. Then
t =span{Hq, Hy, E F'} = gl(2,C), and p = span{E1, Fa, F1, F»}.
We denote the elements H; — Hs and Hy + Hy of £ by H respectively a. Then
the semisimple part of ¢ is
t, = span{H, FE, F} = sl(2,C),
with H, E and F corresponding to the standard basis of s[(2,C), while the
center of £ is equal to Ca. We also set
b=H?+4EF € S(t) C S(g).

(Note that b symmetrizes to a multiple of the Casimir element of U(ty).) We
will view a € ¢ as an element of S(¢). Both a and b are easily seen to be
K-invariant.

LEMMA 2.1. For each integer n > 2,
S™ () = Va, @ bS™ (k)
as a ts-module, where Va, is the sl(2,C)—module with the highest weight 2n
and a highest weight vector E™. Furthermore, S'(€5) = € is the module Vs

with the highest weight 2 and a highest weight vector E, and S°(t) is the
trivial module Vo spanned by 1.

PROOF. The cases n = 0,1 are obvious. Let n > 2. It is clear from the
commutator table (2.1) that E™ is a vector of weight 2n. Furthermore,

2
dim Vo, =20+ 1;  dimbS™2(e,) = <Z> dim S7(8,) = <”; )
It follows that
dim S™(€s) = dim bS™ 2 (€,) + dim Vay,.
On the other hand, all the weights in the sl(2,C)-module bS™~2(&,) are
strictly smaller than 2n, so V5, N bS"’Q(Es) = 0. Hence the sum is direct. 0O

REMARK 2.2. Lemma 2.1 implies a special case of Kostant’s theorem
([17]), which says that for any complex semisimple Lie algebra, the symmetric
algebra decomposes into a tensor product of the subalgebra of invariants and
the space of harmonics. In our case, the algebra of invariants is clearly C[b],
while the space of harmonics is

(2.2) He, = EP Van.
n€EZy

If we take this simply as notation (and leave to the interested reader to check
that this indeed agrees with Kostant’s definition of harmonics), then Lemma
2.1 implies that, as a £;-module,

(2.3) S(ts) = S(k,)' @ He, = C[b] @ He., .
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Since ¢ = Ca @ &, it follows S(¢) = Cla] ® S(¢;), and so
(2.4) S(€) = Cla, b @ He, .

The £s-action on He, is given by (2.2), and the action of a € ¢ is trivial.
As usual, we will label finite-dimensional £-modules by their highest weights,
which we identify with pairs (o, 8) € C? such that « — 3 € Z;. A vector
v in a t-module is of weight («, ) if H1v = av and Hov = fv. The finite-
dimensional ¢-module with highest weight (a, 3) will be denoted by V(, g).
With this notation we have

(2.5) He, = P Vin—n)
n€Z+

as t-modules. Namely, the module V{,, _p) is equal to V3, as a & module, and
a = Hy + Hy acts trivially on Vi, _,).

We now turn to analyzing the K-structure of S(p). It is easy to see that
the element

c=E1F1 + Ex)F)

is K-invariant.

LEMMA 2.3. Let Vi,,—; ;) C S(p) be the €-module with highest weight
(n —1i,—i) and highest weight vector E7'"Fi. Then for n > 2 we have

5" (1) = (Vin0) & Va1 & -+~ & Vo)) © 5™ (p).

Furthermore, S°(p) is a trivial €-module spanned by 1, while S*(p) = p
prap =Vuo ® V1)

PRrROOF. Using the commutator table (2.1), it is easy to see that

(ad Hy)(E} 7 Fj) = (n— ) B} Fj,  (ad Hy)(E} ' F) = —iE} ' F.

Since for any i € {0,1,2,---,n}, V(,,_; ;) is an irreducible module for £, =
s1(2,C), with highest weight n, while the highest £,-weight in ¢S™~2(p) is
n — 2, we conclude
(2.6) (Vin,0) ® Vin—1,-1) & -+ ® Vig,—n)) N eS"?(p) = 0.
Furthermore, dim (V(n,o) O Vin—1,-1) D& V(O’,n)) = (n+1)2, dim(S"(p))
= (";“3) and dim (¢S"~2(p)) = ("), and this implies

dim S™(p) = dim((Vin,0) @ Vine1,-1) & - & Vio,—n)) @ cS"*(p)).
Together with (2.6), this implies the claim for n > 2. The cases n = 0,1 are

obvious. O

REMARK 2.4. Lemma 2.3 implies a special case of a theorem of Kostant
and Rallis ([19]), which says that S(p) can be written as a tensor product of
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the algebra S(p)¥ of invariants and the space of harmonics. By Lemma 2.3,
if we define the space of harmonics as

(2.7) Hp = @ @V(n—i,—z‘)a
neZ, i=0

(and one can easily check that this does agree with the definition of [19]), then
we have

(2.8) S(p) = S(p)"* @Hy = Cld] @ H,.
Using (2.4) and (2.8), we can write
(2.9) S(g) @ A(p) = Cla, b, c] @ He, @ Hp @ A(p)-

It is not hard to determine the K-structure of A(p). The t-submodules are
span{1} = span{E; A F1 + Ex A Fo} = span{E; A Ex A Fiy A Fa} = Vg )
span{fy, Ea} = span{E1 A Ea A Fy, Ey AN Ex AN Fi} = V(g g
span{Fs, F1} = span{E1 A F1 A Fy, Ex N Fy A Fa} = Vg 1)
span{E1 A Ex} = Vi y)
span{Fy A o} =2 V4
span{fy A Fp, Eo N Fy — Ey N Fy, Ex N1} = Vg ).

It follows that A(p) decomposes under € as

4

~ =
AP) = Vio,0)
3 3
A —
& Vo ®Vio,-1)
2 2 2 2

N =
OV ® V-1 ®Vic1,-1) © Vo)
1 1

A —
® V1,0 @ Vio,-1)
0
——
@ Vi0,0);
where each of the numbers over braces denotes the degree in which the cor-
responding £-module is appearing.

The element a = H; + Hy of € acts on the module Via,p) by a+ B. It is
clear that on any K-invariant, i.e., on any trivial £-module, a has to act by 0.
It does act by 0 on He,. However, in He, @ Hy ® A(p), a will only act by 0
on tensor products where:

e Viq1,—1) and V(g 0y in A(p) are tensored with Viy, _py in Hy;

o V1,1 in A(p) is tensored with Vig_o _j) in Hy, k> 2;
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o Vi_1,—1) in A(p) is tensored with Vij o ) in Hy;
o Vi1,0) in A(p) is tensored with Vi1 _g) in Hy, k > 1;
e Vio,—1) in A(p) is tensored with Vi1 ) in H,.
In other words, all K-invariants in He, ® H, ® A(p) are contained in

2k 2 4 2 0

+OO/—/H et N e N N
He. ® | D Vir—n @Vi-1) ® Vio.o) © Vioo) ® Vioo)
k=0
+o0 2k—2 2 +o0 2k+2 2
—— ——
@@ Vik—2,—1) @ V(1,1) @@ Vikt2,—1) @ V21 -1y
k=2 k=0

@@V —k) V1,0 @‘/(10) @®Vk+1— ®[Vio,-1) 69‘/(071 )

Smce a acts by zero on the above Efmodule, it is enough to regard it as
an s[(2, C)-module:

oo T too 2K 2 4 2 0
= A~ A~ A~
P Vven <€BV%® Vo Vo Vo @ Vol
n=0 k=0
oo 2k—2 2 too 2k42 2
~ /= —~
@V% 2® W @@Vzkw@) Vo
k=2 k=0
2k+1
@EBV% 1®ﬁ?@ﬁ@@%k+1®m@ Vi) )
Now using
Vor @ Vo = Vaopyo © Var @ Var—2 for k> 1
Vor @ Vo = Vo, for k>0
Vak—1 @ V1 = Vo, @ Vag_o fork>1
we have

2k+2 2k+2 2k+2 2k+4 2k+2 2k

= o~ T too
Pren | @ VQ@@VQW@V%@VQH GBV%@V%@V%)
n=0 k=1 k=0
+oo,2_kfi +Oof2/k\ 2k 2k+2 /Q_Ic/a
@(@V% 2 @V%H @@ Vak 69V2k 2P VQk @ Vag—2)
k=0 k=1

+o00 2k+2 2k+2 2k+4 2k+4

~ AN =
@@(Vzkw@ Vor @ Vo2 ® Var ) |.

k=0
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Fori > jwehave V,®V; = Vi@V ;2@ --®V;_;. Therefore, an invariant
(exactly one, up to scalar) will show up in V; ® V; if and only if ¢ = j. It
follows that the degrees of the invariants in the above tensor products, listed
in the order of the summands of the second factor, are:

3, 3k+3,3k+2,3k+1, fork>1, 3k+4,3k+ 2,3k, for k>0,
3k—1, for k>2, 3k+5, fork>0, 3k,3k—1,3k+2,3k+1, for k> 1,
3k +3,3k+2,3k+5,3k+ 4, for k> 0.

TABLE 1. Number of linearly independent invariants in each degree

degree number of linearly independent invariants
0 1
1 0
2 3
3k, k>1 4
3k+1, k>1 4
3k+2, k>1 8

From this we conclude that in He, ® H, @ A(p) we have the Table 1.
In view of (2.9), we have proved:

PROPOSITION 2.5. The algebra of K-invariants in S(g) ® A(p) can be
written as

(S(@) ® A(p)¥ =Cla,b,c] @ (He, ® Hyp @ A(p))"

The number of invariants in the second factor in each degree is given by Table
1.

3. A Basis oF (S(g) @ A(p)¥

Recall that we have defined elements a,b and ¢ of S(g). Now we view
them as elements of S(g) ® A(p) by the identification S(g) = S(g) ® 1. We
also define further elements, which are all easily checked to be K-invariant:

a=(Hy+H)®1,

b= (H? +4EF)®1,

c=(E1F1 + ExF,) ® 1,

d= (2EEyFy, + HE\Fy, — HEoF, + 2FE F) ® 1,
e=I®FE +Hh®E,,

[=E1®@F + Ey® Py,

g=1® (E1ANFy + Ex A\ Fy),

h=(2FEE;+ HE\)®@ F1 + (—HE2 + 2FE;) ® F>,



406 A. PRLIC

1 =2EQFE, N1+ HQFELANFy —HQRFEs;NFo +2F Q F1 A\ Fs,
j=(HF +2FF)® E1 + (2EF, — HF,) ® E».

PROPOSITION 3.1. Let S and T be the following subsets of (S(g)@ A\ (p))X:
S = {anlbn2cn3dn4 |TL1,TL2,TL3,TL4 S No},
T: {17e?f?.q?h’i’j7€f’eg7fg7927ei’ej’fh7fi7fj}'

Then the set S-T of products of elements of S and T in the algebra S(g)@ A(p)
is a basis for (S(g) @ \(p))X.

PRrROOF. We first prove the linear independence of the set S - T. Notice
that it is enough to prove the linear independence of following sets:
a) S,
b) S-{ejUS-{j},
d) §-{i}uS-{eftus-{fi}us-{g},
e) S-{egt U S -{ei},
f) S-{fgrus-{fi}.
Namely, the rest of the independence then follows by considering just the
second factors in the tensor products. We deal with each of the cases a) — f)
separately.
a) Let D 7 Ai - a™vib"2icid = 0 and let {mi,mg, - ,my} =
{ni:|i € I}, where m; < mg < --- < my. Since one basis of g is
given by {Hy + Hy, H,E, F, Ey, F1, Es, F5}, from

k
> am > nbmichaidna | =0,
j=1

i€L,n1,i=m;

we have Ziez’nM:mj Aibnzicnaidnai = 0 for all j € {1,---,k}. T
is thus enough to prove that the set {b™2¢"2d™ | ng,nsg,ngy € Np} is
linearly independent. Let ZiEI Aib"2ic™3id" = (. In the expansion
of the summand

(H? +4EF)"2i (B F) + Eo )" (2EEy Fy + H(E| F) — ExFy) 4+ 2F B, Fy)" i
we consider the terms without H and F5. There is only one such term
and it is (AEF)"2i (Ey Fy )" (2EE2Fy)™i. We have

> AMAEF)™ (B )" (2EEy Fy )™ = 0.
=
Let {t1, -, 61} ={nai|i € I}, t1 <t2 <--- <t;. We have

l
S @E) (Y NMAEF) By (EF)) =0

Jj=1 i€l ,ny i =t;
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and from here 3 ;.7 A(4EF)"i(ErFy)"i = 0 for all j €
{1,---,1}. Tt follows \; = 0 for all j € {1,---,1}.

b) We consider summands of the form - ® E;. As in the previous case, it
is enough to show the linear independence of the set

{b™2 " d™ Fy | n2,n3,ng € No} U {02 d™ (HFy + 2FF5) | ng,ns,ng € No}.

Let ) ,cr )\ib"“c”3vid”4viF1+Zj€J Ajb"2d ¢33 d™s (H Fy +2F Fy) = 0.
As in case a), we consider the summands without H and Fy and we
get

> XNMAEF)"™ (B )" (2EE,Fy )™ Fy = 0.

s
By the same arguments as in case a), we get A; = 0 for all i € Z. Then
we have Zjej Ajb2icsid™i (HFy + 2FFy) =0 and

Z ;b1 I = ().

JET
Since we have already proved that the set {b™2¢"3d™ | ng, ng,ng € No}
is linearly independent, it follows A\; =0 for all j € J.

c¢) Let us consider summands of the form - ® Fj. It is enough to prove
the linear independence of the set

{bn20n3dn4E1 |TL2,TL3,TL4 S No} U {bn2cn3dn4 (HEl + 2EE2) |n2, ns,ng € NO}

The proof is similar to the case b), only in this case we consider sum-
mands without H and Es.

d) In this case we consider summands of the form - ® Es A Fy. It is enough
to prove the linear independence of the set

{b'mcngdn4 | no, N3, Ny € No}
U {bn2cn3dn4 (HE2F2 — 2EE2F1) | N9, N3, Ny € NO}
UA{b"2c™d™ EqFy | ng,ng,ng € No} U {b™2c™*d™ H | ng,ns,ng € No}.

Let
Z PWACRFLRD (ZRE Z b2 3 dna [ Z A\pb"2k Bk A By Ty
€L JET kex
+ Z A b2t (HEQFQ —2EE,F)) = 0.
lel

We first consider the summands without H and Es and get

D NMAEF)™ By Ry (2F B F>)™ = 0.
i€z
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Then it follows A; = 0 for all 7 € Z, similarly as in case a). Now we
consider summands without H and F} and get

> A(AEF)"2*(ByFy) s (2F By Fy)"* Ey Fy = 0.
ke
It follows A\, = 0 for all £ € K. Then we consider summands without
H and F5 and similarly as before get A\; = 0 for all [ € £. Finally, we
have
D oAbt ctsidri H = 0.
jeT
We conclude A\; =0 for all j € J.
We consider summands of the form - ® E1 A Es A Fy. Let

D oAb AN Fy Y A9 ¢ d" (2EFy — HF,) = 0.

i€ JjeET

By considering summands without H and F; we get A\; =0 for all j €
J and then, from the independence of the set {b™2¢"#d™ | ng, n3, ng €
Np} it follows A\; =0 for all ¢ € 7.

This time we consider summands of the form - ® E; A Fi A F5 and then
those without H and FEs. The proof is similar as in the previous case.

This finishes the proof of linear independence of the set S -T. To prove
that S - T is also a spanning set, we use Proposition 2.5. We consider the
degrees of the elements of the set {d™} - T, i.e., of

{d™, d™e,d™ f,d™ g, d™ h, d"i, d" 5,
d"ef,d"eg,d" fg,d" g d"*ei,d™ej,d™ fh,d" fi,d™ fj}.

The degrees of these elements are respectively
3ng,3ng + 2,3n4 4+ 2,304 4+ 2,304 + 3,304 + 3,304 + 3,
3ng+4,3ns+4,3n4+4,3ng4+4,3n4+5,3n4 + 5,304 + 5,304 + 5,304 + 5.

TABLE 2. Number of invariants

degree number of invariants
0 1
1 0
2 3
3k, k>1 4
3k+1, k>1 4
3k+2, k>1 8

Varying n4 and considering the number of invariants in each degree of the
set {d" |ny € Zy} - T, we get Table 2.
In view of Proposition 2.5, this finishes the proof. O
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The above proposition shows in particular that the algebra (S(g)®@ A (p))%
is generated by elements a,...,j. It also proves the following facts:

COROLLARY 3.2. The algebra S(g)¥ is a polynomial algebra generated by
the elements a, b, c,d. The algebra (S(g)@ A\ (p))X is a free module over S(g)¥
of rank 16, and the elements of the set T form a basis for this free module.

4. THE SET OF GENERATORS FOR (U(g) ® C(p))¥

In this section we will show that the algebra of K—invariants in U(g)®C(p)
is generated by five explicit elements. Two of these elements generate Z (&)
and the third generates the algebra C(p)®X. The fourth element is the Dirac
operator, and the fifth can be considered as a £-analogue of the Dirac operator.

Recall that the symmetrization map o : S(g) — U(g) given by

1
0—(1'11'2 o xn) = ﬁ Z Ta(1)ZTa(2) " Ta(n)s N € N;mla L, Tn €9
a€Sy
is an isomorphism of K—modules. The Chevalley map 7 : A(p) — C(p)
given by the composition of the map

1
VLA AUy o Z sgn()va1) @ -+ @ Va(n)

a€Sy,
from A(p) into the tensor algebra T'(p) and the canonical projection from
T(p) to C(p) is also an isomorphism of K-modules.
Since for z1,+-+,2z, € g and o € S, we have 21+ 2 — 24(1) "+ Za(n) €
Un—1(g), it follows

(4.1) o(z1+-+2pn) =212, modulo U,_1(g).
Similarly, since for yi,---,yr € p and a € S we have y;---yr —
sgn(Q)Ya (1) Ya(k) € Cr—1(p), it follows
(4.2) T(yr A Ayk) =y1---yr modulo Cr_1(p).
Consider the following elements of U(g) ® C(p):
a=(H,+ Hy)®1,
b= (H?>+2(EF +FE))®1,

¢=(E1F1 + ExFs) ® 1,
d = (2EFEyF, + HE\Fy — HEyFy + 2FE\Fy) @1,
E=F®F +F,®E,,
f=Ei®R +E® R,
§=1® (E1F1 + E2 F»),
h=2EEy,+ HE) ® Fy + (~HFE, + 2FE,) ® Fy,
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i=2EQ FyFy + H® E\Fy — H® EoFy +2F @ E1 Fy,
j=(HF, +2FF,)® By + (2EF, — HF,) ® Es.

One can check that

(0@ 7)(a) = 4,
(0@ 7)(b) =b,
(0 @) =&~ 24,
= 1. 3.

(c@7)(d)=d- 51)7 50
(@ 7)(e) =

(4.3) i
(Ganf) =7,
(c@7)(9)=g9+2&1,
(0 @)(h) =~ 57,
(0@ 7)) =1,
(@) =]+ ¢

Using this, (4.1), (4.2) and Proposition 3.1 one shows by induction that the
following lemma holds:

_LEMMA 4.1. The algebra (U(g) ® C(p)¥ is generated by elements a, b,
¢ d,é f, g, h,iandj.
Let
D=E19F+EQh+FQE +FRE

be the Dirac operator. Using D, we can reduce the set of generators for
(U(g) ® C(p))X given by Lemma 4.1, since we have

1 1 1.
5(D+ 5Dg — 53D),

™
I

2 2 2
o1 1 1
= —(D—=Dj+ =gD
f=35D=5Dg+33D),

1 -~ -
¢=—1(i+2(ef + fe) + 3ag),
h=2(fé—&f) — 3af + 67,

j = 2(éé — &) — 3ae,
J—l(—ﬁéféﬁ+26”féf76&~—lfffgf§5Lg)
~ 3 g 9% 24
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From this we conclude that the algebra (U(g) ® C(p))¥ is generated by ele-
ments a, l~), D,g,%.

The element @ is in the center of &. The element b is up to scalar equal
to the Casimir element of €, = s[(2,C). Thus @ and b generate Z(€). The
element § generates the three-dimensional algebra C(p)%.

Furthermore, note that the basis (E, F, H; — Ho, H; + Hs) of ¢ is dual for
the basis

1 3
(F,E7 §(H1 — Hs), §(H1 + HQ))

with respect to the trace form. Let o : ¢ — C(p) be the action map ¢ —
s0(p) composed with the inclusion

so(p) = A\*(p) = C(p)
(see [9]). Then the element

1
E®a(F) + 5 (Hi — Hy) @ a(Hy — Ha)
3
+ 5 (Hi+ Hy) @ a(Hy + Hp) + F ® o(E)
1
= _Z(2E®E2F1 + (Hl _HQ) ® (ElFl — EQFQ)
3
+3(Hy + Hy) @ (BE1Fy + EoFy) +2F @ By Fy) — §(H1 +Hy)®1
1 -~
= - (i +3ag) - ga

can be thought of as a £-version of the Dirac operator, and we denote it by
Dt Tt is clear that we can replace 7 by this element and still get a set of
generators.

We have proved:

THEOREM 4.2. The algebra (U(g) @ C(p))X is generated by the following
five elements:

e G and b, generating Z(¥);
e g, generating C(p)X;
e The Dirac operator D and its £-version D*.

As a consequence, we get the following corollary about the quotient of the
algebra (U(g) ® C(p))¥ by the ideal generated by D. This quotient algebra
is important because it acts on Dirac cohomology of any (g, K)-module.

COROLLARY 4.3. Let T be the ideal in the algebra (U(g) ® C(p))X gen-
erated by the Dirac operator D. The quotient algebra (U(g) ® C(p)X/T is
generated by classes of elements @, b, i and § and it is abelian.
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PROOF. The algebra generated by elements @, b, 7 and § is abelian and
it is a subset of the algebra U(t) ® C(p). Since D has an element of p in the
first factor of each summand, while elements of U (£) ® C(p) have no elements
of p in the first factors of any of their summands, we can use the Poincaré-
Birkhoff-Witt theorem to see

(U(t) ® C(p)) NT = {0}.

The claim follows. o

By results of [22, Section 4], the commutativity of the algebra (U(g) ®
C(p))¥ /T from the above corollary leads to the fact that for any irreducible
(g, K)-module X, its Dirac cohomology Hp(X) has I?—multiplicities equal
to 1. By results of [4], this is known to be false for general SU(p,q), so
(U(g) ® C(p))" /T will not be abelian in general.

The following result is a special case of a more general result for the Lie
algebra g = su(n, 1) ([14]).

COROLLARY 4.4. The subalgebra U(g)X of U(g) is equal to Z(g)Z(¥).

PROOF. From the theorem of Chevalley ([5]) it follows that Z(g) is a
polynomial algebra on two generators of degrees 2 and 3. For these generators,
we can take the Casimir element of Uf(g),

1 3
Q= (Hy — H2)* + S(Hy + Hy)* + EF + FE
+ E1Fy + EsFs + F1E + FyEs

3 b
:§d2+§+26—3d,

and the element

N w

cub = %a% %ai)fsaﬂ gff —3a+3d— =b.

Since the algebra U(g)¥ is generated by the elements a, l~), c, d and since @ and

b generate Z(t), the claim follows. O

Finally, we can obtain the following description of the algebra (U(g) ®
C(p))¥. Let S and T be the following subsets of (U(g) ® C(p))X:

5' = {dn16n26n3dn4 |n1,n2,n3,n4 S NQ},
T={L¢/f.g.hi.j.2f.g.f3.9°. é.¢ej, fh. fi, ]}
COROLLARY 4.5. The algebra (U(g)@C(p))K is a free module over U(g)¥

of rank 16, and the elements of the set T' form a basis for this free module.

_PROOF. It is enough to prove that the set ST of products of elements
of S and T in the algebra U(g) ® C(p) is a basis for (U(g) ® C(p))¥. Using
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(4.1), (4.2), (4.3) and Proposition 3.1 one shows by induction that the set

ST spans (U(g) ® C(p))¥. Since for each positive integer n we have
Un(g) = 0(S"(9) ©Un-1(g)  and  Cy(p) = 7(A"(p)) & Cn-1(p),

the following identity holds for all positive integers n and m:

Un(9) ® Cm(p) = (0@ 7)(S"(9) @ A" (p)) & (Un—1(g) @ (A" (p))
& (U(Sn(g)) & C’mfl(p)) D (Unfl(g) ® C’mfl(p)))

Linear independence now follows easily by induction on n and m from (4.3)
and Proposition 3.1. O
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